OpenCloudOS-Kernel/drivers/gpu/drm/i915/i915_gem_execbuffer.c

1813 lines
49 KiB
C

/*
* Copyright © 2008,2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
* Chris Wilson <chris@chris-wilson.co.uk>
*
*/
#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_drv.h"
#include <linux/dma_remapping.h>
#include <linux/uaccess.h>
#define __EXEC_OBJECT_HAS_PIN (1<<31)
#define __EXEC_OBJECT_HAS_FENCE (1<<30)
#define __EXEC_OBJECT_NEEDS_MAP (1<<29)
#define __EXEC_OBJECT_NEEDS_BIAS (1<<28)
#define BATCH_OFFSET_BIAS (256*1024)
struct eb_vmas {
struct list_head vmas;
int and;
union {
struct i915_vma *lut[0];
struct hlist_head buckets[0];
};
};
static struct eb_vmas *
eb_create(struct drm_i915_gem_execbuffer2 *args)
{
struct eb_vmas *eb = NULL;
if (args->flags & I915_EXEC_HANDLE_LUT) {
unsigned size = args->buffer_count;
size *= sizeof(struct i915_vma *);
size += sizeof(struct eb_vmas);
eb = kmalloc(size, GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
}
if (eb == NULL) {
unsigned size = args->buffer_count;
unsigned count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
BUILD_BUG_ON_NOT_POWER_OF_2(PAGE_SIZE / sizeof(struct hlist_head));
while (count > 2*size)
count >>= 1;
eb = kzalloc(count*sizeof(struct hlist_head) +
sizeof(struct eb_vmas),
GFP_TEMPORARY);
if (eb == NULL)
return eb;
eb->and = count - 1;
} else
eb->and = -args->buffer_count;
INIT_LIST_HEAD(&eb->vmas);
return eb;
}
static void
eb_reset(struct eb_vmas *eb)
{
if (eb->and >= 0)
memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
}
static int
eb_lookup_vmas(struct eb_vmas *eb,
struct drm_i915_gem_exec_object2 *exec,
const struct drm_i915_gem_execbuffer2 *args,
struct i915_address_space *vm,
struct drm_file *file)
{
struct drm_i915_gem_object *obj;
struct list_head objects;
int i, ret;
INIT_LIST_HEAD(&objects);
spin_lock(&file->table_lock);
/* Grab a reference to the object and release the lock so we can lookup
* or create the VMA without using GFP_ATOMIC */
for (i = 0; i < args->buffer_count; i++) {
obj = to_intel_bo(idr_find(&file->object_idr, exec[i].handle));
if (obj == NULL) {
spin_unlock(&file->table_lock);
DRM_DEBUG("Invalid object handle %d at index %d\n",
exec[i].handle, i);
ret = -ENOENT;
goto err;
}
if (!list_empty(&obj->obj_exec_link)) {
spin_unlock(&file->table_lock);
DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
obj, exec[i].handle, i);
ret = -EINVAL;
goto err;
}
drm_gem_object_reference(&obj->base);
list_add_tail(&obj->obj_exec_link, &objects);
}
spin_unlock(&file->table_lock);
i = 0;
while (!list_empty(&objects)) {
struct i915_vma *vma;
obj = list_first_entry(&objects,
struct drm_i915_gem_object,
obj_exec_link);
/*
* NOTE: We can leak any vmas created here when something fails
* later on. But that's no issue since vma_unbind can deal with
* vmas which are not actually bound. And since only
* lookup_or_create exists as an interface to get at the vma
* from the (obj, vm) we don't run the risk of creating
* duplicated vmas for the same vm.
*/
vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
if (IS_ERR(vma)) {
DRM_DEBUG("Failed to lookup VMA\n");
ret = PTR_ERR(vma);
goto err;
}
/* Transfer ownership from the objects list to the vmas list. */
list_add_tail(&vma->exec_list, &eb->vmas);
list_del_init(&obj->obj_exec_link);
vma->exec_entry = &exec[i];
if (eb->and < 0) {
eb->lut[i] = vma;
} else {
uint32_t handle = args->flags & I915_EXEC_HANDLE_LUT ? i : exec[i].handle;
vma->exec_handle = handle;
hlist_add_head(&vma->exec_node,
&eb->buckets[handle & eb->and]);
}
++i;
}
return 0;
err:
while (!list_empty(&objects)) {
obj = list_first_entry(&objects,
struct drm_i915_gem_object,
obj_exec_link);
list_del_init(&obj->obj_exec_link);
drm_gem_object_unreference(&obj->base);
}
/*
* Objects already transfered to the vmas list will be unreferenced by
* eb_destroy.
*/
return ret;
}
static struct i915_vma *eb_get_vma(struct eb_vmas *eb, unsigned long handle)
{
if (eb->and < 0) {
if (handle >= -eb->and)
return NULL;
return eb->lut[handle];
} else {
struct hlist_head *head;
struct i915_vma *vma;
head = &eb->buckets[handle & eb->and];
hlist_for_each_entry(vma, head, exec_node) {
if (vma->exec_handle == handle)
return vma;
}
return NULL;
}
}
static void
i915_gem_execbuffer_unreserve_vma(struct i915_vma *vma)
{
struct drm_i915_gem_exec_object2 *entry;
struct drm_i915_gem_object *obj = vma->obj;
if (!drm_mm_node_allocated(&vma->node))
return;
entry = vma->exec_entry;
if (entry->flags & __EXEC_OBJECT_HAS_FENCE)
i915_gem_object_unpin_fence(obj);
if (entry->flags & __EXEC_OBJECT_HAS_PIN)
vma->pin_count--;
entry->flags &= ~(__EXEC_OBJECT_HAS_FENCE | __EXEC_OBJECT_HAS_PIN);
}
static void eb_destroy(struct eb_vmas *eb)
{
while (!list_empty(&eb->vmas)) {
struct i915_vma *vma;
vma = list_first_entry(&eb->vmas,
struct i915_vma,
exec_list);
list_del_init(&vma->exec_list);
i915_gem_execbuffer_unreserve_vma(vma);
drm_gem_object_unreference(&vma->obj->base);
}
kfree(eb);
}
static inline int use_cpu_reloc(struct drm_i915_gem_object *obj)
{
return (HAS_LLC(obj->base.dev) ||
obj->base.write_domain == I915_GEM_DOMAIN_CPU ||
obj->cache_level != I915_CACHE_NONE);
}
/* Used to convert any address to canonical form.
* Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
* MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
* addresses to be in a canonical form:
* "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
* canonical form [63:48] == [47]."
