OpenCloudOS-Kernel/drivers/iio/dac/ad5360.c

562 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Analog devices AD5360, AD5361, AD5362, AD5363, AD5370, AD5371, AD5373
* multi-channel Digital to Analog Converters driver
*
* Copyright 2011 Analog Devices Inc.
*/
#include <linux/device.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/spi/spi.h>
#include <linux/slab.h>
#include <linux/sysfs.h>
#include <linux/regulator/consumer.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#define AD5360_CMD(x) ((x) << 22)
#define AD5360_ADDR(x) ((x) << 16)
#define AD5360_READBACK_TYPE(x) ((x) << 13)
#define AD5360_READBACK_ADDR(x) ((x) << 7)
#define AD5360_CHAN_ADDR(chan) ((chan) + 0x8)
#define AD5360_CMD_WRITE_DATA 0x3
#define AD5360_CMD_WRITE_OFFSET 0x2
#define AD5360_CMD_WRITE_GAIN 0x1
#define AD5360_CMD_SPECIAL_FUNCTION 0x0
/* Special function register addresses */
#define AD5360_REG_SF_NOP 0x0
#define AD5360_REG_SF_CTRL 0x1
#define AD5360_REG_SF_OFS(x) (0x2 + (x))
#define AD5360_REG_SF_READBACK 0x5
#define AD5360_SF_CTRL_PWR_DOWN BIT(0)
#define AD5360_READBACK_X1A 0x0
#define AD5360_READBACK_X1B 0x1
#define AD5360_READBACK_OFFSET 0x2
#define AD5360_READBACK_GAIN 0x3
#define AD5360_READBACK_SF 0x4
/**
* struct ad5360_chip_info - chip specific information
* @channel_template: channel specification template
* @num_channels: number of channels
* @channels_per_group: number of channels per group
* @num_vrefs: number of vref supplies for the chip
*/
struct ad5360_chip_info {
struct iio_chan_spec channel_template;
unsigned int num_channels;
unsigned int channels_per_group;
unsigned int num_vrefs;
};
/**
* struct ad5360_state - driver instance specific data
* @spi: spi_device
* @chip_info: chip model specific constants, available modes etc
* @vref_reg: vref supply regulators
* @ctrl: control register cache
* @lock: lock to protect the data buffer during SPI ops
* @data: spi transfer buffers
*/
struct ad5360_state {
struct spi_device *spi;
const struct ad5360_chip_info *chip_info;
struct regulator_bulk_data vref_reg[3];
unsigned int ctrl;
struct mutex lock;
/*
* DMA (thus cache coherency maintenance) may require the
* transfer buffers to live in their own cache lines.
*/
union {
__be32 d32;
u8 d8[4];
} data[2] __aligned(IIO_DMA_MINALIGN);
};
enum ad5360_type {
ID_AD5360,
ID_AD5361,
ID_AD5362,
ID_AD5363,
ID_AD5370,
ID_AD5371,
ID_AD5372,
ID_AD5373,
};
#define AD5360_CHANNEL(bits) { \
.type = IIO_VOLTAGE, \
.indexed = 1, \
.output = 1, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_OFFSET) | \
BIT(IIO_CHAN_INFO_CALIBSCALE) | \
BIT(IIO_CHAN_INFO_CALIBBIAS), \
.scan_type = { \
.sign = 'u', \
.realbits = (bits), \
.storagebits = 16, \
.shift = 16 - (bits), \
}, \
}
static const struct ad5360_chip_info ad5360_chip_info_tbl[] = {
[ID_AD5360] = {
.channel_template = AD5360_CHANNEL(16),
.num_channels = 16,
.channels_per_group = 8,
.num_vrefs = 2,
},
[ID_AD5361] = {
.channel_template = AD5360_CHANNEL(14),
.num_channels = 16,
.channels_per_group = 8,
.num_vrefs = 2,
},
[ID_AD5362] = {
.channel_template = AD5360_CHANNEL(16),
.num_channels = 8,
.channels_per_group = 4,
.num_vrefs = 2,
},
[ID_AD5363] = {
