OpenCloudOS-Kernel/drivers/mmc/host/sunxi-mmc.c

1529 lines
41 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Driver for sunxi SD/MMC host controllers
* (C) Copyright 2007-2011 Reuuimlla Technology Co., Ltd.
* (C) Copyright 2007-2011 Aaron Maoye <leafy.myeh@reuuimllatech.com>
* (C) Copyright 2013-2014 O2S GmbH <www.o2s.ch>
* (C) Copyright 2013-2014 David Lanzendörfer <david.lanzendoerfer@o2s.ch>
* (C) Copyright 2013-2014 Hans de Goede <hdegoede@redhat.com>
* (C) Copyright 2017 Sootech SA
*/
#include <linux/clk.h>
#include <linux/clk/sunxi-ng.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/mmc/card.h>
#include <linux/mmc/core.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sd.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
/* register offset definitions */
#define SDXC_REG_GCTRL (0x00) /* SMC Global Control Register */
#define SDXC_REG_CLKCR (0x04) /* SMC Clock Control Register */
#define SDXC_REG_TMOUT (0x08) /* SMC Time Out Register */
#define SDXC_REG_WIDTH (0x0C) /* SMC Bus Width Register */
#define SDXC_REG_BLKSZ (0x10) /* SMC Block Size Register */
#define SDXC_REG_BCNTR (0x14) /* SMC Byte Count Register */
#define SDXC_REG_CMDR (0x18) /* SMC Command Register */
#define SDXC_REG_CARG (0x1C) /* SMC Argument Register */
#define SDXC_REG_RESP0 (0x20) /* SMC Response Register 0 */
#define SDXC_REG_RESP1 (0x24) /* SMC Response Register 1 */
#define SDXC_REG_RESP2 (0x28) /* SMC Response Register 2 */
#define SDXC_REG_RESP3 (0x2C) /* SMC Response Register 3 */
#define SDXC_REG_IMASK (0x30) /* SMC Interrupt Mask Register */
#define SDXC_REG_MISTA (0x34) /* SMC Masked Interrupt Status Register */
#define SDXC_REG_RINTR (0x38) /* SMC Raw Interrupt Status Register */
#define SDXC_REG_STAS (0x3C) /* SMC Status Register */
#define SDXC_REG_FTRGL (0x40) /* SMC FIFO Threshold Watermark Registe */
#define SDXC_REG_FUNS (0x44) /* SMC Function Select Register */
#define SDXC_REG_CBCR (0x48) /* SMC CIU Byte Count Register */
#define SDXC_REG_BBCR (0x4C) /* SMC BIU Byte Count Register */
#define SDXC_REG_DBGC (0x50) /* SMC Debug Enable Register */
#define SDXC_REG_HWRST (0x78) /* SMC Card Hardware Reset for Register */
#define SDXC_REG_DMAC (0x80) /* SMC IDMAC Control Register */
#define SDXC_REG_DLBA (0x84) /* SMC IDMAC Descriptor List Base Addre */
#define SDXC_REG_IDST (0x88) /* SMC IDMAC Status Register */
#define SDXC_REG_IDIE (0x8C) /* SMC IDMAC Interrupt Enable Register */
#define SDXC_REG_CHDA (0x90)
#define SDXC_REG_CBDA (0x94)
/* New registers introduced in A64 */
#define SDXC_REG_A12A 0x058 /* SMC Auto Command 12 Register */
#define SDXC_REG_SD_NTSR 0x05C /* SMC New Timing Set Register */
#define SDXC_REG_DRV_DL 0x140 /* Drive Delay Control Register */
#define SDXC_REG_SAMP_DL_REG 0x144 /* SMC sample delay control */
#define SDXC_REG_DS_DL_REG 0x148 /* SMC data strobe delay control */
#define mmc_readl(host, reg) \
readl((host)->reg_base + SDXC_##reg)
#define mmc_writel(host, reg, value) \
writel((value), (host)->reg_base + SDXC_##reg)
/* global control register bits */
#define SDXC_SOFT_RESET BIT(0)
#define SDXC_FIFO_RESET BIT(1)
#define SDXC_DMA_RESET BIT(2)
#define SDXC_INTERRUPT_ENABLE_BIT BIT(4)
#define SDXC_DMA_ENABLE_BIT BIT(5)
#define SDXC_DEBOUNCE_ENABLE_BIT BIT(8)
#define SDXC_POSEDGE_LATCH_DATA BIT(9)
#define SDXC_DDR_MODE BIT(10)
#define SDXC_MEMORY_ACCESS_DONE BIT(29)
#define SDXC_ACCESS_DONE_DIRECT BIT(30)
#define SDXC_ACCESS_BY_AHB BIT(31)
#define SDXC_ACCESS_BY_DMA (0 << 31)
#define SDXC_HARDWARE_RESET \
(SDXC_SOFT_RESET | SDXC_FIFO_RESET | SDXC_DMA_RESET)
/* clock control bits */
#define SDXC_MASK_DATA0 BIT(31)
#define SDXC_CARD_CLOCK_ON BIT(16)
#define SDXC_LOW_POWER_ON BIT(17)
/* bus width */
#define SDXC_WIDTH1 0
#define SDXC_WIDTH4 1
#define SDXC_WIDTH8 2
/* smc command bits */
#define SDXC_RESP_EXPIRE BIT(6)
#define SDXC_LONG_RESPONSE BIT(7)
#define SDXC_CHECK_RESPONSE_CRC BIT(8)
#define SDXC_DATA_EXPIRE BIT(9)
#define SDXC_WRITE BIT(10)
#define SDXC_SEQUENCE_MODE BIT(11)
#define SDXC_SEND_AUTO_STOP BIT(12)
#define SDXC_WAIT_PRE_OVER BIT(13)
#define SDXC_STOP_ABORT_CMD BIT(14)
#define SDXC_SEND_INIT_SEQUENCE BIT(15)
#define SDXC_UPCLK_ONLY BIT(21)
#define SDXC_READ_CEATA_DEV BIT(22)
#define SDXC_CCS_EXPIRE BIT(23)
#define SDXC_ENABLE_BIT_BOOT BIT(24)
#define SDXC_ALT_BOOT_OPTIONS BIT(25)
