OpenCloudOS-Kernel/drivers/pci/hotplug/shpchp_hpc.c

1074 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Standard PCI Hot Plug Driver
*
* Copyright (C) 1995,2001 Compaq Computer Corporation
* Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
* Copyright (C) 2001 IBM Corp.
* Copyright (C) 2003-2004 Intel Corporation
*
* All rights reserved.
*
* Send feedback to <greg@kroah.com>,<kristen.c.accardi@intel.com>
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include "shpchp.h"
/* Slot Available Register I field definition */
#define SLOT_33MHZ 0x0000001f
#define SLOT_66MHZ_PCIX 0x00001f00
#define SLOT_100MHZ_PCIX 0x001f0000
#define SLOT_133MHZ_PCIX 0x1f000000
/* Slot Available Register II field definition */
#define SLOT_66MHZ 0x0000001f
#define SLOT_66MHZ_PCIX_266 0x00000f00
#define SLOT_100MHZ_PCIX_266 0x0000f000
#define SLOT_133MHZ_PCIX_266 0x000f0000
#define SLOT_66MHZ_PCIX_533 0x00f00000
#define SLOT_100MHZ_PCIX_533 0x0f000000
#define SLOT_133MHZ_PCIX_533 0xf0000000
/* Slot Configuration */
#define SLOT_NUM 0x0000001F
#define FIRST_DEV_NUM 0x00001F00
#define PSN 0x07FF0000
#define UPDOWN 0x20000000
#define MRLSENSOR 0x40000000
#define ATTN_BUTTON 0x80000000
/*
* Interrupt Locator Register definitions
*/
#define CMD_INTR_PENDING (1 << 0)
#define SLOT_INTR_PENDING(i) (1 << (i + 1))
/*
* Controller SERR-INT Register
*/
#define GLOBAL_INTR_MASK (1 << 0)
#define GLOBAL_SERR_MASK (1 << 1)
#define COMMAND_INTR_MASK (1 << 2)
#define ARBITER_SERR_MASK (1 << 3)
#define COMMAND_DETECTED (1 << 16)
#define ARBITER_DETECTED (1 << 17)
#define SERR_INTR_RSVDZ_MASK 0xfffc0000
/*
* Logical Slot Register definitions
*/
#define SLOT_REG(i) (SLOT1 + (4 * i))
#define SLOT_STATE_SHIFT (0)
#define SLOT_STATE_MASK (3 << 0)
#define SLOT_STATE_PWRONLY (1)
#define SLOT_STATE_ENABLED (2)
#define SLOT_STATE_DISABLED (3)
#define PWR_LED_STATE_SHIFT (2)
#define PWR_LED_STATE_MASK (3 << 2)
#define ATN_LED_STATE_SHIFT (4)
#define ATN_LED_STATE_MASK (3 << 4)
#define ATN_LED_STATE_ON (1)
#define ATN_LED_STATE_BLINK (2)
#define ATN_LED_STATE_OFF (3)
#define POWER_FAULT (1 << 6)
#define ATN_BUTTON (1 << 7)
#define MRL_SENSOR (1 << 8)
#define MHZ66_CAP (1 << 9)
#define PRSNT_SHIFT (10)
#define PRSNT_MASK (3 << 10)
#define PCIX_CAP_SHIFT (12)
#define PCIX_CAP_MASK_PI1 (3 << 12)
#define PCIX_CAP_MASK_PI2 (7 << 12)
#define PRSNT_CHANGE_DETECTED (1 << 16)
#define ISO_PFAULT_DETECTED (1 << 17)
#define BUTTON_PRESS_DETECTED (1 << 18)
#define MRL_CHANGE_DETECTED (1 << 19)
#define CON_PFAULT_DETECTED (1 << 20)
#define PRSNT_CHANGE_INTR_MASK (1 << 24)
#define ISO_PFAULT_INTR_MASK (1 << 25)
#define BUTTON_PRESS_INTR_MASK (1 << 26)
#define MRL_CHANGE_INTR_MASK (1 << 27)
#define CON_PFAULT_INTR_MASK (1 << 28)
#define MRL_CHANGE_SERR_MASK (1 << 29)
#define CON_PFAULT_SERR_MASK (1 << 30)
#define SLOT_REG_RSVDZ_MASK ((1 << 15) | (7 << 21))
/*
* SHPC Command Code definitions
*
* Slot Operation 00h - 3Fh
* Set Bus Segment Speed/Mode A 40h - 47h
* Power-Only All Slots 48h
* Enable All Slots 49h
* Set Bus Segment Speed/Mode B (PI=2) 50h - 5Fh
* Reserved Command Codes 60h - BFh
* Vendor Specific Commands C0h - FFh
*/
#define SET_SLOT_PWR 0x01 /* Slot Operation */
#define SET_SLOT_ENABLE 0x02
#define SET_SLOT_DISABLE 0x03
#define SET_PWR_ON 0x04
#define SET_PWR_BLINK 0x08