.channel_template = AD5360_CHANNEL(14),
.num_channels = 8,
.channels_per_group = 4,
.num_vrefs = 2,
},
[ID_AD5370] = {
.channel_template = AD5360_CHANNEL(16),
.num_channels = 40,
.channels_per_group = 8,
.num_vrefs = 2,
},
[ID_AD5371] = {
.channel_template = AD5360_CHANNEL(14),
.num_channels = 40,
.channels_per_group = 8,
.num_vrefs = 3,
},
[ID_AD5372] = {
.channel_template = AD5360_CHANNEL(16),
.num_channels = 32,
.channels_per_group = 8,
.num_vrefs = 2,
},
[ID_AD5373] = {
.channel_template = AD5360_CHANNEL(14),
.num_channels = 32,
.channels_per_group = 8,
.num_vrefs = 2,
},
};
static unsigned int ad5360_get_channel_vref_index(struct ad5360_state *st,
unsigned int channel)
{
unsigned int i;
/* The first groups have their own vref, while the remaining groups
* share the last vref */
i = channel / st->chip_info->channels_per_group;
if (i >= st->chip_info->num_vrefs)
i = st->chip_info->num_vrefs - 1;
return i;
}
static int ad5360_get_channel_vref(struct ad5360_state *st,
unsigned int channel)
{
unsigned int i = ad5360_get_channel_vref_index(st, channel);
return regulator_get_voltage(st->vref_reg[i].consumer);
}
static int ad5360_write_unlocked(struct iio_dev *indio_dev,
unsigned int cmd, unsigned int addr, unsigned int val,
unsigned int shift)
{
struct ad5360_state *st = iio_priv(indio_dev);
val <<= shift;
val |= AD5360_CMD(cmd) | AD5360_ADDR(addr);
st->data[0].d32 = cpu_to_be32(val);
return spi_write(st->spi, &st->data[0].d8[1], 3);
}
static int ad5360_write(struct iio_dev *indio_dev, unsigned int cmd,
unsigned int addr, unsigned int val, unsigned int shift)
{
int ret;
struct ad5360_state *st = iio_priv(indio_dev);
mutex_lock(&st->lock);
ret = ad5360_write_unlocked(indio_dev, cmd, addr, val, shift);
mutex_unlock(&st->lock);
return ret;
}
static int ad5360_read(struct iio_dev *indio_dev, unsigned int type,
unsigned int addr)
{
struct ad5360_state *st = iio_priv(indio_dev);
int ret;
struct spi_transfer t[] = {
{
.tx_buf = &st->data[0].d8[1],
.len = 3,
.cs_change = 1,
}, {
.rx_buf = &st->data[1].d8[1],
.len = 3,
},
};
mutex_lock(&st->lock);
st->data[0].d32 = cpu_to_be32(AD5360_CMD(AD5360_CMD_SPECIAL_FUNCTION) |
AD5360_ADDR(AD5360_REG_SF_READBACK) |
AD5360_READBACK_TYPE(type) |
AD5360_READBACK_ADDR(addr));
ret = spi_sync_transfer(st->spi, t, ARRAY_SIZE(t));
if (ret >= 0)
ret = be32_to_cpu(st->data[1].d32) & 0xffff;
mutex_unlock(&st->lock);
return ret;
}
static ssize_t ad5360_read_dac_powerdown(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct ad5360_state *st = iio_priv(indio_dev);
return sysfs_emit(buf, "%d\n", (bool)(st->ctrl & AD5360_SF_CTRL_PWR_DOWN));
}
static int ad5360_update_ctrl(struct iio_dev *indio_dev, unsigned int set,
unsigned int clr)
{
struct ad5360_state *st = iio_priv(indio_dev);
unsigned int ret;
mutex_lock(&st->lock);
st->ctrl |= set;
st->ctrl &= ~clr;
ret = ad5360_write_unlocked(indio_dev, AD5360_CMD_SPECIAL_FUNCTION,
AD5360_REG_SF_CTRL, st->ctrl, 0);
mutex_unlock(&st->lock);
return ret;
}
static ssize_t ad5360_write_dac_powerdown(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
bool pwr_down;
int ret;
ret = kstrtobool(buf, &pwr_down);
if (ret)
return ret;
if (pwr_down)