#define SDXC_BOOT_ACK_EXPIRE BIT(26)
#define SDXC_BOOT_ABORT BIT(27)
#define SDXC_VOLTAGE_SWITCH BIT(28)
#define SDXC_USE_HOLD_REGISTER BIT(29)
#define SDXC_START BIT(31)
/* interrupt bits */
#define SDXC_RESP_ERROR BIT(1)
#define SDXC_COMMAND_DONE BIT(2)
#define SDXC_DATA_OVER BIT(3)
#define SDXC_TX_DATA_REQUEST BIT(4)
#define SDXC_RX_DATA_REQUEST BIT(5)
#define SDXC_RESP_CRC_ERROR BIT(6)
#define SDXC_DATA_CRC_ERROR BIT(7)
#define SDXC_RESP_TIMEOUT BIT(8)
#define SDXC_DATA_TIMEOUT BIT(9)
#define SDXC_VOLTAGE_CHANGE_DONE BIT(10)
#define SDXC_FIFO_RUN_ERROR BIT(11)
#define SDXC_HARD_WARE_LOCKED BIT(12)
#define SDXC_START_BIT_ERROR BIT(13)
#define SDXC_AUTO_COMMAND_DONE BIT(14)
#define SDXC_END_BIT_ERROR BIT(15)
#define SDXC_SDIO_INTERRUPT BIT(16)
#define SDXC_CARD_INSERT BIT(30)
#define SDXC_CARD_REMOVE BIT(31)
#define SDXC_INTERRUPT_ERROR_BIT \
(SDXC_RESP_ERROR | SDXC_RESP_CRC_ERROR | SDXC_DATA_CRC_ERROR | \
SDXC_RESP_TIMEOUT | SDXC_DATA_TIMEOUT | SDXC_FIFO_RUN_ERROR | \
SDXC_HARD_WARE_LOCKED | SDXC_START_BIT_ERROR | SDXC_END_BIT_ERROR)
#define SDXC_INTERRUPT_DONE_BIT \
(SDXC_AUTO_COMMAND_DONE | SDXC_DATA_OVER | \
SDXC_COMMAND_DONE | SDXC_VOLTAGE_CHANGE_DONE)
/* status */
#define SDXC_RXWL_FLAG BIT(0)
#define SDXC_TXWL_FLAG BIT(1)
#define SDXC_FIFO_EMPTY BIT(2)
#define SDXC_FIFO_FULL BIT(3)
#define SDXC_CARD_PRESENT BIT(8)
#define SDXC_CARD_DATA_BUSY BIT(9)
#define SDXC_DATA_FSM_BUSY BIT(10)
#define SDXC_DMA_REQUEST BIT(31)
#define SDXC_FIFO_SIZE 16
/* Function select */
#define SDXC_CEATA_ON (0xceaa << 16)
#define SDXC_SEND_IRQ_RESPONSE BIT(0)
#define SDXC_SDIO_READ_WAIT BIT(1)
#define SDXC_ABORT_READ_DATA BIT(2)
#define SDXC_SEND_CCSD BIT(8)
#define SDXC_SEND_AUTO_STOPCCSD BIT(9)
#define SDXC_CEATA_DEV_IRQ_ENABLE BIT(10)
/* IDMA controller bus mod bit field */
#define SDXC_IDMAC_SOFT_RESET BIT(0)
#define SDXC_IDMAC_FIX_BURST BIT(1)
#define SDXC_IDMAC_IDMA_ON BIT(7)
#define SDXC_IDMAC_REFETCH_DES BIT(31)
/* IDMA status bit field */
#define SDXC_IDMAC_TRANSMIT_INTERRUPT BIT(0)
#define SDXC_IDMAC_RECEIVE_INTERRUPT BIT(1)
#define SDXC_IDMAC_FATAL_BUS_ERROR BIT(2)
#define SDXC_IDMAC_DESTINATION_INVALID BIT(4)
#define SDXC_IDMAC_CARD_ERROR_SUM BIT(5)
#define SDXC_IDMAC_NORMAL_INTERRUPT_SUM BIT(8)
#define SDXC_IDMAC_ABNORMAL_INTERRUPT_SUM BIT(9)
#define SDXC_IDMAC_HOST_ABORT_INTERRUPT BIT(10)
#define SDXC_IDMAC_IDLE (0 << 13)
#define SDXC_IDMAC_SUSPEND (1 << 13)
#define SDXC_IDMAC_DESC_READ (2 << 13)
#define SDXC_IDMAC_DESC_CHECK (3 << 13)
#define SDXC_IDMAC_READ_REQUEST_WAIT (4 << 13)
#define SDXC_IDMAC_WRITE_REQUEST_WAIT (5 << 13)
#define SDXC_IDMAC_READ (6 << 13)
#define SDXC_IDMAC_WRITE (7 << 13)
#define SDXC_IDMAC_DESC_CLOSE (8 << 13)
/*
* If the idma-des-size-bits of property is ie 13, bufsize bits are:
* Bits 0-12: buf1 size
* Bits 13-25: buf2 size
* Bits 26-31: not used
* Since we only ever set buf1 size, we can simply store it directly.
*/
#define SDXC_IDMAC_DES0_DIC BIT(1) /* disable interrupt on completion */
#define SDXC_IDMAC_DES0_LD BIT(2) /* last descriptor */
#define SDXC_IDMAC_DES0_FD BIT(3) /* first descriptor */
#define SDXC_IDMAC_DES0_CH BIT(4) /* chain mode */
#define SDXC_IDMAC_DES0_ER BIT(5) /* end of ring */
#define SDXC_IDMAC_DES0_CES BIT(30) /* card error summary */
#define SDXC_IDMAC_DES0_OWN BIT(31) /* 1-idma owns it, 0-host owns it */
#define SDXC_CLK_400K 0
#define SDXC_CLK_25M 1
#define SDXC_CLK_50M 2
#define SDXC_CLK_50M_DDR 3
#define SDXC_CLK_50M_DDR_8BIT 4
#define SDXC_2X_TIMING_MODE BIT(31)
#define SDXC_CAL_START BIT(15)
#define SDXC_CAL_DONE BIT(14)
#define SDXC_CAL_DL_SHIFT 8
#define SDXC_CAL_DL_SW_EN BIT(7)
#define SDXC_CAL_DL_SW_SHIFT 0
#define SDXC_CAL_DL_MASK 0x3f
#define SDXC_CAL_TIMEOUT 3 /* in seconds, 3s is enough*/
struct sunxi_mmc_clk_delay {
u32 output;
u32 sample;
};
struct sunxi_idma_des {
__le32 config;
__le32 buf_size;
__le32 buf_addr_ptr1;
__le32 buf_addr_ptr2;
};
struct sunxi_mmc_cfg {
u32 idma_des_size_bits;
const struct sunxi_mmc_clk_delay *clk_delays;
/* does the IP block support autocalibration? */
bool can_calibrate;
/* Does DATA0 needs to be masked while the clock is updated */
bool mask_data0;
/*
* hardware only supports new timing mode, either due to lack of
* a mode switch in the clock controller, or the mmc controller
* is permanently configured in the new timing mode, without the
* NTSR mode switch.
