524 lines
14 KiB
C
524 lines
14 KiB
C
/*
|
|
* linux/fs/ext4/crypto.c
|
|
*
|
|
* Copyright (C) 2015, Google, Inc.
|
|
*
|
|
* This contains encryption functions for ext4
|
|
*
|
|
* Written by Michael Halcrow, 2014.
|
|
*
|
|
* Filename encryption additions
|
|
* Uday Savagaonkar, 2014
|
|
* Encryption policy handling additions
|
|
* Ildar Muslukhov, 2014
|
|
*
|
|
* This has not yet undergone a rigorous security audit.
|
|
*
|
|
* The usage of AES-XTS should conform to recommendations in NIST
|
|
* Special Publication 800-38E and IEEE P1619/D16.
|
|
*/
|
|
|
|
#include <crypto/skcipher.h>
|
|
#include <keys/user-type.h>
|
|
#include <keys/encrypted-type.h>
|
|
#include <linux/ecryptfs.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/key.h>
|
|
#include <linux/list.h>
|
|
#include <linux/mempool.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/random.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/spinlock_types.h>
|
|
|
|
#include "ext4_extents.h"
|
|
#include "xattr.h"
|
|
|
|
/* Encryption added and removed here! (L: */
|
|
|
|
static unsigned int num_prealloc_crypto_pages = 32;
|
|
static unsigned int num_prealloc_crypto_ctxs = 128;
|
|
|
|
module_param(num_prealloc_crypto_pages, uint, 0444);
|
|
MODULE_PARM_DESC(num_prealloc_crypto_pages,
|
|
"Number of crypto pages to preallocate");
|
|
module_param(num_prealloc_crypto_ctxs, uint, 0444);
|
|
MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
|
|
"Number of crypto contexts to preallocate");
|
|
|
|
static mempool_t *ext4_bounce_page_pool;
|
|
|
|
static LIST_HEAD(ext4_free_crypto_ctxs);
|
|
static DEFINE_SPINLOCK(ext4_crypto_ctx_lock);
|
|
|
|
static struct kmem_cache *ext4_crypto_ctx_cachep;
|
|
struct kmem_cache *ext4_crypt_info_cachep;
|
|
|
|
/**
|
|
* ext4_release_crypto_ctx() - Releases an encryption context
|
|
* @ctx: The encryption context to release.
|
|
*
|
|
* If the encryption context was allocated from the pre-allocated pool, returns
|
|
* it to that pool. Else, frees it.
|
|
*
|
|
* If there's a bounce page in the context, this frees that.
|
|
*/
|
|
void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (ctx->flags & EXT4_WRITE_PATH_FL && ctx->w.bounce_page)
|
|
mempool_free(ctx->w.bounce_page, ext4_bounce_page_pool);
|
|
ctx->w.bounce_page = NULL;
|
|
ctx->w.control_page = NULL;
|
|
if (ctx->flags & EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL) {
|
|
kmem_cache_free(ext4_crypto_ctx_cachep, ctx);
|
|
} else {
|
|
spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
|
|
list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
|
|
spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ext4_get_crypto_ctx() - Gets an encryption context
|
|
* @inode: The inode for which we are doing the crypto
|
|
*
|
|
* Allocates and initializes an encryption context.
|
|
*
|
|
* Return: An allocated and initialized encryption context on success; error
|
|
* value or NULL otherwise.
|
|
*/
|
|
struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode)
|
|
{
|
|
struct ext4_crypto_ctx *ctx = NULL;
|
|
int res = 0;
|
|
unsigned long flags;
|
|
struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info;
|
|
|
|
if (ci == NULL)
|
|
return ERR_PTR(-ENOKEY);
|
|
|
|
/*
|
|
* We first try getting the ctx from a free list because in
|
|
* the common case the ctx will have an allocated and
|
|
* initialized crypto tfm, so it's probably a worthwhile
|
|
* optimization. For the bounce page, we first try getting it
|
|
* from the kernel allocator because that's just about as fast
|
|
* as getting it from a list and because a cache of free pages
|
|
* should generally be a "last resort" option for a filesystem
|
|
* to be able to do its job.