ret = ad5360_update_ctrl(indio_dev, AD5360_SF_CTRL_PWR_DOWN, 0);
else
ret = ad5360_update_ctrl(indio_dev, 0, AD5360_SF_CTRL_PWR_DOWN);
return ret ? ret : len;
}
static IIO_DEVICE_ATTR(out_voltage_powerdown,
S_IRUGO | S_IWUSR,
ad5360_read_dac_powerdown,
ad5360_write_dac_powerdown, 0);
static struct attribute *ad5360_attributes[] = {
&iio_dev_attr_out_voltage_powerdown.dev_attr.attr,
NULL,
};
static const struct attribute_group ad5360_attribute_group = {
.attrs = ad5360_attributes,
};
static int ad5360_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val,
int val2,
long mask)
{
struct ad5360_state *st = iio_priv(indio_dev);
int max_val = (1 << chan->scan_type.realbits);
unsigned int ofs_index;
switch (mask) {
case IIO_CHAN_INFO_RAW:
if (val >= max_val || val < 0)
return -EINVAL;
return ad5360_write(indio_dev, AD5360_CMD_WRITE_DATA,
chan->address, val, chan->scan_type.shift);
case IIO_CHAN_INFO_CALIBBIAS:
if (val >= max_val || val < 0)
return -EINVAL;
return ad5360_write(indio_dev, AD5360_CMD_WRITE_OFFSET,
chan->address, val, chan->scan_type.shift);
case IIO_CHAN_INFO_CALIBSCALE:
if (val >= max_val || val < 0)
return -EINVAL;
return ad5360_write(indio_dev, AD5360_CMD_WRITE_GAIN,
chan->address, val, chan->scan_type.shift);
case IIO_CHAN_INFO_OFFSET:
if (val <= -max_val || val > 0)
return -EINVAL;
val = -val;
/* offset is supposed to have the same scale as raw, but it
* is always 14bits wide, so on a chip where the raw value has
* more bits, we need to shift offset. */
val >>= (chan->scan_type.realbits - 14);
/* There is one DAC offset register per vref. Changing one
* channels offset will also change the offset for all other
* channels which share the same vref supply. */
ofs_index = ad5360_get_channel_vref_index(st, chan->channel);
return ad5360_write(indio_dev, AD5360_CMD_SPECIAL_FUNCTION,
AD5360_REG_SF_OFS(ofs_index), val, 0);
default:
break;
}
return -EINVAL;
}
static int ad5360_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val,
int *val2,
long m)
{
struct ad5360_state *st = iio_priv(indio_dev);
unsigned int ofs_index;
int scale_uv;
int ret;
switch (m) {
case IIO_CHAN_INFO_RAW:
ret = ad5360_read(indio_dev, AD5360_READBACK_X1A,
chan->address);
if (ret < 0)
return ret;
*val = ret >> chan->scan_type.shift;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
scale_uv = ad5360_get_channel_vref(st, chan->channel);
if (scale_uv < 0)
return scale_uv;
/* vout = 4 * vref * dac_code */
*val = scale_uv * 4 / 1000;
*val2 = chan->scan_type.realbits;
return IIO_VAL_FRACTIONAL_LOG2;
case IIO_CHAN_INFO_CALIBBIAS:
ret = ad5360_read(indio_dev, AD5360_READBACK_OFFSET,
chan->address);
if (ret < 0)
return ret;
*val = ret;
return IIO_VAL_INT;
case IIO_CHAN_INFO_CALIBSCALE:
ret = ad5360_read(indio_dev, AD5360_READBACK_GAIN,
chan->address);
if (ret < 0)
return ret;
*val = ret;
return IIO_VAL_INT;
case IIO_CHAN_INFO_OFFSET:
ofs_index = ad5360_get_channel_vref_index(st, chan->channel);
ret = ad5360_read(indio_dev, AD5360_READBACK_SF,
AD5360_REG_SF_OFS(ofs_index));
if (ret < 0)
return ret;
ret <<= (chan->scan_type.realbits - 14);
*val = -ret;
return IIO_VAL_INT;
}
return -EINVAL;
}