*/
bool needs_new_timings;
/* clock hardware can switch between old and new timing modes */
bool ccu_has_timings_switch;
};
struct sunxi_mmc_host {
struct device *dev;
struct mmc_host *mmc;
struct reset_control *reset;
const struct sunxi_mmc_cfg *cfg;
/* IO mapping base */
void __iomem *reg_base;
/* clock management */
struct clk *clk_ahb;
struct clk *clk_mmc;
struct clk *clk_sample;
struct clk *clk_output;
/* irq */
spinlock_t lock;
int irq;
u32 int_sum;
u32 sdio_imask;
/* dma */
dma_addr_t sg_dma;
void *sg_cpu;
bool wait_dma;
struct mmc_request *mrq;
struct mmc_request *manual_stop_mrq;
int ferror;
/* vqmmc */
bool vqmmc_enabled;
/* timings */
bool use_new_timings;
};
static int sunxi_mmc_reset_host(struct sunxi_mmc_host *host)
{
unsigned long expire = jiffies + msecs_to_jiffies(250);
u32 rval;
mmc_writel(host, REG_GCTRL, SDXC_HARDWARE_RESET);
do {
rval = mmc_readl(host, REG_GCTRL);
} while (time_before(jiffies, expire) && (rval & SDXC_HARDWARE_RESET));
if (rval & SDXC_HARDWARE_RESET) {
dev_err(mmc_dev(host->mmc), "fatal err reset timeout\n");
return -EIO;
}
return 0;
}
static int sunxi_mmc_init_host(struct sunxi_mmc_host *host)
{
u32 rval;
if (sunxi_mmc_reset_host(host))
return -EIO;
/*
* Burst 8 transfers, RX trigger level: 7, TX trigger level: 8
*
* TODO: sun9i has a larger FIFO and supports higher trigger values
*/
mmc_writel(host, REG_FTRGL, 0x20070008);
/* Maximum timeout value */
mmc_writel(host, REG_TMOUT, 0xffffffff);
/* Unmask SDIO interrupt if needed */
mmc_writel(host, REG_IMASK, host->sdio_imask);
/* Clear all pending interrupts */
mmc_writel(host, REG_RINTR, 0xffffffff);
/* Debug register? undocumented */
mmc_writel(host, REG_DBGC, 0xdeb);
/* Enable CEATA support */
mmc_writel(host, REG_FUNS, SDXC_CEATA_ON);
/* Set DMA descriptor list base address */
mmc_writel(host, REG_DLBA, host->sg_dma);
rval = mmc_readl(host, REG_GCTRL);
rval |= SDXC_INTERRUPT_ENABLE_BIT;
/* Undocumented, but found in Allwinner code */
rval &= ~SDXC_ACCESS_DONE_DIRECT;
mmc_writel(host, REG_GCTRL, rval);
return 0;
}
static void sunxi_mmc_init_idma_des(struct sunxi_mmc_host *host,
struct mmc_data *data)
{
struct sunxi_idma_des *pdes = (struct sunxi_idma_des *)host->sg_cpu;
dma_addr_t next_desc = host->sg_dma;
int i, max_len = (1 << host->cfg->idma_des_size_bits);
for (i = 0; i < data->sg_len; i++) {
pdes[i].config = cpu_to_le32(SDXC_IDMAC_DES0_CH |
SDXC_IDMAC_DES0_OWN |
SDXC_IDMAC_DES0_DIC);
if (data->sg[i].length == max_len)
pdes[i].buf_size = 0; /* 0 == max_len */
else
pdes[i].buf_size = cpu_to_le32(data->sg[i].length);
next_desc += sizeof(struct sunxi_idma_des);
pdes[i].buf_addr_ptr1 =
cpu_to_le32(sg_dma_address(&data->sg[i]));
pdes[i].buf_addr_ptr2 = cpu_to_le32((u32)next_desc);
}
pdes[0].config |= cpu_to_le32(SDXC_IDMAC_DES0_FD);
pdes[i - 1].config |= cpu_to_le32(SDXC_IDMAC_DES0_LD |
SDXC_IDMAC_DES0_ER);
pdes[i - 1].config &= cpu_to_le32(~SDXC_IDMAC_DES0_DIC);
pdes[i - 1].buf_addr_ptr2 = 0;
/*
* Avoid the io-store starting the idmac hitting io-mem before the
* descriptors hit the main-mem.
*/
wmb();
}
static int sunxi_mmc_map_dma(struct sunxi_mmc_host *host,
struct mmc_data *data)
{
u32 i, dma_len;
struct scatterlist *sg;
dma_len = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
mmc_get_dma_dir(data));
if (dma_len == 0) {
dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n");
return -ENOMEM;
}
for_each_sg(data->sg, sg, data->sg_len, i) {
if (sg->offset & 3 || sg->length & 3) {
dev_err(mmc_dev(host->mmc),
"unaligned scatterlist: os %x length %d\n",
sg->offset, sg->length);
return -EINVAL;
}
}
return 0;
}
static void sunxi_mmc_start_dma(struct sunxi_mmc_host *host,
struct mmc_data *data)
{
u32 rval;
sunxi_mmc_init_idma_des(host, data);
rval = mmc_readl(host, REG_GCTRL);
rval |= SDXC_DMA_ENABLE_BIT;
mmc_writel(host, REG_GCTRL, rval);
rval |= SDXC_DMA_RESET;
mmc_writel(host, REG_GCTRL, rval);
mmc_writel(host, REG_DMAC, SDXC_IDMAC_SOFT_RESET);
if (!(data->flags & MMC_DATA_WRITE))
mmc_writel(host, REG_IDIE, SDXC_IDMAC_RECEIVE_INTERRUPT);
mmc_writel(host, REG_DMAC,
SDXC_IDMAC_FIX_BURST | SDXC_IDMAC_IDMA_ON);
}
static void sunxi_mmc_send_manual_stop(struct sunxi_mmc_host *host,
struct mmc_request *req)
{
u32 arg, cmd_val, ri;
unsigned long expire = jiffies + msecs_to_jiffies(1000);
cmd_val = SDXC_START | SDXC_RESP_EXPIRE |
SDXC_STOP_ABORT_CMD | SDXC_CHECK_RESPONSE_CRC;
if (req->cmd->opcode == SD_IO_RW_EXTENDED) {
cmd_val |= SD_IO_RW_DIRECT;
arg = (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
((req->cmd->arg >> 28) & 0x7);
} else {
cmd_val |= MMC_STOP_TRANSMISSION;
arg = 0;
}
mmc_writel(host, REG_CARG, arg);
mmc_writel(host, REG_CMDR, cmd_val);
do {
ri = mmc_readl(host, REG_RINTR);
} while (!(ri & (SDXC_COMMAND_DONE | SDXC_INTERRUPT_ERROR_BIT)) &&