#define SET_PWR_OFF 0x0c
#define SET_ATTN_ON 0x10
#define SET_ATTN_BLINK 0x20
#define SET_ATTN_OFF 0x30
#define SETA_PCI_33MHZ 0x40 /* Set Bus Segment Speed/Mode A */
#define SETA_PCI_66MHZ 0x41
#define SETA_PCIX_66MHZ 0x42
#define SETA_PCIX_100MHZ 0x43
#define SETA_PCIX_133MHZ 0x44
#define SETA_RESERVED1 0x45
#define SETA_RESERVED2 0x46
#define SETA_RESERVED3 0x47
#define SET_PWR_ONLY_ALL 0x48 /* Power-Only All Slots */
#define SET_ENABLE_ALL 0x49 /* Enable All Slots */
#define SETB_PCI_33MHZ 0x50 /* Set Bus Segment Speed/Mode B */
#define SETB_PCI_66MHZ 0x51
#define SETB_PCIX_66MHZ_PM 0x52
#define SETB_PCIX_100MHZ_PM 0x53
#define SETB_PCIX_133MHZ_PM 0x54
#define SETB_PCIX_66MHZ_EM 0x55
#define SETB_PCIX_100MHZ_EM 0x56
#define SETB_PCIX_133MHZ_EM 0x57
#define SETB_PCIX_66MHZ_266 0x58
#define SETB_PCIX_100MHZ_266 0x59
#define SETB_PCIX_133MHZ_266 0x5a
#define SETB_PCIX_66MHZ_533 0x5b
#define SETB_PCIX_100MHZ_533 0x5c
#define SETB_PCIX_133MHZ_533 0x5d
#define SETB_RESERVED1 0x5e
#define SETB_RESERVED2 0x5f
/*
* SHPC controller command error code
*/
#define SWITCH_OPEN 0x1
#define INVALID_CMD 0x2
#define INVALID_SPEED_MODE 0x4
/*
* For accessing SHPC Working Register Set via PCI Configuration Space
*/
#define DWORD_SELECT 0x2
#define DWORD_DATA 0x4
/* Field Offset in Logical Slot Register - byte boundary */
#define SLOT_EVENT_LATCH 0x2
#define SLOT_SERR_INT_MASK 0x3
static irqreturn_t shpc_isr(int irq, void *dev_id);
static void start_int_poll_timer(struct controller *ctrl, int sec);
static int hpc_check_cmd_status(struct controller *ctrl);
static inline u8 shpc_readb(struct controller *ctrl, int reg)
{
return readb(ctrl->creg + reg);
}
static inline u16 shpc_readw(struct controller *ctrl, int reg)
{
return readw(ctrl->creg + reg);
}
static inline void shpc_writew(struct controller *ctrl, int reg, u16 val)
{
writew(val, ctrl->creg + reg);
}
static inline u32 shpc_readl(struct controller *ctrl, int reg)
{
return readl(ctrl->creg + reg);
}
static inline void shpc_writel(struct controller *ctrl, int reg, u32 val)
{
writel(val, ctrl->creg + reg);
}
static inline int shpc_indirect_read(struct controller *ctrl, int index,
u32 *value)
{
int rc;
u32 cap_offset = ctrl->cap_offset;
struct pci_dev *pdev = ctrl->pci_dev;
rc = pci_write_config_byte(pdev, cap_offset + DWORD_SELECT, index);
if (rc)
return rc;
return pci_read_config_dword(pdev, cap_offset + DWORD_DATA, value);
}
/*
* This is the interrupt polling timeout function.
*/
static void int_poll_timeout(struct timer_list *t)
{
struct controller *ctrl = from_timer(ctrl, t, poll_timer);
/* Poll for interrupt events. regs == NULL => polling */
shpc_isr(0, ctrl);
if (!shpchp_poll_time)
shpchp_poll_time = 2; /* default polling interval is 2 sec */
start_int_poll_timer(ctrl, shpchp_poll_time);
}
/*
* This function starts the interrupt polling timer.
*/
static void start_int_poll_timer(struct controller *ctrl, int sec)
{
/* Clamp to sane value */
if ((sec <= 0) || (sec > 60))
sec = 2;
ctrl->poll_timer.expires = jiffies + sec * HZ;
add_timer(&ctrl->poll_timer);
}
static inline int is_ctrl_busy(struct controller *ctrl)
{
u16 cmd_status = shpc_readw(ctrl, CMD_STATUS);
return cmd_status & 0x1;
}
/*
* Returns 1 if SHPC finishes executing a command within 1 sec,
* otherwise returns 0.