*/
#define GEN8_HIGH_ADDRESS_BIT 47
static inline uint64_t gen8_canonical_addr(uint64_t address)
{
return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
}
static inline uint64_t gen8_noncanonical_addr(uint64_t address)
{
return address & ((1ULL << (GEN8_HIGH_ADDRESS_BIT + 1)) - 1);
}
static inline uint64_t
relocation_target(struct drm_i915_gem_relocation_entry *reloc,
uint64_t target_offset)
{
return gen8_canonical_addr((int)reloc->delta + target_offset);
}
static int
relocate_entry_cpu(struct drm_i915_gem_object *obj,
struct drm_i915_gem_relocation_entry *reloc,
uint64_t target_offset)
{
struct drm_device *dev = obj->base.dev;
uint32_t page_offset = offset_in_page(reloc->offset);
uint64_t delta = relocation_target(reloc, target_offset);
char *vaddr;
int ret;
ret = i915_gem_object_set_to_cpu_domain(obj, true);
if (ret)
return ret;
vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj,
reloc->offset >> PAGE_SHIFT));
*(uint32_t *)(vaddr + page_offset) = lower_32_bits(delta);
if (INTEL_INFO(dev)->gen >= 8) {
page_offset = offset_in_page(page_offset + sizeof(uint32_t));
if (page_offset == 0) {
kunmap_atomic(vaddr);
vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj,
(reloc->offset + sizeof(uint32_t)) >> PAGE_SHIFT));
}
*(uint32_t *)(vaddr + page_offset) = upper_32_bits(delta);
}
kunmap_atomic(vaddr);
return 0;
}
static int
relocate_entry_gtt(struct drm_i915_gem_object *obj,
struct drm_i915_gem_relocation_entry *reloc,
uint64_t target_offset)
{
struct drm_device *dev = obj->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct i915_ggtt *ggtt = &dev_priv->ggtt;
uint64_t delta = relocation_target(reloc, target_offset);
uint64_t offset;
void __iomem *reloc_page;
int ret;
ret = i915_gem_object_set_to_gtt_domain(obj, true);
if (ret)
return ret;
ret = i915_gem_object_put_fence(obj);
if (ret)
return ret;
/* Map the page containing the relocation we're going to perform. */
offset = i915_gem_obj_ggtt_offset(obj);
offset += reloc->offset;
reloc_page = io_mapping_map_atomic_wc(ggtt->mappable,
offset & PAGE_MASK);
iowrite32(lower_32_bits(delta), reloc_page + offset_in_page(offset));
if (INTEL_INFO(dev)->gen >= 8) {
offset += sizeof(uint32_t);
if (offset_in_page(offset) == 0) {
io_mapping_unmap_atomic(reloc_page);
reloc_page =
io_mapping_map_atomic_wc(ggtt->mappable,
offset);
}
iowrite32(upper_32_bits(delta),
reloc_page + offset_in_page(offset));
}
io_mapping_unmap_atomic(reloc_page);
return 0;
}
static void
clflush_write32(void *addr, uint32_t value)
{
/* This is not a fast path, so KISS. */
drm_clflush_virt_range(addr, sizeof(uint32_t));
*(uint32_t *)addr = value;
drm_clflush_virt_range(addr, sizeof(uint32_t));
}
static int
relocate_entry_clflush(struct drm_i915_gem_object *obj,
struct drm_i915_gem_relocation_entry *reloc,
uint64_t target_offset)
{
struct drm_device *dev = obj->base.dev;
uint32_t page_offset = offset_in_page(reloc->offset);
uint64_t delta = relocation_target(reloc, target_offset);
char *vaddr;
int ret;
ret = i915_gem_object_set_to_gtt_domain(obj, true);
if (ret)
return ret;
vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj,
reloc->offset >> PAGE_SHIFT));
clflush_write32(vaddr + page_offset, lower_32_bits(delta));
if (INTEL_INFO(dev)->gen >= 8) {
page_offset = offset_in_page(page_offset + sizeof(uint32_t));
if (page_offset == 0) {
kunmap_atomic(vaddr);
vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj,
(reloc->offset + sizeof(uint32_t)) >> PAGE_SHIFT));
}
clflush_write32(vaddr + page_offset, upper_32_bits(delta));
}
kunmap_atomic(vaddr);
return 0;
}
static int
i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
struct eb_vmas *eb,
struct drm_i915_gem_relocation_entry *reloc)
{
struct drm_device *dev = obj->base.dev;
struct drm_gem_object *target_obj;
struct drm_i915_gem_object *target_i915_obj;
struct i915_vma *target_vma;
uint64_t target_offset;
int ret;
/* we've already hold a reference to all valid objects */
target_vma = eb_get_vma(eb, reloc->target_handle);
if (unlikely(target_vma == NULL))
return -ENOENT;
target_i915_obj = target_vma->obj;
target_obj = &target_vma->obj->base;
target_offset = gen8_canonical_addr(target_vma->node.start);
/* Sandybridge PPGTT errata: We need a global gtt mapping for MI and
* pipe_control writes because the gpu doesn't properly redirect them
* through the ppgtt for non_secure batchbuffers. */
if (unlikely(IS_GEN6(dev) &&
reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION)) {
ret = i915_vma_bind(target_vma, target_i915_obj->cache_level,
PIN_GLOBAL);
if (WARN_ONCE(ret, "Unexpected failure to bind target VMA!"))
return ret;
}
/* Validate that the target is in a valid r/w GPU domain */
if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
DRM_DEBUG("reloc with multiple write domains: "
"obj %p target %d offset %d "
"read %08x write %08x",
obj, reloc->target_handle,
(int) reloc->offset,
reloc->read_domains,
reloc->write_domain);
return -EINVAL;
}
if (unlikely((reloc->write_domain | reloc->read_domains)
& ~I915_GEM_GPU_DOMAINS)) {
DRM_DEBUG("reloc with read/write non-GPU domains: "
"obj %p target %d offset %d "
"read %08x write %08x",
obj, reloc->target_handle,
(int) reloc->offset,
reloc->read_domains,
reloc->write_domain);
return -EINVAL;
}
target_obj->pending_read_domains |= reloc->read_domains;
target_obj->pending_write_domain |= reloc->write_domain;
/* If the relocation already has the right value in it, no
* more work needs to be done.