time_before(jiffies, expire));
if (!(ri & SDXC_COMMAND_DONE) || (ri & SDXC_INTERRUPT_ERROR_BIT)) {
dev_err(mmc_dev(host->mmc), "send stop command failed\n");
if (req->stop)
req->stop->resp[0] = -ETIMEDOUT;
} else {
if (req->stop)
req->stop->resp[0] = mmc_readl(host, REG_RESP0);
}
mmc_writel(host, REG_RINTR, 0xffff);
}
static void sunxi_mmc_dump_errinfo(struct sunxi_mmc_host *host)
{
struct mmc_command *cmd = host->mrq->cmd;
struct mmc_data *data = host->mrq->data;
/* For some cmds timeout is normal with sd/mmc cards */
if ((host->int_sum & SDXC_INTERRUPT_ERROR_BIT) ==
SDXC_RESP_TIMEOUT && (cmd->opcode == SD_IO_SEND_OP_COND ||
cmd->opcode == SD_IO_RW_DIRECT))
return;
dev_dbg(mmc_dev(host->mmc),
"smc %d err, cmd %d,%s%s%s%s%s%s%s%s%s%s !!\n",
host->mmc->index, cmd->opcode,
data ? (data->flags & MMC_DATA_WRITE ? " WR" : " RD") : "",
host->int_sum & SDXC_RESP_ERROR ? " RE" : "",
host->int_sum & SDXC_RESP_CRC_ERROR ? " RCE" : "",
host->int_sum & SDXC_DATA_CRC_ERROR ? " DCE" : "",
host->int_sum & SDXC_RESP_TIMEOUT ? " RTO" : "",
host->int_sum & SDXC_DATA_TIMEOUT ? " DTO" : "",
host->int_sum & SDXC_FIFO_RUN_ERROR ? " FE" : "",
host->int_sum & SDXC_HARD_WARE_LOCKED ? " HL" : "",
host->int_sum & SDXC_START_BIT_ERROR ? " SBE" : "",
host->int_sum & SDXC_END_BIT_ERROR ? " EBE" : ""
);
}
/* Called in interrupt context! */
static irqreturn_t sunxi_mmc_finalize_request(struct sunxi_mmc_host *host)
{
struct mmc_request *mrq = host->mrq;
struct mmc_data *data = mrq->data;
u32 rval;
mmc_writel(host, REG_IMASK, host->sdio_imask);
mmc_writel(host, REG_IDIE, 0);
if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT) {
sunxi_mmc_dump_errinfo(host);
mrq->cmd->error = -ETIMEDOUT;
if (data) {
data->error = -ETIMEDOUT;
host->manual_stop_mrq = mrq;
}
if (mrq->stop)
mrq->stop->error = -ETIMEDOUT;
} else {
if (mrq->cmd->flags & MMC_RSP_136) {
mrq->cmd->resp[0] = mmc_readl(host, REG_RESP3);
mrq->cmd->resp[1] = mmc_readl(host, REG_RESP2);
mrq->cmd->resp[2] = mmc_readl(host, REG_RESP1);
mrq->cmd->resp[3] = mmc_readl(host, REG_RESP0);
} else {
mrq->cmd->resp[0] = mmc_readl(host, REG_RESP0);
}
if (data)
data->bytes_xfered = data->blocks * data->blksz;
}
if (data) {
mmc_writel(host, REG_IDST, 0x337);
mmc_writel(host, REG_DMAC, 0);
rval = mmc_readl(host, REG_GCTRL);
rval |= SDXC_DMA_RESET;
mmc_writel(host, REG_GCTRL, rval);
rval &= ~SDXC_DMA_ENABLE_BIT;
mmc_writel(host, REG_GCTRL, rval);
rval |= SDXC_FIFO_RESET;
mmc_writel(host, REG_GCTRL, rval);
dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
mmc_get_dma_dir(data));
}
mmc_writel(host, REG_RINTR, 0xffff);
host->mrq = NULL;
host->int_sum = 0;
host->wait_dma = false;
return host->manual_stop_mrq ? IRQ_WAKE_THREAD : IRQ_HANDLED;
}
static irqreturn_t sunxi_mmc_irq(int irq, void *dev_id)
{
struct sunxi_mmc_host *host = dev_id;
struct mmc_request *mrq;
u32 msk_int, idma_int;
bool finalize = false;
bool sdio_int = false;
irqreturn_t ret = IRQ_HANDLED;
spin_lock(&host->lock);
idma_int = mmc_readl(host, REG_IDST);
msk_int = mmc_readl(host, REG_MISTA);
dev_dbg(mmc_dev(host->mmc), "irq: rq %p mi %08x idi %08x\n",
host->mrq, msk_int, idma_int);
mrq = host->mrq;
if (mrq) {
if (idma_int & SDXC_IDMAC_RECEIVE_INTERRUPT)
host->wait_dma = false;
host->int_sum |= msk_int;
/* Wait for COMMAND_DONE on RESPONSE_TIMEOUT before finalize */
if ((host->int_sum & SDXC_RESP_TIMEOUT) &&
!(host->int_sum & SDXC_COMMAND_DONE))
mmc_writel(host, REG_IMASK,
host->sdio_imask | SDXC_COMMAND_DONE);
/* Don't wait for dma on error */
else if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT)
finalize = true;
else if ((host->int_sum & SDXC_INTERRUPT_DONE_BIT) &&
!host->wait_dma)
finalize = true;
}
if (msk_int & SDXC_SDIO_INTERRUPT)
sdio_int = true;
mmc_writel(host, REG_RINTR, msk_int);
mmc_writel(host, REG_IDST, idma_int);
if (finalize)
ret = sunxi_mmc_finalize_request(host);
spin_unlock(&host->lock);
if (finalize && ret == IRQ_HANDLED)
mmc_request_done(host->mmc, mrq);
if (sdio_int)
mmc_signal_sdio_irq(host->mmc);
return ret;
}
static irqreturn_t sunxi_mmc_handle_manual_stop(int irq, void *dev_id)
{
struct sunxi_mmc_host *host = dev_id;
struct mmc_request *mrq;
unsigned long iflags;
spin_lock_irqsave(&host->lock, iflags);
mrq = host->manual_stop_mrq;
spin_unlock_irqrestore(&host->lock, iflags);
if (!mrq) {
dev_err(mmc_dev(host->mmc), "no request for manual stop\n");
return IRQ_HANDLED;
}
dev_err(mmc_dev(host->mmc), "data error, sending stop command\n");
/*
* We will never have more than one outstanding request,
* and we do not complete the request until after
* we've cleared host->manual_stop_mrq so we do not need to
* spin lock this function.
* Additionally we have wait states within this function
* so having it in a lock is a very bad idea.