*/
static inline int shpc_poll_ctrl_busy(struct controller *ctrl)
{
int i;
if (!is_ctrl_busy(ctrl))
return 1;
/* Check every 0.1 sec for a total of 1 sec */
for (i = 0; i < 10; i++) {
msleep(100);
if (!is_ctrl_busy(ctrl))
return 1;
}
return 0;
}
static inline int shpc_wait_cmd(struct controller *ctrl)
{
int retval = 0;
unsigned long timeout = msecs_to_jiffies(1000);
int rc;
if (shpchp_poll_mode)
rc = shpc_poll_ctrl_busy(ctrl);
else
rc = wait_event_interruptible_timeout(ctrl->queue,
!is_ctrl_busy(ctrl), timeout);
if (!rc && is_ctrl_busy(ctrl)) {
retval = -EIO;
ctrl_err(ctrl, "Command not completed in 1000 msec\n");
} else if (rc < 0) {
retval = -EINTR;
ctrl_info(ctrl, "Command was interrupted by a signal\n");
}
return retval;
}
static int shpc_write_cmd(struct slot *slot, u8 t_slot, u8 cmd)
{
struct controller *ctrl = slot->ctrl;
u16 cmd_status;
int retval = 0;
u16 temp_word;
mutex_lock(&slot->ctrl->cmd_lock);
if (!shpc_poll_ctrl_busy(ctrl)) {
/* After 1 sec and the controller is still busy */
ctrl_err(ctrl, "Controller is still busy after 1 sec\n");
retval = -EBUSY;
goto out;
}
++t_slot;
temp_word = (t_slot << 8) | (cmd & 0xFF);
ctrl_dbg(ctrl, "%s: t_slot %x cmd %x\n", __func__, t_slot, cmd);
/* To make sure the Controller Busy bit is 0 before we send out the
* command.
*/
shpc_writew(ctrl, CMD, temp_word);
/*
* Wait for command completion.
*/
retval = shpc_wait_cmd(slot->ctrl);
if (retval)
goto out;
cmd_status = hpc_check_cmd_status(slot->ctrl);
if (cmd_status) {
ctrl_err(ctrl, "Failed to issued command 0x%x (error code = %d)\n",
cmd, cmd_status);
retval = -EIO;
}
out:
mutex_unlock(&slot->ctrl->cmd_lock);
return retval;
}
static int hpc_check_cmd_status(struct controller *ctrl)
{
int retval = 0;
u16 cmd_status = shpc_readw(ctrl, CMD_STATUS) & 0x000F;
switch (cmd_status >> 1) {
case 0:
retval = 0;
break;
case 1:
retval = SWITCH_OPEN;
ctrl_err(ctrl, "Switch opened!\n");
break;
case 2:
retval = INVALID_CMD;
ctrl_err(ctrl, "Invalid HPC command!\n");
break;
case 4:
retval = INVALID_SPEED_MODE;
ctrl_err(ctrl, "Invalid bus speed/mode!\n");
break;
default:
retval = cmd_status;
}
return retval;
}
static int hpc_get_attention_status(struct slot *slot, u8 *status)
{
struct controller *ctrl = slot->ctrl;
u32 slot_reg = shpc_readl(ctrl, SLOT_REG(slot->hp_slot));
u8 state = (slot_reg & ATN_LED_STATE_MASK) >> ATN_LED_STATE_SHIFT;
switch (state) {
case ATN_LED_STATE_ON:
*status = 1; /* On */
break;
case ATN_LED_STATE_BLINK:
*status = 2; /* Blink */
break;
case ATN_LED_STATE_OFF:
*status = 0; /* Off */
break;
default:
*status = 0xFF; /* Reserved */
break;
}
return 0;
}
static int hpc_get_power_status(struct slot *slot, u8 *status)
{
struct controller *ctrl = slot->ctrl;
u32 slot_reg = shpc_readl(ctrl, SLOT_REG(slot->hp_slot));
u8 state = (slot_reg & SLOT_STATE_MASK) >> SLOT_STATE_SHIFT;
switch (state) {
case SLOT_STATE_PWRONLY:
*status = 2; /* Powered only */
break;
case SLOT_STATE_ENABLED:
*status = 1; /* Enabled */
break;
case SLOT_STATE_DISABLED:
*status = 0; /* Disabled */
break;
default:
*status = 0xFF; /* Reserved */
break;
}
return 0;
}
static int hpc_get_latch_status(struct slot *slot, u8 *status)
{
struct controller *ctrl = slot->ctrl;
u32 slot_reg = shpc_readl(ctrl, SLOT_REG(slot->hp_slot));