|
|
*/
|
|
spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
|
|
ctx = list_first_entry_or_null(&ext4_free_crypto_ctxs,
|
|
struct ext4_crypto_ctx, free_list);
|
|
if (ctx)
|
|
list_del(&ctx->free_list);
|
|
spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
|
|
if (!ctx) {
|
|
ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, GFP_NOFS);
|
|
if (!ctx) {
|
|
res = -ENOMEM;
|
|
goto out;
|
|
}
|
|
ctx->flags |= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
|
|
} else {
|
|
ctx->flags &= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
|
|
}
|
|
ctx->flags &= ~EXT4_WRITE_PATH_FL;
|
|
|
|
out:
|
|
if (res) {
|
|
if (!IS_ERR_OR_NULL(ctx))
|
|
ext4_release_crypto_ctx(ctx);
|
|
ctx = ERR_PTR(res);
|
|
}
|
|
return ctx;
|
|
}
|
|
|
|
struct workqueue_struct *ext4_read_workqueue;
|
|
static DEFINE_MUTEX(crypto_init);
|
|
|
|
/**
|
|
* ext4_exit_crypto() - Shutdown the ext4 encryption system
|
|
*/
|
|
void ext4_exit_crypto(void)
|
|
{
|
|
struct ext4_crypto_ctx *pos, *n;
|
|
|
|
list_for_each_entry_safe(pos, n, &ext4_free_crypto_ctxs, free_list)
|
|
kmem_cache_free(ext4_crypto_ctx_cachep, pos);
|
|
INIT_LIST_HEAD(&ext4_free_crypto_ctxs);
|
|
if (ext4_bounce_page_pool)
|
|
mempool_destroy(ext4_bounce_page_pool);
|
|
ext4_bounce_page_pool = NULL;
|
|
if (ext4_read_workqueue)
|
|
destroy_workqueue(ext4_read_workqueue);
|
|
ext4_read_workqueue = NULL;
|
|
if (ext4_crypto_ctx_cachep)
|
|
kmem_cache_destroy(ext4_crypto_ctx_cachep);
|
|
ext4_crypto_ctx_cachep = NULL;
|
|
if (ext4_crypt_info_cachep)
|
|
kmem_cache_destroy(ext4_crypt_info_cachep);
|
|
ext4_crypt_info_cachep = NULL;
|
|
}
|
|
|
|
/**
|
|
* ext4_init_crypto() - Set up for ext4 encryption.
|
|
*
|
|
* We only call this when we start accessing encrypted files, since it
|
|
* results in memory getting allocated that wouldn't otherwise be used.
|
|
*
|
|
* Return: Zero on success, non-zero otherwise.
|
|
*/
|
|
int ext4_init_crypto(void)
|
|
{
|
|
int i, res = -ENOMEM;
|
|
|
|
mutex_lock(&crypto_init);
|
|
if (ext4_read_workqueue)
|
|
goto already_initialized;
|
|
ext4_read_workqueue = alloc_workqueue("ext4_crypto", WQ_HIGHPRI, 0);
|
|
if (!ext4_read_workqueue)
|
|
goto fail;
|
|
|
|
ext4_crypto_ctx_cachep = KMEM_CACHE(ext4_crypto_ctx,
|
|
SLAB_RECLAIM_ACCOUNT);
|
|
if (!ext4_crypto_ctx_cachep)
|
|
goto fail;
|
|
|
|
ext4_crypt_info_cachep = KMEM_CACHE(ext4_crypt_info,
|
|
SLAB_RECLAIM_ACCOUNT);
|
|
if (!ext4_crypt_info_cachep)
|
|
goto fail;
|
|
|
|
for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
|
|
struct ext4_crypto_ctx *ctx;
|
|
|
|
ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, GFP_NOFS);
|
|
if (!ctx) {
|
|
res = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
|
|
}
|
|
|
|
ext4_bounce_page_pool =
|
|
mempool_create_page_pool(num_prealloc_crypto_pages, 0);
|
|
if (!ext4_bounce_page_pool) {
|
|
res = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
already_initialized:
|
|
mutex_unlock(&crypto_init);
|
|
return 0;
|
|
fail:
|
|
ext4_exit_crypto();
|
|