*/
sunxi_mmc_send_manual_stop(host, mrq);
spin_lock_irqsave(&host->lock, iflags);
host->manual_stop_mrq = NULL;
spin_unlock_irqrestore(&host->lock, iflags);
mmc_request_done(host->mmc, mrq);
return IRQ_HANDLED;
}
static int sunxi_mmc_oclk_onoff(struct sunxi_mmc_host *host, u32 oclk_en)
{
unsigned long expire = jiffies + msecs_to_jiffies(750);
u32 rval;
dev_dbg(mmc_dev(host->mmc), "%sabling the clock\n",
oclk_en ? "en" : "dis");
rval = mmc_readl(host, REG_CLKCR);
rval &= ~(SDXC_CARD_CLOCK_ON | SDXC_LOW_POWER_ON | SDXC_MASK_DATA0);
if (oclk_en)
rval |= SDXC_CARD_CLOCK_ON;
if (host->cfg->mask_data0)
rval |= SDXC_MASK_DATA0;
mmc_writel(host, REG_CLKCR, rval);
rval = SDXC_START | SDXC_UPCLK_ONLY | SDXC_WAIT_PRE_OVER;
mmc_writel(host, REG_CMDR, rval);
do {
rval = mmc_readl(host, REG_CMDR);
} while (time_before(jiffies, expire) && (rval & SDXC_START));
/* clear irq status bits set by the command */
mmc_writel(host, REG_RINTR,
mmc_readl(host, REG_RINTR) & ~SDXC_SDIO_INTERRUPT);
if (rval & SDXC_START) {
dev_err(mmc_dev(host->mmc), "fatal err update clk timeout\n");
return -EIO;
}
if (host->cfg->mask_data0) {
rval = mmc_readl(host, REG_CLKCR);
mmc_writel(host, REG_CLKCR, rval & ~SDXC_MASK_DATA0);
}
return 0;
}
static int sunxi_mmc_calibrate(struct sunxi_mmc_host *host, int reg_off)
{
if (!host->cfg->can_calibrate)
return 0;
/*
* FIXME:
* This is not clear how the calibration is supposed to work
* yet. The best rate have been obtained by simply setting the
* delay to 0, as Allwinner does in its BSP.
*
* The only mode that doesn't have such a delay is HS400, that
* is in itself a TODO.
*/
writel(SDXC_CAL_DL_SW_EN, host->reg_base + reg_off);
return 0;
}
static int sunxi_mmc_clk_set_phase(struct sunxi_mmc_host *host,
struct mmc_ios *ios, u32 rate)
{
int index;
/* clk controller delays not used under new timings mode */
if (host->use_new_timings)
return 0;
/* some old controllers don't support delays */
if (!host->cfg->clk_delays)
return 0;
/* determine delays */
if (rate <= 400000) {
index = SDXC_CLK_400K;
} else if (rate <= 25000000) {
index = SDXC_CLK_25M;
} else if (rate <= 52000000) {
if (ios->timing != MMC_TIMING_UHS_DDR50 &&
ios->timing != MMC_TIMING_MMC_DDR52) {
index = SDXC_CLK_50M;
} else if (ios->bus_width == MMC_BUS_WIDTH_8) {
index = SDXC_CLK_50M_DDR_8BIT;
} else {
index = SDXC_CLK_50M_DDR;
}
} else {
dev_dbg(mmc_dev(host->mmc), "Invalid clock... returning\n");
return -EINVAL;
}
clk_set_phase(host->clk_sample, host->cfg->clk_delays[index].sample);
clk_set_phase(host->clk_output, host->cfg->clk_delays[index].output);
return 0;
}
static int sunxi_mmc_clk_set_rate(struct sunxi_mmc_host *host,
struct mmc_ios *ios)
{
struct mmc_host *mmc = host->mmc;
long rate;
u32 rval, clock = ios->clock, div = 1;
int ret;
ret = sunxi_mmc_oclk_onoff(host, 0);
if (ret)
return ret;
/* Our clock is gated now */
mmc->actual_clock = 0;
if (!ios->clock)
return 0;
/*
* Under the old timing mode, 8 bit DDR requires the module
* clock to be double the card clock. Under the new timing
* mode, all DDR modes require a doubled module clock.
*
* We currently only support the standard MMC DDR52 mode.
* This block should be updated once support for other DDR
* modes is added.
*/
if (ios->timing == MMC_TIMING_MMC_DDR52 &&
(host->use_new_timings ||
ios->bus_width == MMC_BUS_WIDTH_8)) {
div = 2;
clock <<= 1;
}
if (host->use_new_timings && host->cfg->ccu_has_timings_switch) {
ret = sunxi_ccu_set_mmc_timing_mode(host->clk_mmc, true);
if (ret) {
dev_err(mmc_dev(mmc),
"error setting new timing mode\n");
return ret;
}
}
rate = clk_round_rate(host->clk_mmc, clock);
if (rate < 0) {
dev_err(mmc_dev(mmc), "error rounding clk to %d: %ld\n",
clock, rate);
return rate;
}
dev_dbg(mmc_dev(mmc), "setting clk to %d, rounded %ld\n",
clock, rate);
/* setting clock rate */
ret = clk_set_rate(host->clk_mmc, rate);
if (ret) {
dev_err(mmc_dev(mmc), "error setting clk to %ld: %d\n",
rate, ret);
return ret;
}
/* set internal divider */
rval = mmc_readl(host, REG_CLKCR);
rval &= ~0xff;
rval |= div - 1;
mmc_writel(host, REG_CLKCR, rval);
/* update card clock rate to account for internal divider */
rate /= div;
/*
* Configure the controller to use the new timing mode if needed.
* On controllers that only support the new timing mode, such as
* the eMMC controller on the A64, this register does not exist,
* and any writes to it are ignored.
*/
if (host->use_new_timings) {
/* Don't touch the delay bits */
rval = mmc_readl(host, REG_SD_NTSR);
rval |= SDXC_2X_TIMING_MODE;
mmc_writel(host, REG_SD_NTSR, rval);
}
/* sunxi_mmc_clk_set_phase expects the actual card clock rate */
ret = sunxi_mmc_clk_set_phase(host, ios, rate);
if (ret)
return ret;
ret = sunxi_mmc_calibrate(host, SDXC_REG_SAMP_DL_REG);
if (ret)
return ret;
/*
* FIXME:
*
* In HS400 we'll also need to calibrate the data strobe
* signal. This should only happen on the MMC2 controller (at
* least on the A64).