*/
if (target_offset == reloc->presumed_offset)
return 0;
/* Check that the relocation address is valid... */
if (unlikely(reloc->offset >
obj->base.size - (INTEL_INFO(dev)->gen >= 8 ? 8 : 4))) {
DRM_DEBUG("Relocation beyond object bounds: "
"obj %p target %d offset %d size %d.\n",
obj, reloc->target_handle,
(int) reloc->offset,
(int) obj->base.size);
return -EINVAL;
}
if (unlikely(reloc->offset & 3)) {
DRM_DEBUG("Relocation not 4-byte aligned: "
"obj %p target %d offset %d.\n",
obj, reloc->target_handle,
(int) reloc->offset);
return -EINVAL;
}
/* We can't wait for rendering with pagefaults disabled */
if (obj->active && pagefault_disabled())
return -EFAULT;
if (use_cpu_reloc(obj))
ret = relocate_entry_cpu(obj, reloc, target_offset);
else if (obj->map_and_fenceable)
ret = relocate_entry_gtt(obj, reloc, target_offset);
else if (static_cpu_has(X86_FEATURE_CLFLUSH))
ret = relocate_entry_clflush(obj, reloc, target_offset);
else {
WARN_ONCE(1, "Impossible case in relocation handling\n");
ret = -ENODEV;
}
if (ret)
return ret;
/* and update the user's relocation entry */
reloc->presumed_offset = target_offset;
return 0;
}
static int
i915_gem_execbuffer_relocate_vma(struct i915_vma *vma,
struct eb_vmas *eb)
{
#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
struct drm_i915_gem_relocation_entry stack_reloc[N_RELOC(512)];
struct drm_i915_gem_relocation_entry __user *user_relocs;
struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
int remain, ret;
user_relocs = u64_to_user_ptr(entry->relocs_ptr);
remain = entry->relocation_count;
while (remain) {
struct drm_i915_gem_relocation_entry *r = stack_reloc;
int count = remain;
if (count > ARRAY_SIZE(stack_reloc))
count = ARRAY_SIZE(stack_reloc);
remain -= count;
if (__copy_from_user_inatomic(r, user_relocs, count*sizeof(r[0])))
return -EFAULT;
do {
u64 offset = r->presumed_offset;
ret = i915_gem_execbuffer_relocate_entry(vma->obj, eb, r);
if (ret)
return ret;
if (r->presumed_offset != offset &&
__put_user(r->presumed_offset, &user_relocs->presumed_offset)) {
return -EFAULT;
}
user_relocs++;
r++;
} while (--count);
}
return 0;
#undef N_RELOC
}
static int
i915_gem_execbuffer_relocate_vma_slow(struct i915_vma *vma,
struct eb_vmas *eb,
struct drm_i915_gem_relocation_entry *relocs)
{
const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
int i, ret;
for (i = 0; i < entry->relocation_count; i++) {
ret = i915_gem_execbuffer_relocate_entry(vma->obj, eb, &relocs[i]);
if (ret)
return ret;
}
return 0;
}
static int
i915_gem_execbuffer_relocate(struct eb_vmas *eb)
{
struct i915_vma *vma;
int ret = 0;
/* This is the fast path and we cannot handle a pagefault whilst
* holding the struct mutex lest the user pass in the relocations
* contained within a mmaped bo. For in such a case we, the page
* fault handler would call i915_gem_fault() and we would try to
* acquire the struct mutex again. Obviously this is bad and so
* lockdep complains vehemently.
*/
pagefault_disable();
list_for_each_entry(vma, &eb->vmas, exec_list) {
ret = i915_gem_execbuffer_relocate_vma(vma, eb);
if (ret)
break;
}
pagefault_enable();
return ret;
}
static bool only_mappable_for_reloc(unsigned int flags)
{
return (flags & (EXEC_OBJECT_NEEDS_FENCE | __EXEC_OBJECT_NEEDS_MAP)) ==
__EXEC_OBJECT_NEEDS_MAP;
}
static int
i915_gem_execbuffer_reserve_vma(struct i915_vma *vma,
struct intel_engine_cs *engine,
bool *need_reloc)
{
struct drm_i915_gem_object *obj = vma->obj;
struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
uint64_t flags;
int ret;
flags = PIN_USER;
if (entry->flags & EXEC_OBJECT_NEEDS_GTT)
flags |= PIN_GLOBAL;
if (!drm_mm_node_allocated(&vma->node)) {
/* Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
* limit address to the first 4GBs for unflagged objects.
*/
if ((entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) == 0)
flags |= PIN_ZONE_4G;
if (entry->flags & __EXEC_OBJECT_NEEDS_MAP)
flags |= PIN_GLOBAL | PIN_MAPPABLE;
if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS)
flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
if (entry->flags & EXEC_OBJECT_PINNED)
flags |= entry->offset | PIN_OFFSET_FIXED;
if ((flags & PIN_MAPPABLE) == 0)
flags |= PIN_HIGH;
}
ret = i915_gem_object_pin(obj, vma->vm, entry->alignment, flags);
if ((ret == -ENOSPC || ret == -E2BIG) &&
only_mappable_for_reloc(entry->flags))
ret = i915_gem_object_pin(obj, vma->vm,
entry->alignment,
flags & ~PIN_MAPPABLE);
if (ret)
return ret;
entry->flags |= __EXEC_OBJECT_HAS_PIN;
if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
ret = i915_gem_object_get_fence(obj);
if (ret)
return ret;
if (i915_gem_object_pin_fence(obj))
entry->flags |= __EXEC_OBJECT_HAS_FENCE;
}
if (entry->offset != vma->node.start) {
entry->offset = vma->node.start;
*need_reloc = true;
}
if (entry->flags & EXEC_OBJECT_WRITE) {
obj->base.pending_read_domains = I915_GEM_DOMAIN_RENDER;
obj->base.pending_write_domain = I915_GEM_DOMAIN_RENDER;
}
return 0;
}
static bool
need_reloc_mappable(struct i915_vma *vma)
{
struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
if (entry->relocation_count == 0)
return false;
if (!vma->is_ggtt)
return false;
/* See also use_cpu_reloc() */
if (HAS_LLC(vma->obj->base.dev))
return false;
if (vma->obj->base.write_domain == I915_GEM_DOMAIN_CPU)
return false;
return true;
}
static bool
eb_vma_misplaced(struct i915_vma *vma)
{
struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
struct drm_i915_gem_object *obj = vma->obj;
WARN_ON(entry->flags & __EXEC_OBJECT_NEEDS_MAP && !vma->is_ggtt);
if (entry->alignment &&
vma->node.start & (entry->alignment - 1))
return true;
if (entry->flags & EXEC_OBJECT_PINNED &&
vma->node.start != entry->offset)
return true;
if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS &&
vma->node.start < BATCH_OFFSET_BIAS)
return true;
/* avoid costly ping-pong once a batch bo ended up non-mappable */
if (entry->flags & __EXEC_OBJECT_NEEDS_MAP && !obj->map_and_fenceable)
return !only_mappable_for_reloc(entry->flags);
if ((entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) == 0 &&
(vma->node.start + vma->node.size - 1) >> 32)
return true;
return false;
}
static int
i915_gem_execbuffer_reserve(struct intel_engine_cs *engine,
struct list_head *vmas,
struct i915_gem_context *ctx,
bool *need_relocs)
{
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
struct i915_address_space *vm;
struct list_head ordered_vmas;
struct list_head pinned_vmas;
bool has_fenced_gpu_access = INTEL_GEN(engine->i915) < 4;
int retry;
i915_gem_retire_requests_ring(engine);
vm = list_first_entry(vmas, struct i915_vma, exec_list)->vm;
INIT_LIST_HEAD(&ordered_vmas);
INIT_LIST_HEAD(&pinned_vmas);
while (!list_empty(vmas)) {
struct drm_i915_gem_exec_object2 *entry;
bool need_fence, need_mappable;
vma = list_first_entry(vmas, struct i915_vma, exec_list);
obj = vma->obj;
entry = vma->exec_entry;
if (ctx->flags & CONTEXT_NO_ZEROMAP)
entry->flags |= __EXEC_OBJECT_NEEDS_BIAS;
if (!has_fenced_gpu_access)
entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
need_fence =
entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
obj->tiling_mode != I915_TILING_NONE;
need_mappable = need_fence || need_reloc_mappable(vma);
if (entry->flags & EXEC_OBJECT_PINNED)
list_move_tail(&vma->exec_list, &pinned_vmas);
else if (need_mappable) {
entry->flags |= __EXEC_OBJECT_NEEDS_MAP;
list_move(&vma->exec_list, &ordered_vmas);
} else
list_move_tail(&vma->exec_list, &ordered_vmas);
obj->base.pending_read_domains = I915_GEM_GPU_DOMAINS & ~I915_GEM_DOMAIN_COMMAND;
obj->base.pending_write_domain = 0;
}
list_splice(&ordered_vmas, vmas);
list_splice(&pinned_vmas, vmas);
/* Attempt to pin all of the buffers into the GTT.
* This is done in 3 phases:
*
* 1a. Unbind all objects that do not match the GTT constraints for
* the execbuffer (fenceable, mappable, alignment etc).
* 1b. Increment pin count for already bound objects.
* 2. Bind new objects.
* 3. Decrement pin count.
*
* This avoid unnecessary unbinding of later objects in order to make
* room for the earlier objects *unless* we need to defragment.
*/
retry = 0;
do {
int ret = 0;
/* Unbind any ill-fitting objects or pin. */
list_for_each_entry(vma, vmas, exec_list) {
if (!drm_mm_node_allocated(&vma->node))
continue;
if (eb_vma_misplaced(vma))
ret = i915_vma_unbind(vma);
else
ret = i915_gem_execbuffer_reserve_vma(vma,
engine,
need_relocs);
if (ret)
goto err;
}
/* Bind fresh objects */
list_for_each_entry(vma, vmas, exec_list) {
if (drm_mm_node_allocated(&vma->node))
continue;
ret = i915_gem_execbuffer_reserve_vma(vma, engine,
need_relocs);
if (ret)
goto err;
}
err:
if (ret != -ENOSPC || retry++)
return ret;
/* Decrement pin count for bound objects */
list_for_each_entry(vma, vmas, exec_list)
i915_gem_execbuffer_unreserve_vma(vma);
ret = i915_gem_evict_vm(vm, true);
if (ret)
return ret;
} while (1);
}
static int
i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
struct drm_i915_gem_execbuffer2 *args,
struct drm_file *file,
struct intel_engine_cs *engine,
struct eb_vmas *eb,
struct drm_i915_gem_exec_object2 *exec,
struct i915_gem_context *ctx)
{
struct drm_i915_gem_relocation_entry *reloc;
struct i915_address_space *vm;
struct i915_vma *vma;
bool need_relocs;
int *reloc_offset;
int i, total, ret;
unsigned count = args->buffer_count;
vm = list_first_entry(&eb->vmas, struct i915_vma, exec_list)->vm;
/* We may process another execbuffer during the unlock... */
while (!list_empty(&eb->vmas)) {
vma = list_first_entry(&eb->vmas, struct i915_vma, exec_list);
list_del_init(&vma->exec_list);
i915_gem_execbuffer_unreserve_vma(vma);
drm_gem_object_unreference(&vma->obj->base);
}
mutex_unlock(&dev->struct_mutex);
total = 0;
for (i = 0; i < count; i++)
total += exec[i].relocation_count;
reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
reloc = drm_malloc_ab(total, sizeof(*reloc));
if (reloc == NULL || reloc_offset == NULL) {
drm_free_large(reloc);
drm_free_large(reloc_offset);
mutex_lock(&dev->struct_mutex);
return -ENOMEM;
}
total = 0;
for (i = 0; i < count; i++) {
struct drm_i915_gem_relocation_entry __user *user_relocs;
u64 invalid_offset = (u64)-1;
int j;
user_relocs = u64_to_user_ptr(exec[i].relocs_ptr);
if (copy_from_user(reloc+total, user_relocs,
exec[i].relocation_count * sizeof(*reloc))) {
ret = -EFAULT;
mutex_lock(&dev->struct_mutex);
goto err;
}
/* As we do not update the known relocation offsets after
* relocating (due to the complexities in lock handling),
* we need to mark them as invalid now so that we force the
* relocation processing next time. Just in case the target
* object is evicted and then rebound into its old
* presumed_offset before the next execbuffer - if that
* happened we would make the mistake of assuming that the
* relocations were valid.