static const struct iio_info ad5360_info = {
.read_raw = ad5360_read_raw,
.write_raw = ad5360_write_raw,
.attrs = &ad5360_attribute_group,
};
static const char * const ad5360_vref_name[] = {
"vref0", "vref1", "vref2"
};
static int ad5360_alloc_channels(struct iio_dev *indio_dev)
{
struct ad5360_state *st = iio_priv(indio_dev);
struct iio_chan_spec *channels;
unsigned int i;
channels = kcalloc(st->chip_info->num_channels,
sizeof(struct iio_chan_spec), GFP_KERNEL);
if (!channels)
return -ENOMEM;
for (i = 0; i < st->chip_info->num_channels; ++i) {
channels[i] = st->chip_info->channel_template;
channels[i].channel = i;
channels[i].address = AD5360_CHAN_ADDR(i);
}
indio_dev->channels = channels;
return 0;
}
static int ad5360_probe(struct spi_device *spi)
{
enum ad5360_type type = spi_get_device_id(spi)->driver_data;
struct iio_dev *indio_dev;
struct ad5360_state *st;
unsigned int i;
int ret;
indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
if (indio_dev == NULL) {
dev_err(&spi->dev, "Failed to allocate iio device\n");
return -ENOMEM;
}
st = iio_priv(indio_dev);
spi_set_drvdata(spi, indio_dev);
st->chip_info = &ad5360_chip_info_tbl[type];
st->spi = spi;
indio_dev->name = spi_get_device_id(spi)->name;
indio_dev->info = &ad5360_info;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->num_channels = st->chip_info->num_channels;
mutex_init(&st->lock);
ret = ad5360_alloc_channels(indio_dev);
if (ret) {
dev_err(&spi->dev, "Failed to allocate channel spec: %d\n", ret);
return ret;
}
for (i = 0; i < st->chip_info->num_vrefs; ++i)
st->vref_reg[i].supply = ad5360_vref_name[i];
ret = devm_regulator_bulk_get(&st->spi->dev, st->chip_info->num_vrefs,
st->vref_reg);
if (ret) {
dev_err(&spi->dev, "Failed to request vref regulators: %d\n", ret);
goto error_free_channels;
}
ret = regulator_bulk_enable(st->chip_info->num_vrefs, st->vref_reg);
if (ret) {
dev_err(&spi->dev, "Failed to enable vref regulators: %d\n", ret);
goto error_free_channels;
}
ret = iio_device_register(indio_dev);
if (ret) {
dev_err(&spi->dev, "Failed to register iio device: %d\n", ret);
goto error_disable_reg;
}
return 0;
error_disable_reg:
regulator_bulk_disable(st->chip_info->num_vrefs, st->vref_reg);
error_free_channels:
kfree(indio_dev->channels);
return ret;
}
static void ad5360_remove(struct spi_device *spi)
{
struct iio_dev *indio_dev = spi_get_drvdata(spi);
struct ad5360_state *st = iio_priv(indio_dev);
iio_device_unregister(indio_dev);
kfree(indio_dev->channels);
regulator_bulk_disable(st->chip_info->num_vrefs, st->vref_reg);
}
static const struct spi_device_id ad5360_ids[] = {
{ "ad5360", ID_AD5360 },
{ "ad5361", ID_AD5361 },
{ "ad5362", ID_AD5362 },
{ "ad5363", ID_AD5363 },
{ "ad5370", ID_AD5370 },
{ "ad5371", ID_AD5371 },
{ "ad5372", ID_AD5372 },
{ "ad5373", ID_AD5373 },
{}
};
MODULE_DEVICE_TABLE(spi, ad5360_ids);
static struct spi_driver ad5360_driver = {
.driver = {
.name = "ad5360",
},
.probe = ad5360_probe,
.remove = ad5360_remove,
.id_table = ad5360_ids,
};
module_spi_driver(ad5360_driver);
MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
MODULE_DESCRIPTION("Analog Devices AD5360/61/62/63/70/71/72/73 DAC");
MODULE_LICENSE("GPL v2");