*/
ret = sunxi_mmc_oclk_onoff(host, 1);
if (ret)
return ret;
/* And we just enabled our clock back */
mmc->actual_clock = rate;
return 0;
}
static void sunxi_mmc_set_bus_width(struct sunxi_mmc_host *host,
unsigned char width)
{
switch (width) {
case MMC_BUS_WIDTH_1:
mmc_writel(host, REG_WIDTH, SDXC_WIDTH1);
break;
case MMC_BUS_WIDTH_4:
mmc_writel(host, REG_WIDTH, SDXC_WIDTH4);
break;
case MMC_BUS_WIDTH_8:
mmc_writel(host, REG_WIDTH, SDXC_WIDTH8);
break;
}
}
static void sunxi_mmc_set_clk(struct sunxi_mmc_host *host, struct mmc_ios *ios)
{
u32 rval;
/* set ddr mode */
rval = mmc_readl(host, REG_GCTRL);
if (ios->timing == MMC_TIMING_UHS_DDR50 ||
ios->timing == MMC_TIMING_MMC_DDR52)
rval |= SDXC_DDR_MODE;
else
rval &= ~SDXC_DDR_MODE;
mmc_writel(host, REG_GCTRL, rval);
host->ferror = sunxi_mmc_clk_set_rate(host, ios);
/* Android code had a usleep_range(50000, 55000); here */
}
static void sunxi_mmc_card_power(struct sunxi_mmc_host *host,
struct mmc_ios *ios)
{
struct mmc_host *mmc = host->mmc;
switch (ios->power_mode) {
case MMC_POWER_UP:
dev_dbg(mmc_dev(mmc), "Powering card up\n");
if (!IS_ERR(mmc->supply.vmmc)) {
host->ferror = mmc_regulator_set_ocr(mmc,
mmc->supply.vmmc,
ios->vdd);
if (host->ferror)
return;
}
if (!IS_ERR(mmc->supply.vqmmc)) {
host->ferror = regulator_enable(mmc->supply.vqmmc);
if (host->ferror) {
dev_err(mmc_dev(mmc),
"failed to enable vqmmc\n");
return;
}
host->vqmmc_enabled = true;
}
break;
case MMC_POWER_OFF:
dev_dbg(mmc_dev(mmc), "Powering card off\n");
if (!IS_ERR(mmc->supply.vmmc))
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled)
regulator_disable(mmc->supply.vqmmc);
host->vqmmc_enabled = false;
break;
default:
dev_dbg(mmc_dev(mmc), "Ignoring unknown card power state\n");
break;
}
}
static void sunxi_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct sunxi_mmc_host *host = mmc_priv(mmc);
sunxi_mmc_card_power(host, ios);
sunxi_mmc_set_bus_width(host, ios->bus_width);
sunxi_mmc_set_clk(host, ios);
}
static int sunxi_mmc_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
{
int ret;
/* vqmmc regulator is available */
if (!IS_ERR(mmc->supply.vqmmc)) {
ret = mmc_regulator_set_vqmmc(mmc, ios);
return ret < 0 ? ret : 0;
}
/* no vqmmc regulator, assume fixed regulator at 3/3.3V */
if (mmc->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330)
return 0;
return -EINVAL;
}
static void sunxi_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
{
struct sunxi_mmc_host *host = mmc_priv(mmc);
unsigned long flags;
u32 imask;
if (enable)
pm_runtime_get_noresume(host->dev);
spin_lock_irqsave(&host->lock, flags);
imask = mmc_readl(host, REG_IMASK);
if (enable) {
host->sdio_imask = SDXC_SDIO_INTERRUPT;
imask |= SDXC_SDIO_INTERRUPT;
} else {
host->sdio_imask = 0;
imask &= ~SDXC_SDIO_INTERRUPT;
}
mmc_writel(host, REG_IMASK, imask);
spin_unlock_irqrestore(&host->lock, flags);
if (!enable)
pm_runtime_put_noidle(host->mmc->parent);
}
static void sunxi_mmc_hw_reset(struct mmc_host *mmc)
{
struct sunxi_mmc_host *host = mmc_priv(mmc);
mmc_writel(host, REG_HWRST, 0);
udelay(10);
mmc_writel(host, REG_HWRST, 1);
udelay(300);
}
static void sunxi_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct sunxi_mmc_host *host = mmc_priv(mmc);
struct mmc_command *cmd = mrq->cmd;
struct mmc_data *data = mrq->data;
unsigned long iflags;
u32 imask = SDXC_INTERRUPT_ERROR_BIT;
u32 cmd_val = SDXC_START | (cmd->opcode & 0x3f);
bool wait_dma = host->wait_dma;
int ret;
/* Check for set_ios errors (should never happen) */
if (host->ferror) {
mrq->cmd->error = host->ferror;
mmc_request_done(mmc, mrq);
return;
}
if (data) {
ret = sunxi_mmc_map_dma(host, data);
if (ret < 0) {
dev_err(mmc_dev(mmc), "map DMA failed\n");
cmd->error = ret;
data->error = ret;
mmc_request_done(mmc, mrq);
return;
}
}
if (cmd->opcode == MMC_GO_IDLE_STATE) {
cmd_val |= SDXC_SEND_INIT_SEQUENCE;
imask |= SDXC_COMMAND_DONE;
}
if (cmd->flags & MMC_RSP_PRESENT) {
cmd_val |= SDXC_RESP_EXPIRE;
if (cmd->flags & MMC_RSP_136)
cmd_val |= SDXC_LONG_RESPONSE;
if (cmd->flags & MMC_RSP_CRC)
cmd_val |= SDXC_CHECK_RESPONSE_CRC;
if ((cmd->flags & MMC_CMD_MASK) == MMC_CMD_ADTC) {
cmd_val |= SDXC_DATA_EXPIRE | SDXC_WAIT_PRE_OVER;
if (cmd->data->stop) {
imask |= SDXC_AUTO_COMMAND_DONE;
cmd_val |= SDXC_SEND_AUTO_STOP;
} else {
imask |= SDXC_DATA_OVER;
}
if (cmd->data->flags & MMC_DATA_WRITE)
cmd_val |= SDXC_WRITE;
else
wait_dma = true;
} else {
imask |= SDXC_COMMAND_DONE;
}
} else {
imask |= SDXC_COMMAND_DONE;
}
dev_dbg(mmc_dev(mmc), "cmd %d(%08x) arg %x ie 0x%08x len %d\n",
cmd_val & 0x3f, cmd_val, cmd->arg, imask,
mrq->data ? mrq->data->blksz * mrq->data->blocks : 0);
spin_lock_irqsave(&host->lock, iflags);
if (host->mrq || host->manual_stop_mrq) {
spin_unlock_irqrestore(&host->lock, iflags);
if (data)
dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
mmc_get_dma_dir(data));
dev_err(mmc_dev(mmc), "request already pending\n");
mrq->cmd->error = -EBUSY;
mmc_request_done(mmc, mrq);
return;
}
if (data) {
mmc_writel(host, REG_BLKSZ, data->blksz);
mmc_writel(host, REG_BCNTR, data->blksz * data->blocks);
sunxi_mmc_start_dma(host, data);
}
host->mrq = mrq;
host->wait_dma = wait_dma;
mmc_writel(host, REG_IMASK, host->sdio_imask | imask);
mmc_writel(host, REG_CARG, cmd->arg);
mmc_writel(host, REG_CMDR, cmd_val);
spin_unlock_irqrestore(&host->lock, iflags);
}
static int sunxi_mmc_card_busy(struct mmc_host *mmc)
{
struct sunxi_mmc_host *host = mmc_priv(mmc);
return !!(mmc_readl(host, REG_STAS) & SDXC_CARD_DATA_BUSY);
}
static const struct mmc_host_ops sunxi_mmc_ops = {
.request = sunxi_mmc_request,
.set_ios = sunxi_mmc_set_ios,
.get_ro = mmc_gpio_get_ro,
.get_cd = mmc_gpio_get_cd,
.enable_sdio_irq = sunxi_mmc_enable_sdio_irq,
.start_signal_voltage_switch = sunxi_mmc_volt_switch,
.hw_reset = sunxi_mmc_hw_reset,
.card_busy = sunxi_mmc_card_busy,
};
static const struct sunxi_mmc_clk_delay sunxi_mmc_clk_delays[] = {
[SDXC_CLK_400K] = { .output = 180, .sample = 180 },
[SDXC_CLK_25M] = { .output = 180, .sample = 75 },
[SDXC_CLK_50M] = { .output = 90, .sample = 120 },
[SDXC_CLK_50M_DDR] = { .output = 60, .sample = 120 },
/* Value from A83T "new timing mode". Works but might not be right. */