*status = !!(slot_reg & MRL_SENSOR); /* 0 -> close; 1 -> open */
return 0;
}
static int hpc_get_adapter_status(struct slot *slot, u8 *status)
{
struct controller *ctrl = slot->ctrl;
u32 slot_reg = shpc_readl(ctrl, SLOT_REG(slot->hp_slot));
u8 state = (slot_reg & PRSNT_MASK) >> PRSNT_SHIFT;
*status = (state != 0x3) ? 1 : 0;
return 0;
}
static int hpc_get_prog_int(struct slot *slot, u8 *prog_int)
{
struct controller *ctrl = slot->ctrl;
*prog_int = shpc_readb(ctrl, PROG_INTERFACE);
return 0;
}
static int hpc_get_adapter_speed(struct slot *slot, enum pci_bus_speed *value)
{
int retval = 0;
struct controller *ctrl = slot->ctrl;
u32 slot_reg = shpc_readl(ctrl, SLOT_REG(slot->hp_slot));
u8 m66_cap = !!(slot_reg & MHZ66_CAP);
u8 pi, pcix_cap;
retval = hpc_get_prog_int(slot, &pi);
if (retval)
return retval;
switch (pi) {
case 1:
pcix_cap = (slot_reg & PCIX_CAP_MASK_PI1) >> PCIX_CAP_SHIFT;
break;
case 2:
pcix_cap = (slot_reg & PCIX_CAP_MASK_PI2) >> PCIX_CAP_SHIFT;
break;
default:
return -ENODEV;
}
ctrl_dbg(ctrl, "%s: slot_reg = %x, pcix_cap = %x, m66_cap = %x\n",
__func__, slot_reg, pcix_cap, m66_cap);
switch (pcix_cap) {
case 0x0:
*value = m66_cap ? PCI_SPEED_66MHz : PCI_SPEED_33MHz;
break;
case 0x1:
*value = PCI_SPEED_66MHz_PCIX;
break;
case 0x3:
*value = PCI_SPEED_133MHz_PCIX;
break;
case 0x4:
*value = PCI_SPEED_133MHz_PCIX_266;
break;
case 0x5:
*value = PCI_SPEED_133MHz_PCIX_533;
break;
case 0x2:
default:
*value = PCI_SPEED_UNKNOWN;
retval = -ENODEV;
break;
}
ctrl_dbg(ctrl, "Adapter speed = %d\n", *value);
return retval;
}
static int hpc_query_power_fault(struct slot *slot)
{
struct controller *ctrl = slot->ctrl;
u32 slot_reg = shpc_readl(ctrl, SLOT_REG(slot->hp_slot));
/* Note: Logic 0 => fault */
return !(slot_reg & POWER_FAULT);
}
static int hpc_set_attention_status(struct slot *slot, u8 value)
{
u8 slot_cmd = 0;
switch (value) {
case 0:
slot_cmd = SET_ATTN_OFF; /* OFF */
break;
case 1:
slot_cmd = SET_ATTN_ON; /* ON */
break;
case 2:
slot_cmd = SET_ATTN_BLINK; /* BLINK */
break;
default:
return -1;
}
return shpc_write_cmd(slot, slot->hp_slot, slot_cmd);
}
static void hpc_set_green_led_on(struct slot *slot)
{
shpc_write_cmd(slot, slot->hp_slot, SET_PWR_ON);
}
static void hpc_set_green_led_off(struct slot *slot)
{
shpc_write_cmd(slot, slot->hp_slot, SET_PWR_OFF);
}
static void hpc_set_green_led_blink(struct slot *slot)
{
shpc_write_cmd(slot, slot->hp_slot, SET_PWR_BLINK);
}
static void hpc_release_ctlr(struct controller *ctrl)
{
int i;
u32 slot_reg, serr_int;
/*
* Mask event interrupts and SERRs of all slots
*/
for (i = 0; i < ctrl->num_slots; i++) {
slot_reg = shpc_readl(ctrl, SLOT_REG(i));
slot_reg |= (PRSNT_CHANGE_INTR_MASK | ISO_PFAULT_INTR_MASK |
BUTTON_PRESS_INTR_MASK | MRL_CHANGE_INTR_MASK |
CON_PFAULT_INTR_MASK | MRL_CHANGE_SERR_MASK |
CON_PFAULT_SERR_MASK);
slot_reg &= ~SLOT_REG_RSVDZ_MASK;
shpc_writel(ctrl, SLOT_REG(i), slot_reg);
}
cleanup_slots(ctrl);
/*
* Mask SERR and System Interrupt generation
*/
serr_int = shpc_readl(ctrl, SERR_INTR_ENABLE);
serr_int |= (GLOBAL_INTR_MASK | GLOBAL_SERR_MASK |
COMMAND_INTR_MASK | ARBITER_SERR_MASK);
serr_int &= ~SERR_INTR_RSVDZ_MASK;
shpc_writel(ctrl, SERR_INTR_ENABLE, serr_int);
if (shpchp_poll_mode)
del_timer(&ctrl->poll_timer);
else {
free_irq(ctrl->pci_dev->irq, ctrl);