*/
for (j = 0; j < exec[i].relocation_count; j++) {
if (__copy_to_user(&user_relocs[j].presumed_offset,
&invalid_offset,
sizeof(invalid_offset))) {
ret = -EFAULT;
mutex_lock(&dev->struct_mutex);
goto err;
}
}
reloc_offset[i] = total;
total += exec[i].relocation_count;
}
ret = i915_mutex_lock_interruptible(dev);
if (ret) {
mutex_lock(&dev->struct_mutex);
goto err;
}
/* reacquire the objects */
eb_reset(eb);
ret = eb_lookup_vmas(eb, exec, args, vm, file);
if (ret)
goto err;
need_relocs = (args->flags & I915_EXEC_NO_RELOC) == 0;
ret = i915_gem_execbuffer_reserve(engine, &eb->vmas, ctx,
&need_relocs);
if (ret)
goto err;
list_for_each_entry(vma, &eb->vmas, exec_list) {
int offset = vma->exec_entry - exec;
ret = i915_gem_execbuffer_relocate_vma_slow(vma, eb,
reloc + reloc_offset[offset]);
if (ret)
goto err;
}
/* Leave the user relocations as are, this is the painfully slow path,
* and we want to avoid the complication of dropping the lock whilst
* having buffers reserved in the aperture and so causing spurious
* ENOSPC for random operations.
*/
err:
drm_free_large(reloc);
drm_free_large(reloc_offset);
return ret;
}
static int
i915_gem_execbuffer_move_to_gpu(struct drm_i915_gem_request *req,
struct list_head *vmas)
{
const unsigned other_rings = ~intel_engine_flag(req->engine);
struct i915_vma *vma;
uint32_t flush_domains = 0;
bool flush_chipset = false;
int ret;
list_for_each_entry(vma, vmas, exec_list) {
struct drm_i915_gem_object *obj = vma->obj;
if (obj->active & other_rings) {
ret = i915_gem_object_sync(obj, req->engine, &req);
if (ret)
return ret;
}
if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
flush_chipset |= i915_gem_clflush_object(obj, false);
flush_domains |= obj->base.write_domain;
}
if (flush_chipset)
i915_gem_chipset_flush(req->engine->i915);
if (flush_domains & I915_GEM_DOMAIN_GTT)
wmb();
/* Unconditionally invalidate gpu caches and ensure that we do flush
* any residual writes from the previous batch.
*/
return intel_ring_invalidate_all_caches(req);
}
static bool
i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
{
if (exec->flags & __I915_EXEC_UNKNOWN_FLAGS)
return false;
/* Kernel clipping was a DRI1 misfeature */
if (exec->num_cliprects || exec->cliprects_ptr)
return false;
if (exec->DR4 == 0xffffffff) {
DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
exec->DR4 = 0;
}
if (exec->DR1 || exec->DR4)
return false;
if ((exec->batch_start_offset | exec->batch_len) & 0x7)
return false;
return true;
}
static int
validate_exec_list(struct drm_device *dev,
struct drm_i915_gem_exec_object2 *exec,
int count)
{
unsigned relocs_total = 0;
unsigned relocs_max = UINT_MAX / sizeof(struct drm_i915_gem_relocation_entry);
unsigned invalid_flags;
int i;
invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
if (USES_FULL_PPGTT(dev))
invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
for (i = 0; i < count; i++) {
char __user *ptr = u64_to_user_ptr(exec[i].relocs_ptr);
int length; /* limited by fault_in_pages_readable() */
if (exec[i].flags & invalid_flags)
return -EINVAL;
/* Offset can be used as input (EXEC_OBJECT_PINNED), reject
* any non-page-aligned or non-canonical addresses.
*/
if (exec[i].flags & EXEC_OBJECT_PINNED) {
if (exec[i].offset !=
gen8_canonical_addr(exec[i].offset & PAGE_MASK))
return -EINVAL;
/* From drm_mm perspective address space is continuous,
* so from this point we're always using non-canonical
* form internally.
*/
exec[i].offset = gen8_noncanonical_addr(exec[i].offset);
}
if (exec[i].alignment && !is_power_of_2(exec[i].alignment))
return -EINVAL;
/* First check for malicious input causing overflow in
* the worst case where we need to allocate the entire
* relocation tree as a single array.
*/
if (exec[i].relocation_count > relocs_max - relocs_total)
return -EINVAL;
relocs_total += exec[i].relocation_count;
length = exec[i].relocation_count *
sizeof(struct drm_i915_gem_relocation_entry);
/*
* We must check that the entire relocation array is safe
* to read, but since we may need to update the presumed
* offsets during execution, check for full write access.
*/
if (!access_ok(VERIFY_WRITE, ptr, length))
return -EFAULT;
if (likely(!i915.prefault_disable)) {
if (fault_in_multipages_readable(ptr, length))
return -EFAULT;
}
}
return 0;
}
static struct i915_gem_context *
i915_gem_validate_context(struct drm_device *dev, struct drm_file *file,
struct intel_engine_cs *engine, const u32 ctx_id)
{
struct i915_gem_context *ctx = NULL;
struct i915_ctx_hang_stats *hs;
if (engine->id != RCS && ctx_id != DEFAULT_CONTEXT_HANDLE)
return ERR_PTR(-EINVAL);
ctx = i915_gem_context_lookup(file->driver_priv, ctx_id);
if (IS_ERR(ctx))
return ctx;
hs = &ctx->hang_stats;
if (hs->banned) {
DRM_DEBUG("Context %u tried to submit while banned\n", ctx_id);
return ERR_PTR(-EIO);
}
return ctx;
}
void
i915_gem_execbuffer_move_to_active(struct list_head *vmas,
struct drm_i915_gem_request *req)
{
struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
struct i915_vma *vma;
list_for_each_entry(vma, vmas, exec_list) {
struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
struct drm_i915_gem_object *obj = vma->obj;
u32 old_read = obj->base.read_domains;
u32 old_write = obj->base.write_domain;
obj->dirty = 1; /* be paranoid */
obj->base.write_domain = obj->base.pending_write_domain;
if (obj->base.write_domain == 0)
obj->base.pending_read_domains |= obj->base.read_domains;
obj->base.read_domains = obj->base.pending_read_domains;
i915_vma_move_to_active(vma, req);
if (obj->base.write_domain) {
i915_gem_request_assign(&obj->last_write_req, req);
intel_fb_obj_invalidate(obj, ORIGIN_CS);
/* update for the implicit flush after a batch */
obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
}
if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
i915_gem_request_assign(&obj->last_fenced_req, req);
if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