[SDXC_CLK_50M_DDR_8BIT] = { .output = 90, .sample = 180 },
};
static const struct sunxi_mmc_clk_delay sun9i_mmc_clk_delays[] = {
[SDXC_CLK_400K] = { .output = 180, .sample = 180 },
[SDXC_CLK_25M] = { .output = 180, .sample = 75 },
[SDXC_CLK_50M] = { .output = 150, .sample = 120 },
[SDXC_CLK_50M_DDR] = { .output = 54, .sample = 36 },
[SDXC_CLK_50M_DDR_8BIT] = { .output = 72, .sample = 72 },
};
static const struct sunxi_mmc_cfg sun4i_a10_cfg = {
.idma_des_size_bits = 13,
.clk_delays = NULL,
.can_calibrate = false,
};
static const struct sunxi_mmc_cfg sun5i_a13_cfg = {
.idma_des_size_bits = 16,
.clk_delays = NULL,
.can_calibrate = false,
};
static const struct sunxi_mmc_cfg sun7i_a20_cfg = {
.idma_des_size_bits = 16,
.clk_delays = sunxi_mmc_clk_delays,
.can_calibrate = false,
};
static const struct sunxi_mmc_cfg sun8i_a83t_emmc_cfg = {
.idma_des_size_bits = 16,
.clk_delays = sunxi_mmc_clk_delays,
.can_calibrate = false,
.ccu_has_timings_switch = true,
};
static const struct sunxi_mmc_cfg sun9i_a80_cfg = {
.idma_des_size_bits = 16,
.clk_delays = sun9i_mmc_clk_delays,
.can_calibrate = false,
};
static const struct sunxi_mmc_cfg sun50i_a64_cfg = {
.idma_des_size_bits = 16,
.clk_delays = NULL,
.can_calibrate = true,
.mask_data0 = true,
.needs_new_timings = true,
};
static const struct sunxi_mmc_cfg sun50i_a64_emmc_cfg = {
.idma_des_size_bits = 13,
.clk_delays = NULL,
.can_calibrate = true,
.needs_new_timings = true,
};
static const struct of_device_id sunxi_mmc_of_match[] = {
{ .compatible = "allwinner,sun4i-a10-mmc", .data = &sun4i_a10_cfg },
{ .compatible = "allwinner,sun5i-a13-mmc", .data = &sun5i_a13_cfg },
{ .compatible = "allwinner,sun7i-a20-mmc", .data = &sun7i_a20_cfg },
{ .compatible = "allwinner,sun8i-a83t-emmc", .data = &sun8i_a83t_emmc_cfg },
{ .compatible = "allwinner,sun9i-a80-mmc", .data = &sun9i_a80_cfg },
{ .compatible = "allwinner,sun50i-a64-mmc", .data = &sun50i_a64_cfg },
{ .compatible = "allwinner,sun50i-a64-emmc", .data = &sun50i_a64_emmc_cfg },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sunxi_mmc_of_match);
static int sunxi_mmc_enable(struct sunxi_mmc_host *host)
{
int ret;
if (!IS_ERR(host->reset)) {
ret = reset_control_reset(host->reset);
if (ret) {
dev_err(host->dev, "Couldn't reset the MMC controller (%d)\n",
ret);
return ret;
}
}
ret = clk_prepare_enable(host->clk_ahb);
if (ret) {
dev_err(host->dev, "Couldn't enable the bus clocks (%d)\n", ret);
goto error_assert_reset;
}
ret = clk_prepare_enable(host->clk_mmc);
if (ret) {
dev_err(host->dev, "Enable mmc clk err %d\n", ret);
goto error_disable_clk_ahb;
}
ret = clk_prepare_enable(host->clk_output);
if (ret) {
dev_err(host->dev, "Enable output clk err %d\n", ret);
goto error_disable_clk_mmc;
}
ret = clk_prepare_enable(host->clk_sample);
if (ret) {
dev_err(host->dev, "Enable sample clk err %d\n", ret);
goto error_disable_clk_output;
}
/*
* Sometimes the controller asserts the irq on boot for some reason,
* make sure the controller is in a sane state before enabling irqs.
*/
ret = sunxi_mmc_reset_host(host);
if (ret)
goto error_disable_clk_sample;
return 0;
error_disable_clk_sample:
clk_disable_unprepare(host->clk_sample);
error_disable_clk_output:
clk_disable_unprepare(host->clk_output);
error_disable_clk_mmc:
clk_disable_unprepare(host->clk_mmc);
error_disable_clk_ahb:
clk_disable_unprepare(host->clk_ahb);
error_assert_reset:
if (!IS_ERR(host->reset))
reset_control_assert(host->reset);
return ret;
}
static void sunxi_mmc_disable(struct sunxi_mmc_host *host)
{
sunxi_mmc_reset_host(host);
clk_disable_unprepare(host->clk_sample);
clk_disable_unprepare(host->clk_output);
clk_disable_unprepare(host->clk_mmc);
clk_disable_unprepare(host->clk_ahb);
if (!IS_ERR(host->reset))
reset_control_assert(host->reset);
}
static int sunxi_mmc_resource_request(struct sunxi_mmc_host *host,
struct platform_device *pdev)
{
int ret;
host->cfg = of_device_get_match_data(&pdev->dev);
if (!host->cfg)
return -EINVAL;
ret = mmc_regulator_get_supply(host->mmc);
if (ret)
return ret;
host->reg_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(host->reg_base))
return PTR_ERR(host->reg_base);
host->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
if (IS_ERR(host->clk_ahb)) {
dev_err(&pdev->dev, "Could not get ahb clock\n");
return PTR_ERR(host->clk_ahb);
}
host->clk_mmc = devm_clk_get(&pdev->dev, "mmc");
if (IS_ERR(host->clk_mmc)) {
dev_err(&pdev->dev, "Could not get mmc clock\n");
return PTR_ERR(host->clk_mmc);
}
if (host->cfg->clk_delays) {
host->clk_output = devm_clk_get(&pdev->dev, "output");
if (IS_ERR(host->clk_output)) {
dev_err(&pdev->dev, "Could not get output clock\n");
return PTR_ERR(host->clk_output);
}
host->clk_sample = devm_clk_get(&pdev->dev, "sample");
if (IS_ERR(host->clk_sample)) {
dev_err(&pdev->dev, "Could not get sample clock\n");
return PTR_ERR(host->clk_sample);
}
}
host->reset = devm_reset_control_get_optional_exclusive(&pdev->dev,
"ahb");
if (PTR_ERR(host->reset) == -EPROBE_DEFER)
return PTR_ERR(host->reset);
ret = sunxi_mmc_enable(host);
if (ret)
return ret;
host->irq = platform_get_irq(pdev, 0);
if (host->irq <= 0) {
ret = -EINVAL;
goto error_disable_mmc;
}
return devm_request_threaded_irq(&pdev->dev, host->irq, sunxi_mmc_irq,
sunxi_mmc_handle_manual_stop, 0, "sunxi-mmc", host);
error_disable_mmc:
sunxi_mmc_disable(host);
return ret;
}
static int sunxi_mmc_probe(struct platform_device *pdev)
{
struct sunxi_mmc_host *host;
struct mmc_host *mmc;
int ret;
mmc = mmc_alloc_host(sizeof(struct sunxi_mmc_host), &pdev->dev);
if (!mmc) {
dev_err(&pdev->dev, "mmc alloc host failed\n");
return -ENOMEM;
}
platform_set_drvdata(pdev, mmc);
host = mmc_priv(mmc);
host->dev = &pdev->dev;
host->mmc = mmc;
spin_lock_init(&host->lock);
ret = sunxi_mmc_resource_request(host, pdev);
if (ret)
goto error_free_host;
host->sg_cpu = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
&host->sg_dma, GFP_KERNEL);
if (!host->sg_cpu) {
dev_err(&pdev->dev, "Failed to allocate DMA descriptor mem\n");
ret = -ENOMEM;
goto error_free_host;
}
if (host->cfg->ccu_has_timings_switch) {
/*
* Supports both old and new timing modes.