mutex_unlock(&crypto_init);
|
|
return res;
|
|
}
|
|
|
|
void ext4_restore_control_page(struct page *data_page)
|
|
{
|
|
struct ext4_crypto_ctx *ctx =
|
|
(struct ext4_crypto_ctx *)page_private(data_page);
|
|
|
|
set_page_private(data_page, (unsigned long)NULL);
|
|
ClearPagePrivate(data_page);
|
|
unlock_page(data_page);
|
|
ext4_release_crypto_ctx(ctx);
|
|
}
|
|
|
|
/**
|
|
* ext4_crypt_complete() - The completion callback for page encryption
|
|
* @req: The asynchronous encryption request context
|
|
* @res: The result of the encryption operation
|
|
*/
|
|
static void ext4_crypt_complete(struct crypto_async_request *req, int res)
|
|
{
|
|
struct ext4_completion_result *ecr = req->data;
|
|
|
|
if (res == -EINPROGRESS)
|
|
return;
|
|
ecr->res = res;
|
|
complete(&ecr->completion);
|
|
}
|
|
|
|
typedef enum {
|
|
EXT4_DECRYPT = 0,
|
|
EXT4_ENCRYPT,
|
|
} ext4_direction_t;
|
|
|
|
static int ext4_page_crypto(struct inode *inode,
|
|
ext4_direction_t rw,
|
|
pgoff_t index,
|
|
struct page *src_page,
|
|
struct page *dest_page)
|
|
|
|
{
|
|
u8 xts_tweak[EXT4_XTS_TWEAK_SIZE];
|
|
struct skcipher_request *req = NULL;
|
|
DECLARE_EXT4_COMPLETION_RESULT(ecr);
|
|
struct scatterlist dst, src;
|
|
struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info;
|
|
struct crypto_skcipher *tfm = ci->ci_ctfm;
|
|
int res = 0;
|
|
|
|
req = skcipher_request_alloc(tfm, GFP_NOFS);
|
|
if (!req) {
|
|
printk_ratelimited(KERN_ERR
|
|
"%s: crypto_request_alloc() failed\n",
|
|
__func__);
|
|
return -ENOMEM;
|
|
}
|
|
skcipher_request_set_callback(
|
|
req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
|
|
ext4_crypt_complete, &ecr);
|
|
|
|
BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE < sizeof(index));
|
|
memcpy(xts_tweak, &index, sizeof(index));
|
|
memset(&xts_tweak[sizeof(index)], 0,
|
|
EXT4_XTS_TWEAK_SIZE - sizeof(index));
|
|
|
|
sg_init_table(&dst, 1);
|
|
sg_set_page(&dst, dest_page, PAGE_CACHE_SIZE, 0);
|
|
sg_init_table(&src, 1);
|
|
sg_set_page(&src, src_page, PAGE_CACHE_SIZE, 0);
|
|
skcipher_request_set_crypt(req, &src, &dst, PAGE_CACHE_SIZE,
|
|
xts_tweak);
|
|
if (rw == EXT4_DECRYPT)
|
|
res = crypto_skcipher_decrypt(req);
|
|
else
|
|
res = crypto_skcipher_encrypt(req);
|
|
if (res == -EINPROGRESS || res == -EBUSY) {
|
|
wait_for_completion(&ecr.completion);
|
|
res = ecr.res;
|
|
}
|
|
skcipher_request_free(req);
|
|
if (res) {
|
|
printk_ratelimited(
|
|
KERN_ERR
|
|
"%s: crypto_skcipher_encrypt() returned %d\n",
|
|
__func__, res);
|
|
return res;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct page *alloc_bounce_page(struct ext4_crypto_ctx *ctx)
|
|
{
|
|
ctx->w.bounce_page = mempool_alloc(ext4_bounce_page_pool, GFP_NOWAIT);
|
|
if (ctx->w.bounce_page == NULL)
|
|
return ERR_PTR(-ENOMEM);
|
|
ctx->flags |= EXT4_WRITE_PATH_FL;
|
|
return ctx->w.bounce_page;
|
|
}
|
|
|
|
/**
|
|
* ext4_encrypt() - Encrypts a page
|
|
* @inode: The inode for which the encryption should take place
|
|
* @plaintext_page: The page to encrypt. Must be locked.