struct drm_i915_private *dev_priv = engine->i915;
list_move_tail(&dev_priv->fence_regs[obj->fence_reg].lru_list,
&dev_priv->mm.fence_list);
}
}
trace_i915_gem_object_change_domain(obj, old_read, old_write);
}
}
static void
i915_gem_execbuffer_retire_commands(struct i915_execbuffer_params *params)
{
/* Unconditionally force add_request to emit a full flush. */
params->engine->gpu_caches_dirty = true;
/* Add a breadcrumb for the completion of the batch buffer */
__i915_add_request(params->request, params->batch_obj, true);
}
static int
i915_reset_gen7_sol_offsets(struct drm_device *dev,
struct drm_i915_gem_request *req)
{
struct intel_engine_cs *engine = req->engine;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret, i;
if (!IS_GEN7(dev) || engine != &dev_priv->engine[RCS]) {
DRM_DEBUG("sol reset is gen7/rcs only\n");
return -EINVAL;
}
ret = intel_ring_begin(req, 4 * 3);
if (ret)
return ret;
for (i = 0; i < 4; i++) {
intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
intel_ring_emit_reg(engine, GEN7_SO_WRITE_OFFSET(i));
intel_ring_emit(engine, 0);
}
intel_ring_advance(engine);
return 0;
}
static struct drm_i915_gem_object*
i915_gem_execbuffer_parse(struct intel_engine_cs *engine,
struct drm_i915_gem_exec_object2 *shadow_exec_entry,
struct eb_vmas *eb,
struct drm_i915_gem_object *batch_obj,
u32 batch_start_offset,
u32 batch_len,
bool is_master)
{
struct drm_i915_gem_object *shadow_batch_obj;
struct i915_vma *vma;
int ret;
shadow_batch_obj = i915_gem_batch_pool_get(&engine->batch_pool,
PAGE_ALIGN(batch_len));
if (IS_ERR(shadow_batch_obj))
return shadow_batch_obj;
ret = i915_parse_cmds(engine,
batch_obj,
shadow_batch_obj,
batch_start_offset,
batch_len,
is_master);
if (ret)
goto err;
ret = i915_gem_obj_ggtt_pin(shadow_batch_obj, 0, 0);
if (ret)
goto err;
i915_gem_object_unpin_pages(shadow_batch_obj);
memset(shadow_exec_entry, 0, sizeof(*shadow_exec_entry));
vma = i915_gem_obj_to_ggtt(shadow_batch_obj);
vma->exec_entry = shadow_exec_entry;
vma->exec_entry->flags = __EXEC_OBJECT_HAS_PIN;
drm_gem_object_reference(&shadow_batch_obj->base);
list_add_tail(&vma->exec_list, &eb->vmas);
shadow_batch_obj->base.pending_read_domains = I915_GEM_DOMAIN_COMMAND;
return shadow_batch_obj;
err:
i915_gem_object_unpin_pages(shadow_batch_obj);
if (ret == -EACCES) /* unhandled chained batch */
return batch_obj;
else
return ERR_PTR(ret);
}
int
i915_gem_ringbuffer_submission(struct i915_execbuffer_params *params,
struct drm_i915_gem_execbuffer2 *args,
struct list_head *vmas)
{
struct drm_device *dev = params->dev;
struct intel_engine_cs *engine = params->engine;
struct drm_i915_private *dev_priv = dev->dev_private;
u64 exec_start, exec_len;
int instp_mode;
u32 instp_mask;
int ret;
ret = i915_gem_execbuffer_move_to_gpu(params->request, vmas);
if (ret)
return ret;
ret = i915_switch_context(params->request);
if (ret)
return ret;
WARN(params->ctx->ppgtt && params->ctx->ppgtt->pd_dirty_rings & (1<<engine->id),
"%s didn't clear reload\n", engine->name);
instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
instp_mask = I915_EXEC_CONSTANTS_MASK;
switch (instp_mode) {
case I915_EXEC_CONSTANTS_REL_GENERAL:
case I915_EXEC_CONSTANTS_ABSOLUTE:
case I915_EXEC_CONSTANTS_REL_SURFACE:
if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
return -EINVAL;
}
if (instp_mode != dev_priv->relative_constants_mode) {
if (INTEL_INFO(dev)->gen < 4) {
DRM_DEBUG("no rel constants on pre-gen4\n");
return -EINVAL;
}
if (INTEL_INFO(dev)->gen > 5 &&
instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
return -EINVAL;
}
/* The HW changed the meaning on this bit on gen6 */
if (INTEL_INFO(dev)->gen >= 6)
instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
}
break;
default:
DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
return -EINVAL;
}
if (engine == &dev_priv->engine[RCS] &&
instp_mode != dev_priv->relative_constants_mode) {
ret = intel_ring_begin(params->request, 4);
if (ret)
return ret;
intel_ring_emit(engine, MI_NOOP);
intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
intel_ring_emit_reg(engine, INSTPM);
intel_ring_emit(engine, instp_mask << 16 | instp_mode);
intel_ring_advance(engine);
dev_priv->relative_constants_mode = instp_mode;
}
if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
ret = i915_reset_gen7_sol_offsets(dev, params->request);
if (ret)
return ret;
}
exec_len = args->batch_len;
exec_start = params->batch_obj_vm_offset +
params->args_batch_start_offset;
if (exec_len == 0)
exec_len = params->batch_obj->base.size;
ret = engine->dispatch_execbuffer(params->request,
exec_start, exec_len,
params->dispatch_flags);
if (ret)
return ret;
trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
i915_gem_execbuffer_move_to_active(vmas, params->request);
return 0;
}
/**
* Find one BSD ring to dispatch the corresponding BSD command.
* The ring index is returned.
*/
static unsigned int
gen8_dispatch_bsd_ring(struct drm_i915_private *dev_priv, struct drm_file *file)
{
struct drm_i915_file_private *file_priv = file->driver_priv;
/* Check whether the file_priv has already selected one ring. */
if ((int)file_priv->bsd_ring < 0) {
/* If not, use the ping-pong mechanism to select one. */
mutex_lock(&dev_priv->dev->struct_mutex);
file_priv->bsd_ring = dev_priv->mm.bsd_ring_dispatch_index;
dev_priv->mm.bsd_ring_dispatch_index ^= 1;
mutex_unlock(&dev_priv->dev->struct_mutex);
}
return file_priv->bsd_ring;
}
static struct drm_i915_gem_object *
eb_get_batch(struct eb_vmas *eb)
{
struct i915_vma *vma = list_entry(eb->vmas.prev, typeof(*vma), exec_list);
/*
* SNA is doing fancy tricks with compressing batch buffers, which leads
* to negative relocation deltas. Usually that works out ok since the
* relocate address is still positive, except when the batch is placed
* very low in the GTT. Ensure this doesn't happen.
*
* Note that actual hangs have only been observed on gen7, but for
* paranoia do it everywhere.