* Try setting the clk to new timing mode.
*/
sunxi_ccu_set_mmc_timing_mode(host->clk_mmc, true);
/* And check the result */
ret = sunxi_ccu_get_mmc_timing_mode(host->clk_mmc);
if (ret < 0) {
/*
* For whatever reason we were not able to get
* the current active mode. Default to old mode.
*/
dev_warn(&pdev->dev, "MMC clk timing mode unknown\n");
host->use_new_timings = false;
} else {
host->use_new_timings = !!ret;
}
} else if (host->cfg->needs_new_timings) {
/* Supports new timing mode only */
host->use_new_timings = true;
}
mmc->ops = &sunxi_mmc_ops;
mmc->max_blk_count = 8192;
mmc->max_blk_size = 4096;
mmc->max_segs = PAGE_SIZE / sizeof(struct sunxi_idma_des);
mmc->max_seg_size = (1 << host->cfg->idma_des_size_bits);
mmc->max_req_size = mmc->max_seg_size * mmc->max_segs;
/* 400kHz ~ 52MHz */
mmc->f_min = 400000;
mmc->f_max = 52000000;
mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
MMC_CAP_SDIO_IRQ;
/*
* Some H5 devices do not have signal traces precise enough to
* use HS DDR mode for their eMMC chips.
*
* We still enable HS DDR modes for all the other controller
* variants that support them.
*/
if ((host->cfg->clk_delays || host->use_new_timings) &&
!of_device_is_compatible(pdev->dev.of_node,
"allwinner,sun50i-h5-emmc"))
mmc->caps |= MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR;
ret = mmc_of_parse(mmc);
if (ret)
goto error_free_dma;
/*
* If we don't support delay chains in the SoC, we can't use any
* of the higher speed modes. Mask them out in case the device
* tree specifies the properties for them, which gets added to
* the caps by mmc_of_parse() above.
*/
if (!(host->cfg->clk_delays || host->use_new_timings)) {
mmc->caps &= ~(MMC_CAP_3_3V_DDR | MMC_CAP_1_8V_DDR |
MMC_CAP_1_2V_DDR | MMC_CAP_UHS);
mmc->caps2 &= ~MMC_CAP2_HS200;
}
/* TODO: This driver doesn't support HS400 mode yet */
mmc->caps2 &= ~MMC_CAP2_HS400;
ret = sunxi_mmc_init_host(host);
if (ret)
goto error_free_dma;
pm_runtime_set_active(&pdev->dev);
pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_enable(&pdev->dev);
ret = mmc_add_host(mmc);
if (ret)
goto error_free_dma;
dev_info(&pdev->dev, "initialized, max. request size: %u KB%s\n",
mmc->max_req_size >> 10,
host->use_new_timings ? ", uses new timings mode" : "");
return 0;
error_free_dma:
dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
error_free_host:
mmc_free_host(mmc);
return ret;
}
static int sunxi_mmc_remove(struct platform_device *pdev)
{
struct mmc_host *mmc = platform_get_drvdata(pdev);
struct sunxi_mmc_host *host = mmc_priv(mmc);
mmc_remove_host(mmc);
pm_runtime_force_suspend(&pdev->dev);
disable_irq(host->irq);
sunxi_mmc_disable(host);
dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
mmc_free_host(mmc);
return 0;
}
#ifdef CONFIG_PM
static int sunxi_mmc_runtime_resume(struct device *dev)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct sunxi_mmc_host *host = mmc_priv(mmc);
int ret;
ret = sunxi_mmc_enable(host);
if (ret)
return ret;
sunxi_mmc_init_host(host);
sunxi_mmc_set_bus_width(host, mmc->ios.bus_width);
sunxi_mmc_set_clk(host, &mmc->ios);
enable_irq(host->irq);
return 0;
}
static int sunxi_mmc_runtime_suspend(struct device *dev)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct sunxi_mmc_host *host = mmc_priv(mmc);
/*
* When clocks are off, it's possible receiving
* fake interrupts, which will stall the system.
* Disabling the irq will prevent this.
*/
disable_irq(host->irq);
sunxi_mmc_reset_host(host);
sunxi_mmc_disable(host);
return 0;
}
#endif
static const struct dev_pm_ops sunxi_mmc_pm_ops = {
SET_RUNTIME_PM_OPS(sunxi_mmc_runtime_suspend,
sunxi_mmc_runtime_resume,
NULL)
};
static struct platform_driver sunxi_mmc_driver = {
.driver = {
.name = "sunxi-mmc",
.of_match_table = of_match_ptr(sunxi_mmc_of_match),
.pm = &sunxi_mmc_pm_ops,
},
.probe = sunxi_mmc_probe,
.remove = sunxi_mmc_remove,
};
module_platform_driver(sunxi_mmc_driver);
MODULE_DESCRIPTION("Allwinner's SD/MMC Card Controller Driver");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("David Lanzendörfer <david.lanzendoerfer@o2s.ch>");
MODULE_ALIAS("platform:sunxi-mmc");