pci_disable_msi(ctrl->pci_dev);
}
iounmap(ctrl->creg);
release_mem_region(ctrl->mmio_base, ctrl->mmio_size);
}
static int hpc_power_on_slot(struct slot *slot)
{
int retval;
retval = shpc_write_cmd(slot, slot->hp_slot, SET_SLOT_PWR);
if (retval)
ctrl_err(slot->ctrl, "%s: Write command failed!\n", __func__);
return retval;
}
static int hpc_slot_enable(struct slot *slot)
{
int retval;
/* Slot - Enable, Power Indicator - Blink, Attention Indicator - Off */
retval = shpc_write_cmd(slot, slot->hp_slot,
SET_SLOT_ENABLE | SET_PWR_BLINK | SET_ATTN_OFF);
if (retval)
ctrl_err(slot->ctrl, "%s: Write command failed!\n", __func__);
return retval;
}
static int hpc_slot_disable(struct slot *slot)
{
int retval;
/* Slot - Disable, Power Indicator - Off, Attention Indicator - On */
retval = shpc_write_cmd(slot, slot->hp_slot,
SET_SLOT_DISABLE | SET_PWR_OFF | SET_ATTN_ON);
if (retval)
ctrl_err(slot->ctrl, "%s: Write command failed!\n", __func__);
return retval;
}
static int shpc_get_cur_bus_speed(struct controller *ctrl)
{
int retval = 0;
struct pci_bus *bus = ctrl->pci_dev->subordinate;
enum pci_bus_speed bus_speed = PCI_SPEED_UNKNOWN;
u16 sec_bus_reg = shpc_readw(ctrl, SEC_BUS_CONFIG);
u8 pi = shpc_readb(ctrl, PROG_INTERFACE);
u8 speed_mode = (pi == 2) ? (sec_bus_reg & 0xF) : (sec_bus_reg & 0x7);
if ((pi == 1) && (speed_mode > 4)) {
retval = -ENODEV;
goto out;
}
switch (speed_mode) {
case 0x0:
bus_speed = PCI_SPEED_33MHz;
break;
case 0x1:
bus_speed = PCI_SPEED_66MHz;
break;
case 0x2:
bus_speed = PCI_SPEED_66MHz_PCIX;
break;
case 0x3:
bus_speed = PCI_SPEED_100MHz_PCIX;
break;
case 0x4:
bus_speed = PCI_SPEED_133MHz_PCIX;
break;
case 0x5:
bus_speed = PCI_SPEED_66MHz_PCIX_ECC;
break;
case 0x6:
bus_speed = PCI_SPEED_100MHz_PCIX_ECC;
break;
case 0x7:
bus_speed = PCI_SPEED_133MHz_PCIX_ECC;
break;
case 0x8:
bus_speed = PCI_SPEED_66MHz_PCIX_266;
break;
case 0x9:
bus_speed = PCI_SPEED_100MHz_PCIX_266;
break;
case 0xa:
bus_speed = PCI_SPEED_133MHz_PCIX_266;
break;
case 0xb:
bus_speed = PCI_SPEED_66MHz_PCIX_533;
break;
case 0xc:
bus_speed = PCI_SPEED_100MHz_PCIX_533;
break;
case 0xd:
bus_speed = PCI_SPEED_133MHz_PCIX_533;
break;
default:
retval = -ENODEV;
break;
}
out:
bus->cur_bus_speed = bus_speed;
dbg("Current bus speed = %d\n", bus_speed);
return retval;
}
static int hpc_set_bus_speed_mode(struct slot *slot, enum pci_bus_speed value)
{
int retval;
struct controller *ctrl = slot->ctrl;
u8 pi, cmd;
pi = shpc_readb(ctrl, PROG_INTERFACE);
if ((pi == 1) && (value > PCI_SPEED_133MHz_PCIX))
return -EINVAL;
switch (value) {
case PCI_SPEED_33MHz:
cmd = SETA_PCI_33MHZ;
break;
case PCI_SPEED_66MHz:
cmd = SETA_PCI_66MHZ;
break;
case PCI_SPEED_66MHz_PCIX:
cmd = SETA_PCIX_66MHZ;
break;
case PCI_SPEED_100MHz_PCIX:
cmd = SETA_PCIX_100MHZ;
break;
case PCI_SPEED_133MHz_PCIX:
cmd = SETA_PCIX_133MHZ;
break;
case PCI_SPEED_66MHz_PCIX_ECC:
cmd = SETB_PCIX_66MHZ_EM;
break;
case PCI_SPEED_100MHz_PCIX_ECC:
cmd = SETB_PCIX_100MHZ_EM;
break;
case PCI_SPEED_133MHz_PCIX_ECC:
cmd = SETB_PCIX_133MHZ_EM;
break;
case PCI_SPEED_66MHz_PCIX_266:
cmd = SETB_PCIX_66MHZ_266;
break;
case PCI_SPEED_100MHz_PCIX_266:
cmd = SETB_PCIX_100MHZ_266;
break;
case PCI_SPEED_133MHz_PCIX_266:
cmd = SETB_PCIX_133MHZ_266;
break;
case PCI_SPEED_66MHz_PCIX_533:
cmd = SETB_PCIX_66MHZ_533;
break;
case PCI_SPEED_100MHz_PCIX_533:
cmd = SETB_PCIX_100MHZ_533;
break;
case PCI_SPEED_133MHz_PCIX_533:
cmd = SETB_PCIX_133MHZ_533;
break;
default:
return -EINVAL;
}
retval = shpc_write_cmd(slot, 0, cmd);
if (retval)
ctrl_err(ctrl, "%s: Write command failed!\n", __func__);
else
shpc_get_cur_bus_speed(ctrl);
return retval;
}
static irqreturn_t shpc_isr(int irq, void *dev_id)
{
struct controller *ctrl = (struct controller *)dev_id;
u32 serr_int, slot_reg, intr_loc, intr_loc2;
int hp_slot;
/* Check to see if it was our interrupt */
intr_loc = shpc_readl(ctrl, INTR_LOC);
if (!intr_loc)
return IRQ_NONE;
ctrl_dbg(ctrl, "%s: intr_loc = %x\n", __func__, intr_loc);
if (!shpchp_poll_mode) {
/*
* Mask Global Interrupt Mask - see implementation
* note on p. 139 of SHPC spec rev 1.0
*/
serr_int = shpc_readl(ctrl, SERR_INTR_ENABLE);
serr_int |= GLOBAL_INTR_MASK;
serr_int &= ~SERR_INTR_RSVDZ_MASK;
shpc_writel(ctrl, SERR_INTR_ENABLE, serr_int);
intr_loc2 = shpc_readl(ctrl, INTR_LOC);
ctrl_dbg(ctrl, "%s: intr_loc2 = %x\n", __func__, intr_loc2);
}
if (intr_loc & CMD_INTR_PENDING) {
/*
* Command Complete Interrupt Pending
* RO only - clear by writing 1 to the Command Completion
* Detect bit in Controller SERR-INT register
*/
serr_int = shpc_readl(ctrl, SERR_INTR_ENABLE);
serr_int &= ~SERR_INTR_RSVDZ_MASK;
shpc_writel(ctrl, SERR_INTR_ENABLE, serr_int);
wake_up_interruptible(&ctrl->queue);
}
if (!(intr_loc & ~CMD_INTR_PENDING))
goto out;
for (hp_slot = 0; hp_slot < ctrl->num_slots; hp_slot++) {
/* To find out which slot has interrupt pending */
if (!(intr_loc & SLOT_INTR_PENDING(hp_slot)))
continue;
slot_reg = shpc_readl(ctrl, SLOT_REG(hp_slot));
ctrl_dbg(ctrl, "Slot %x with intr, slot register = %x\n",
hp_slot, slot_reg);
if (slot_reg & MRL_CHANGE_DETECTED)
shpchp_handle_switch_change(hp_slot, ctrl);
if (slot_reg & BUTTON_PRESS_DETECTED)
shpchp_handle_attention_button(hp_slot, ctrl);
if (slot_reg & PRSNT_CHANGE_DETECTED)
shpchp_handle_presence_change(hp_slot, ctrl);
if (slot_reg & (ISO_PFAULT_DETECTED | CON_PFAULT_DETECTED))
shpchp_handle_power_fault(hp_slot, ctrl);
/* Clear all slot events */
slot_reg &= ~SLOT_REG_RSVDZ_MASK;
shpc_writel(ctrl, SLOT_REG(hp_slot), slot_reg);
}
out:
if (!shpchp_poll_mode) {
/* Unmask Global Interrupt Mask */
serr_int = shpc_readl(ctrl, SERR_INTR_ENABLE);
serr_int &= ~(GLOBAL_INTR_MASK | SERR_INTR_RSVDZ_MASK);
shpc_writel(ctrl, SERR_INTR_ENABLE, serr_int);
}
return IRQ_HANDLED;
}
static int shpc_get_max_bus_speed(struct controller *ctrl)
{
int retval = 0;
struct pci_bus *bus = ctrl->pci_dev->subordinate;
enum pci_bus_speed bus_speed = PCI_SPEED_UNKNOWN;
u8 pi = shpc_readb(ctrl, PROG_INTERFACE);
u32 slot_avail1 = shpc_readl(ctrl, SLOT_AVAIL1);
u32 slot_avail2 = shpc_readl(ctrl, SLOT_AVAIL2);
if (pi == 2) {
if (slot_avail2 & SLOT_133MHZ_PCIX_533)
bus_speed = PCI_SPEED_133MHz_PCIX_533;
else if (slot_avail2 & SLOT_100MHZ_PCIX_533)
bus_speed = PCI_SPEED_100MHz_PCIX_533;
else if (slot_avail2 & SLOT_66MHZ_PCIX_533)
bus_speed = PCI_SPEED_66MHz_PCIX_533;
else if (slot_avail2 & SLOT_133MHZ_PCIX_266)
bus_speed = PCI_SPEED_133MHz_PCIX_266;
else if (slot_avail2 & SLOT_100MHZ_PCIX_266)
bus_speed = PCI_SPEED_100MHz_PCIX_266;
else if (slot_avail2 & SLOT_66MHZ_PCIX_266)