*/
if ((vma->exec_entry->flags & EXEC_OBJECT_PINNED) == 0)
vma->exec_entry->flags |= __EXEC_OBJECT_NEEDS_BIAS;
return vma->obj;
}
#define I915_USER_RINGS (4)
static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
[I915_EXEC_DEFAULT] = RCS,
[I915_EXEC_RENDER] = RCS,
[I915_EXEC_BLT] = BCS,
[I915_EXEC_BSD] = VCS,
[I915_EXEC_VEBOX] = VECS
};
static int
eb_select_ring(struct drm_i915_private *dev_priv,
struct drm_file *file,
struct drm_i915_gem_execbuffer2 *args,
struct intel_engine_cs **ring)
{
unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
if (user_ring_id > I915_USER_RINGS) {
DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
return -EINVAL;
}
if ((user_ring_id != I915_EXEC_BSD) &&
((args->flags & I915_EXEC_BSD_MASK) != 0)) {
DRM_DEBUG("execbuf with non bsd ring but with invalid "
"bsd dispatch flags: %d\n", (int)(args->flags));
return -EINVAL;
}
if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
bsd_idx = gen8_dispatch_bsd_ring(dev_priv, file);
} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
bsd_idx <= I915_EXEC_BSD_RING2) {
bsd_idx >>= I915_EXEC_BSD_SHIFT;
bsd_idx--;
} else {
DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
bsd_idx);
return -EINVAL;
}
*ring = &dev_priv->engine[_VCS(bsd_idx)];
} else {
*ring = &dev_priv->engine[user_ring_map[user_ring_id]];
}
if (!intel_engine_initialized(*ring)) {
DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
return -EINVAL;
}
return 0;
}
static int
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
struct drm_file *file,
struct drm_i915_gem_execbuffer2 *args,
struct drm_i915_gem_exec_object2 *exec)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct i915_ggtt *ggtt = &dev_priv->ggtt;
struct drm_i915_gem_request *req = NULL;
struct eb_vmas *eb;
struct drm_i915_gem_object *batch_obj;
struct drm_i915_gem_exec_object2 shadow_exec_entry;
struct intel_engine_cs *engine;
struct i915_gem_context *ctx;
struct i915_address_space *vm;
struct i915_execbuffer_params params_master; /* XXX: will be removed later */
struct i915_execbuffer_params *params = &params_master;
const u32 ctx_id = i915_execbuffer2_get_context_id(*args);
u32 dispatch_flags;
int ret;
bool need_relocs;
if (!i915_gem_check_execbuffer(args))
return -EINVAL;
ret = validate_exec_list(dev, exec, args->buffer_count);
if (ret)
return ret;
dispatch_flags = 0;
if (args->flags & I915_EXEC_SECURE) {
if (!file->is_master || !capable(CAP_SYS_ADMIN))
return -EPERM;
dispatch_flags |= I915_DISPATCH_SECURE;
}
if (args->flags & I915_EXEC_IS_PINNED)
dispatch_flags |= I915_DISPATCH_PINNED;
ret = eb_select_ring(dev_priv, file, args, &engine);
if (ret)
return ret;
if (args->buffer_count < 1) {
DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
return -EINVAL;
}
if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
if (!HAS_RESOURCE_STREAMER(dev)) {
DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
return -EINVAL;
}
if (engine->id != RCS) {
DRM_DEBUG("RS is not available on %s\n",
engine->name);
return -EINVAL;
}
dispatch_flags |= I915_DISPATCH_RS;
}
intel_runtime_pm_get(dev_priv);
ret = i915_mutex_lock_interruptible(dev);
if (ret)
goto pre_mutex_err;
ctx = i915_gem_validate_context(dev, file, engine, ctx_id);
if (IS_ERR(ctx)) {
mutex_unlock(&dev->struct_mutex);
ret = PTR_ERR(ctx);
goto pre_mutex_err;
}
i915_gem_context_reference(ctx);
if (ctx->ppgtt)
vm = &ctx->ppgtt->base;
else
vm = &ggtt->base;
memset(&params_master, 0x00, sizeof(params_master));
eb = eb_create(args);
if (eb == NULL) {
i915_gem_context_unreference(ctx);
mutex_unlock(&dev->struct_mutex);
ret = -ENOMEM;
goto pre_mutex_err;
}
/* Look up object handles */
ret = eb_lookup_vmas(eb, exec, args, vm, file);
if (ret)
goto err;
/* take note of the batch buffer before we might reorder the lists */
batch_obj = eb_get_batch(eb);
/* Move the objects en-masse into the GTT, evicting if necessary. */
need_relocs = (args->flags & I915_EXEC_NO_RELOC) == 0;
ret = i915_gem_execbuffer_reserve(engine, &eb->vmas, ctx,
&need_relocs);
if (ret)
goto err;
/* The objects are in their final locations, apply the relocations. */
if (need_relocs)
ret = i915_gem_execbuffer_relocate(eb);
if (ret) {
if (ret == -EFAULT) {
ret = i915_gem_execbuffer_relocate_slow(dev, args, file,
engine,
eb, exec, ctx);
BUG_ON(!mutex_is_locked(&dev->struct_mutex));
}
if (ret)
goto err;
}
/* Set the pending read domains for the batch buffer to COMMAND */
if (batch_obj->base.pending_write_domain) {
DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
ret = -EINVAL;
goto err;
}
params->args_batch_start_offset = args->batch_start_offset;
if (i915_needs_cmd_parser(engine) && args->batch_len) {
struct drm_i915_gem_object *parsed_batch_obj;
parsed_batch_obj = i915_gem_execbuffer_parse(engine,
&shadow_exec_entry,
eb,
batch_obj,
args->batch_start_offset,
args->batch_len,
file->is_master);
if (IS_ERR(parsed_batch_obj)) {
ret = PTR_ERR(parsed_batch_obj);
goto err;
}
/*
* parsed_batch_obj == batch_obj means batch not fully parsed:
* Accept, but don't promote to secure.
*/
if (parsed_batch_obj != batch_obj) {
/*
* Batch parsed and accepted:
*
* Set the DISPATCH_SECURE bit to remove the NON_SECURE
* bit from MI_BATCH_BUFFER_START commands issued in
* the dispatch_execbuffer implementations. We
* specifically don't want that set on batches the
* command parser has accepted.
*/
dispatch_flags |= I915_DISPATCH_SECURE;
params->args_batch_start_offset = 0;
batch_obj = parsed_batch_obj;
}
}
batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
/* snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
* batch" bit. Hence we need to pin secure batches into the global gtt.
* hsw should have this fixed, but bdw mucks it up again. */
if (dispatch_flags & I915_DISPATCH_SECURE) {
/*
* So on first glance it looks freaky that we pin the batch here
* outside of the reservation loop. But:
* - The batch is already pinned into the relevant ppgtt, so we
* already have the backing storage fully allocated.