|
|
*
|
|
* Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
|
|
* encryption context.
|
|
*
|
|
* Called on the page write path. The caller must call
|
|
* ext4_restore_control_page() on the returned ciphertext page to
|
|
* release the bounce buffer and the encryption context.
|
|
*
|
|
* Return: An allocated page with the encrypted content on success. Else, an
|
|
* error value or NULL.
|
|
*/
|
|
struct page *ext4_encrypt(struct inode *inode,
|
|
struct page *plaintext_page)
|
|
{
|
|
struct ext4_crypto_ctx *ctx;
|
|
struct page *ciphertext_page = NULL;
|
|
int err;
|
|
|
|
BUG_ON(!PageLocked(plaintext_page));
|
|
|
|
ctx = ext4_get_crypto_ctx(inode);
|
|
if (IS_ERR(ctx))
|
|
return (struct page *) ctx;
|
|
|
|
/* The encryption operation will require a bounce page. */
|
|
ciphertext_page = alloc_bounce_page(ctx);
|
|
if (IS_ERR(ciphertext_page))
|
|
goto errout;
|
|
ctx->w.control_page = plaintext_page;
|
|
err = ext4_page_crypto(inode, EXT4_ENCRYPT, plaintext_page->index,
|
|
plaintext_page, ciphertext_page);
|
|
if (err) {
|
|
ciphertext_page = ERR_PTR(err);
|
|
errout:
|
|
ext4_release_crypto_ctx(ctx);
|
|
return ciphertext_page;
|
|
}
|
|
SetPagePrivate(ciphertext_page);
|
|
set_page_private(ciphertext_page, (unsigned long)ctx);
|
|
lock_page(ciphertext_page);
|
|
return ciphertext_page;
|
|
}
|
|
|
|
/**
|
|
* ext4_decrypt() - Decrypts a page in-place
|
|
* @ctx: The encryption context.
|
|
* @page: The page to decrypt. Must be locked.
|
|
*
|
|
* Decrypts page in-place using the ctx encryption context.
|
|
*
|
|
* Called from the read completion callback.
|
|
*
|
|
* Return: Zero on success, non-zero otherwise.
|
|
*/
|
|
int ext4_decrypt(struct page *page)
|
|
{
|
|
BUG_ON(!PageLocked(page));
|
|
|
|
return ext4_page_crypto(page->mapping->host,
|
|
EXT4_DECRYPT, page->index, page, page);
|
|
}
|
|
|
|
int ext4_encrypted_zeroout(struct inode *inode, ext4_lblk_t lblk,
|
|
ext4_fsblk_t pblk, ext4_lblk_t len)
|
|
{
|
|
struct ext4_crypto_ctx *ctx;
|
|
struct page *ciphertext_page = NULL;
|
|
struct bio *bio;
|
|
int ret, err = 0;
|
|
|
|
#if 0
|
|
ext4_msg(inode->i_sb, KERN_CRIT,
|
|
"ext4_encrypted_zeroout ino %lu lblk %u len %u",
|
|
(unsigned long) inode->i_ino, lblk, len);
|
|
#endif
|
|
|
|
BUG_ON(inode->i_sb->s_blocksize != PAGE_CACHE_SIZE);
|
|
|
|
ctx = ext4_get_crypto_ctx(inode);
|
|
if (IS_ERR(ctx))
|
|
return PTR_ERR(ctx);
|
|
|
|
ciphertext_page = alloc_bounce_page(ctx);
|
|
if (IS_ERR(ciphertext_page)) {
|
|
err = PTR_ERR(ciphertext_page);
|
|
goto errout;
|
|
}
|
|
|
|
while (len--) {
|
|
err = ext4_page_crypto(inode, EXT4_ENCRYPT, lblk,
|
|
ZERO_PAGE(0), ciphertext_page);
|
|
if (err)
|
|
goto errout;
|
|
|
|
bio = bio_alloc(GFP_KERNEL, 1);
|
|
if (!bio) {
|
|
err = -ENOMEM;
|
|
goto errout;
|
|
}
|
|
bio->bi_bdev = inode->i_sb->s_bdev;
|
|
bio->bi_iter.bi_sector =
|
|
pblk << (inode->i_sb->s_blocksize_bits - 9);