bus_speed = PCI_SPEED_66MHz_PCIX_266;
}
if (bus_speed == PCI_SPEED_UNKNOWN) {
if (slot_avail1 & SLOT_133MHZ_PCIX)
bus_speed = PCI_SPEED_133MHz_PCIX;
else if (slot_avail1 & SLOT_100MHZ_PCIX)
bus_speed = PCI_SPEED_100MHz_PCIX;
else if (slot_avail1 & SLOT_66MHZ_PCIX)
bus_speed = PCI_SPEED_66MHz_PCIX;
else if (slot_avail2 & SLOT_66MHZ)
bus_speed = PCI_SPEED_66MHz;
else if (slot_avail1 & SLOT_33MHZ)
bus_speed = PCI_SPEED_33MHz;
else
retval = -ENODEV;
}
bus->max_bus_speed = bus_speed;
ctrl_dbg(ctrl, "Max bus speed = %d\n", bus_speed);
return retval;
}
static const struct hpc_ops shpchp_hpc_ops = {
.power_on_slot = hpc_power_on_slot,
.slot_enable = hpc_slot_enable,
.slot_disable = hpc_slot_disable,
.set_bus_speed_mode = hpc_set_bus_speed_mode,
.set_attention_status = hpc_set_attention_status,
.get_power_status = hpc_get_power_status,
.get_attention_status = hpc_get_attention_status,
.get_latch_status = hpc_get_latch_status,
.get_adapter_status = hpc_get_adapter_status,
.get_adapter_speed = hpc_get_adapter_speed,
.get_prog_int = hpc_get_prog_int,
.query_power_fault = hpc_query_power_fault,
.green_led_on = hpc_set_green_led_on,
.green_led_off = hpc_set_green_led_off,
.green_led_blink = hpc_set_green_led_blink,
.release_ctlr = hpc_release_ctlr,
};
int shpc_init(struct controller *ctrl, struct pci_dev *pdev)
{
int rc = -1, num_slots = 0;
u8 hp_slot;
u32 shpc_base_offset;
u32 tempdword, slot_reg, slot_config;
u8 i;
ctrl->pci_dev = pdev; /* pci_dev of the P2P bridge */
ctrl_dbg(ctrl, "Hotplug Controller:\n");
if (pdev->vendor == PCI_VENDOR_ID_AMD &&
pdev->device == PCI_DEVICE_ID_AMD_GOLAM_7450) {
/* amd shpc driver doesn't use Base Offset; assume 0 */
ctrl->mmio_base = pci_resource_start(pdev, 0);
ctrl->mmio_size = pci_resource_len(pdev, 0);
} else {
ctrl->cap_offset = pci_find_capability(pdev, PCI_CAP_ID_SHPC);
if (!ctrl->cap_offset) {
ctrl_err(ctrl, "Cannot find PCI capability\n");
goto abort;
}
ctrl_dbg(ctrl, " cap_offset = %x\n", ctrl->cap_offset);
rc = shpc_indirect_read(ctrl, 0, &shpc_base_offset);
if (rc) {
ctrl_err(ctrl, "Cannot read base_offset\n");
goto abort;
}
rc = shpc_indirect_read(ctrl, 3, &tempdword);
if (rc) {
ctrl_err(ctrl, "Cannot read slot config\n");
goto abort;
}
num_slots = tempdword & SLOT_NUM;
ctrl_dbg(ctrl, " num_slots (indirect) %x\n", num_slots);
for (i = 0; i < 9 + num_slots; i++) {
rc = shpc_indirect_read(ctrl, i, &tempdword);
if (rc) {
ctrl_err(ctrl, "Cannot read creg (index = %d)\n",
i);
goto abort;
}
ctrl_dbg(ctrl, " offset %d: value %x\n", i, tempdword);
}
ctrl->mmio_base =
pci_resource_start(pdev, 0) + shpc_base_offset;
ctrl->mmio_size = 0x24 + 0x4 * num_slots;
}
ctrl_info(ctrl, "HPC vendor_id %x device_id %x ss_vid %x ss_did %x\n",
pdev->vendor, pdev->device, pdev->subsystem_vendor,
pdev->subsystem_device);
rc = pci_enable_device(pdev);
if (rc) {
ctrl_err(ctrl, "pci_enable_device failed\n");
goto abort;
}
if (!request_mem_region(ctrl->mmio_base, ctrl->mmio_size, MY_NAME)) {
ctrl_err(ctrl, "Cannot reserve MMIO region\n");
rc = -1;
goto abort;
}
ctrl->creg = ioremap(ctrl->mmio_base, ctrl->mmio_size);
if (!ctrl->creg) {
ctrl_err(ctrl, "Cannot remap MMIO region %lx @ %lx\n",
ctrl->mmio_size, ctrl->mmio_base);
release_mem_region(ctrl->mmio_base, ctrl->mmio_size);
rc = -1;