* - No other BO uses the global gtt (well contexts, but meh),
* so we don't really have issues with multiple objects not
* fitting due to fragmentation.
* So this is actually safe.
*/
ret = i915_gem_obj_ggtt_pin(batch_obj, 0, 0);
if (ret)
goto err;
params->batch_obj_vm_offset = i915_gem_obj_ggtt_offset(batch_obj);
} else
params->batch_obj_vm_offset = i915_gem_obj_offset(batch_obj, vm);
/* Allocate a request for this batch buffer nice and early. */
req = i915_gem_request_alloc(engine, ctx);
if (IS_ERR(req)) {
ret = PTR_ERR(req);
goto err_batch_unpin;
}
ret = i915_gem_request_add_to_client(req, file);
if (ret)
goto err_request;
/*
* Save assorted stuff away to pass through to *_submission().
* NB: This data should be 'persistent' and not local as it will
* kept around beyond the duration of the IOCTL once the GPU
* scheduler arrives.
*/
params->dev = dev;
params->file = file;
params->engine = engine;
params->dispatch_flags = dispatch_flags;
params->batch_obj = batch_obj;
params->ctx = ctx;
params->request = req;
ret = dev_priv->gt.execbuf_submit(params, args, &eb->vmas);
err_request:
i915_gem_execbuffer_retire_commands(params);
err_batch_unpin:
/*
* FIXME: We crucially rely upon the active tracking for the (ppgtt)
* batch vma for correctness. For less ugly and less fragility this
* needs to be adjusted to also track the ggtt batch vma properly as
* active.
*/
if (dispatch_flags & I915_DISPATCH_SECURE)
i915_gem_object_ggtt_unpin(batch_obj);
err:
/* the request owns the ref now */
i915_gem_context_unreference(ctx);
eb_destroy(eb);
mutex_unlock(&dev->struct_mutex);
pre_mutex_err:
/* intel_gpu_busy should also get a ref, so it will free when the device
* is really idle. */
intel_runtime_pm_put(dev_priv);
return ret;
}
/*
* Legacy execbuffer just creates an exec2 list from the original exec object
* list array and passes it to the real function.
*/
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_execbuffer *args = data;
struct drm_i915_gem_execbuffer2 exec2;
struct drm_i915_gem_exec_object *exec_list = NULL;
struct drm_i915_gem_exec_object2 *exec2_list = NULL;
int ret, i;
if (args->buffer_count < 1) {
DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
return -EINVAL;
}
/* Copy in the exec list from userland */
exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
if (exec_list == NULL || exec2_list == NULL) {
DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
args->buffer_count);
drm_free_large(exec_list);
drm_free_large(exec2_list);
return -ENOMEM;
}
ret = copy_from_user(exec_list,
u64_to_user_ptr(args->buffers_ptr),
sizeof(*exec_list) * args->buffer_count);
if (ret != 0) {
DRM_DEBUG("copy %d exec entries failed %d\n",
args->buffer_count, ret);
drm_free_large(exec_list);
drm_free_large(exec2_list);
return -EFAULT;
}
for (i = 0; i < args->buffer_count; i++) {
exec2_list[i].handle = exec_list[i].handle;
exec2_list[i].relocation_count = exec_list[i].relocation_count;
exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
exec2_list[i].alignment = exec_list[i].alignment;
exec2_list[i].offset = exec_list[i].offset;
if (INTEL_INFO(dev)->gen < 4)
exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
else
exec2_list[i].flags = 0;
}
exec2.buffers_ptr = args->buffers_ptr;
exec2.buffer_count = args->buffer_count;
exec2.batch_start_offset = args->batch_start_offset;
exec2.batch_len = args->batch_len;
exec2.DR1 = args->DR1;
exec2.DR4 = args->DR4;
exec2.num_cliprects = args->num_cliprects;
exec2.cliprects_ptr = args->cliprects_ptr;
exec2.flags = I915_EXEC_RENDER;
i915_execbuffer2_set_context_id(exec2, 0);
ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
if (!ret) {
struct drm_i915_gem_exec_object __user *user_exec_list =
u64_to_user_ptr(args->buffers_ptr);
/* Copy the new buffer offsets back to the user's exec list. */
for (i = 0; i < args->buffer_count; i++) {
exec2_list[i].offset =
gen8_canonical_addr(exec2_list[i].offset);
ret = __copy_to_user(&user_exec_list[i].offset,
&exec2_list[i].offset,
sizeof(user_exec_list[i].offset));
if (ret) {
ret = -EFAULT;
DRM_DEBUG("failed to copy %d exec entries "
"back to user (%d)\n",
args->buffer_count, ret);
break;
}
}
}
drm_free_large(exec_list);
drm_free_large(exec2_list);
return ret;
}
int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_execbuffer2 *args = data;
struct drm_i915_gem_exec_object2 *exec2_list = NULL;
int ret;
if (args->buffer_count < 1 ||
args->buffer_count > UINT_MAX / sizeof(*exec2_list)) {
DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
return -EINVAL;
}
if (args->rsvd2 != 0) {
DRM_DEBUG("dirty rvsd2 field\n");
return -EINVAL;
}
exec2_list = drm_malloc_gfp(args->buffer_count,
sizeof(*exec2_list),
GFP_TEMPORARY);
if (exec2_list == NULL) {
DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
args->buffer_count);
return -ENOMEM;
}
ret = copy_from_user(exec2_list,
u64_to_user_ptr(args->buffers_ptr),
sizeof(*exec2_list) * args->buffer_count);
if (ret != 0) {
DRM_DEBUG("copy %d exec entries failed %d\n",
args->buffer_count, ret);
drm_free_large(exec2_list);
return -EFAULT;
}
ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
if (!ret) {
/* Copy the new buffer offsets back to the user's exec list. */
struct drm_i915_gem_exec_object2 __user *user_exec_list =
u64_to_user_ptr(args->buffers_ptr);
int i;
for (i = 0; i < args->buffer_count; i++) {
exec2_list[i].offset =
gen8_canonical_addr(exec2_list[i].offset);
ret = __copy_to_user(&user_exec_list[i].offset,
&exec2_list[i].offset,
sizeof(user_exec_list[i].offset));
if (ret) {
ret = -EFAULT;
DRM_DEBUG("failed to copy %d exec entries "
"back to user\n",
args->buffer_count);
break;
}
}
}
drm_free_large(exec2_list);
return ret;
}