|
|
ret = bio_add_page(bio, ciphertext_page,
|
|
inode->i_sb->s_blocksize, 0);
|
|
if (ret != inode->i_sb->s_blocksize) {
|
|
/* should never happen! */
|
|
ext4_msg(inode->i_sb, KERN_ERR,
|
|
"bio_add_page failed: %d", ret);
|
|
WARN_ON(1);
|
|
bio_put(bio);
|
|
err = -EIO;
|
|
goto errout;
|
|
}
|
|
err = submit_bio_wait(WRITE, bio);
|
|
if ((err == 0) && bio->bi_error)
|
|
err = -EIO;
|
|
bio_put(bio);
|
|
if (err)
|
|
goto errout;
|
|
lblk++; pblk++;
|
|
}
|
|
err = 0;
|
|
errout:
|
|
ext4_release_crypto_ctx(ctx);
|
|
return err;
|
|
}
|
|
|
|
bool ext4_valid_contents_enc_mode(uint32_t mode)
|
|
{
|
|
return (mode == EXT4_ENCRYPTION_MODE_AES_256_XTS);
|
|
}
|
|
|
|
/**
|
|
* ext4_validate_encryption_key_size() - Validate the encryption key size
|
|
* @mode: The key mode.
|
|
* @size: The key size to validate.
|
|
*
|
|
* Return: The validated key size for @mode. Zero if invalid.
|
|
*/
|
|
uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size)
|
|
{
|
|
if (size == ext4_encryption_key_size(mode))
|
|
return size;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Validate dentries for encrypted directories to make sure we aren't
|
|
* potentially caching stale data after a key has been added or
|
|
* removed.
|
|
*/
|
|
static int ext4_d_revalidate(struct dentry *dentry, unsigned int flags)
|
|
{
|
|
struct inode *dir = d_inode(dentry->d_parent);
|
|
struct ext4_crypt_info *ci = EXT4_I(dir)->i_crypt_info;
|
|
int dir_has_key, cached_with_key;
|
|
|
|
if (!ext4_encrypted_inode(dir))
|
|
return 0;
|
|
|
|
if (ci && ci->ci_keyring_key &&
|
|
(ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
|
|
(1 << KEY_FLAG_REVOKED) |
|
|
(1 << KEY_FLAG_DEAD))))
|
|
ci = NULL;
|
|
|
|
/* this should eventually be an flag in d_flags */
|
|
cached_with_key = dentry->d_fsdata != NULL;
|
|
dir_has_key = (ci != NULL);
|
|
|
|
/*
|
|
* If the dentry was cached without the key, and it is a
|
|
* negative dentry, it might be a valid name. We can't check
|
|
* if the key has since been made available due to locking
|
|
* reasons, so we fail the validation so ext4_lookup() can do
|
|
* this check.
|
|
*
|
|
* We also fail the validation if the dentry was created with
|
|
* the key present, but we no longer have the key, or vice versa.
|
|
*/
|
|
if ((!cached_with_key && d_is_negative(dentry)) ||
|
|
(!cached_with_key && dir_has_key) ||
|
|
(cached_with_key && !dir_has_key)) {
|
|
#if 0 /* Revalidation debug */
|
|
char buf[80];
|
|
char *cp = simple_dname(dentry, buf, sizeof(buf));
|
|
|
|
if (IS_ERR(cp))
|
|
cp = (char *) "???";
|
|
pr_err("revalidate: %s %p %d %d %d\n", cp, dentry->d_fsdata,
|
|
cached_with_key, d_is_negative(dentry),
|
|
dir_has_key);
|
|
#endif
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
const struct dentry_operations ext4_encrypted_d_ops = {
|
|
.d_revalidate = ext4_d_revalidate,
|
|
};
|