goto abort;
}
ctrl_dbg(ctrl, "ctrl->creg %p\n", ctrl->creg);
mutex_init(&ctrl->crit_sect);
mutex_init(&ctrl->cmd_lock);
/* Setup wait queue */
init_waitqueue_head(&ctrl->queue);
ctrl->hpc_ops = &shpchp_hpc_ops;
/* Return PCI Controller Info */
slot_config = shpc_readl(ctrl, SLOT_CONFIG);
ctrl->slot_device_offset = (slot_config & FIRST_DEV_NUM) >> 8;
ctrl->num_slots = slot_config & SLOT_NUM;
ctrl->first_slot = (slot_config & PSN) >> 16;
ctrl->slot_num_inc = ((slot_config & UPDOWN) >> 29) ? 1 : -1;
/* Mask Global Interrupt Mask & Command Complete Interrupt Mask */
tempdword = shpc_readl(ctrl, SERR_INTR_ENABLE);
ctrl_dbg(ctrl, "SERR_INTR_ENABLE = %x\n", tempdword);
tempdword |= (GLOBAL_INTR_MASK | GLOBAL_SERR_MASK |
COMMAND_INTR_MASK | ARBITER_SERR_MASK);
tempdword &= ~SERR_INTR_RSVDZ_MASK;
shpc_writel(ctrl, SERR_INTR_ENABLE, tempdword);
tempdword = shpc_readl(ctrl, SERR_INTR_ENABLE);
ctrl_dbg(ctrl, "SERR_INTR_ENABLE = %x\n", tempdword);
/* Mask the MRL sensor SERR Mask of individual slot in
* Slot SERR-INT Mask & clear all the existing event if any
*/
for (hp_slot = 0; hp_slot < ctrl->num_slots; hp_slot++) {
slot_reg = shpc_readl(ctrl, SLOT_REG(hp_slot));
ctrl_dbg(ctrl, "Default Logical Slot Register %d value %x\n",
hp_slot, slot_reg);
slot_reg |= (PRSNT_CHANGE_INTR_MASK | ISO_PFAULT_INTR_MASK |
BUTTON_PRESS_INTR_MASK | MRL_CHANGE_INTR_MASK |
CON_PFAULT_INTR_MASK | MRL_CHANGE_SERR_MASK |
CON_PFAULT_SERR_MASK);
slot_reg &= ~SLOT_REG_RSVDZ_MASK;
shpc_writel(ctrl, SLOT_REG(hp_slot), slot_reg);
}
if (shpchp_poll_mode) {
/* Install interrupt polling timer. Start with 10 sec delay */
timer_setup(&ctrl->poll_timer, int_poll_timeout, 0);
start_int_poll_timer(ctrl, 10);
} else {
/* Installs the interrupt handler */
rc = pci_enable_msi(pdev);
if (rc) {
ctrl_info(ctrl, "Can't get msi for the hotplug controller\n");
ctrl_info(ctrl, "Use INTx for the hotplug controller\n");
} else {
pci_set_master(pdev);
}
rc = request_irq(ctrl->pci_dev->irq, shpc_isr, IRQF_SHARED,
MY_NAME, (void *)ctrl);
ctrl_dbg(ctrl, "request_irq %d (returns %d)\n",
ctrl->pci_dev->irq, rc);
if (rc) {
ctrl_err(ctrl, "Can't get irq %d for the hotplug controller\n",
ctrl->pci_dev->irq);
goto abort_iounmap;
}
}
ctrl_dbg(ctrl, "HPC at %s irq=%x\n", pci_name(pdev), pdev->irq);
shpc_get_max_bus_speed(ctrl);
shpc_get_cur_bus_speed(ctrl);
/*
* Unmask all event interrupts of all slots
*/
for (hp_slot = 0; hp_slot < ctrl->num_slots; hp_slot++) {
slot_reg = shpc_readl(ctrl, SLOT_REG(hp_slot));
ctrl_dbg(ctrl, "Default Logical Slot Register %d value %x\n",
hp_slot, slot_reg);
slot_reg &= ~(PRSNT_CHANGE_INTR_MASK | ISO_PFAULT_INTR_MASK |
BUTTON_PRESS_INTR_MASK | MRL_CHANGE_INTR_MASK |
CON_PFAULT_INTR_MASK | SLOT_REG_RSVDZ_MASK);
shpc_writel(ctrl, SLOT_REG(hp_slot), slot_reg);
}
if (!shpchp_poll_mode) {
/* Unmask all general input interrupts and SERR */
tempdword = shpc_readl(ctrl, SERR_INTR_ENABLE);
tempdword &= ~(GLOBAL_INTR_MASK | COMMAND_INTR_MASK |
SERR_INTR_RSVDZ_MASK);
shpc_writel(ctrl, SERR_INTR_ENABLE, tempdword);
tempdword = shpc_readl(ctrl, SERR_INTR_ENABLE);
ctrl_dbg(ctrl, "SERR_INTR_ENABLE = %x\n", tempdword);
}
return 0;
/* We end up here for the many possible ways to fail this API. */
abort_iounmap:
iounmap(ctrl->creg);
abort:
return rc;
}