OpenCloudOS-Kernel/drivers/net/ethernet/amazon/ena/ena_netdev.c

3864 lines
102 KiB
C

/*
* Copyright 2015 Amazon.com, Inc. or its affiliates.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#ifdef CONFIG_RFS_ACCEL
#include <linux/cpu_rmap.h>
#endif /* CONFIG_RFS_ACCEL */
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/numa.h>
#include <linux/pci.h>
#include <linux/utsname.h>
#include <linux/version.h>
#include <linux/vmalloc.h>
#include <net/ip.h>
#include "ena_netdev.h"
#include "ena_pci_id_tbl.h"
static char version[] = DEVICE_NAME " v" DRV_MODULE_VERSION "\n";
MODULE_AUTHOR("Amazon.com, Inc. or its affiliates");
MODULE_DESCRIPTION(DEVICE_NAME);
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_MODULE_VERSION);
/* Time in jiffies before concluding the transmitter is hung. */
#define TX_TIMEOUT (5 * HZ)
#define ENA_NAPI_BUDGET 64
#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_IFUP | \
NETIF_MSG_TX_DONE | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR)
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
static struct ena_aenq_handlers aenq_handlers;
static struct workqueue_struct *ena_wq;
MODULE_DEVICE_TABLE(pci, ena_pci_tbl);
static int ena_rss_init_default(struct ena_adapter *adapter);
static void check_for_admin_com_state(struct ena_adapter *adapter);
static void ena_destroy_device(struct ena_adapter *adapter, bool graceful);
static int ena_restore_device(struct ena_adapter *adapter);
static void ena_tx_timeout(struct net_device *dev)
{
struct ena_adapter *adapter = netdev_priv(dev);
/* Change the state of the device to trigger reset
* Check that we are not in the middle or a trigger already
*/
if (test_and_set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
return;
adapter->reset_reason = ENA_REGS_RESET_OS_NETDEV_WD;
u64_stats_update_begin(&adapter->syncp);
adapter->dev_stats.tx_timeout++;
u64_stats_update_end(&adapter->syncp);
netif_err(adapter, tx_err, dev, "Transmit time out\n");
}
static void update_rx_ring_mtu(struct ena_adapter *adapter, int mtu)
{
int i;
for (i = 0; i < adapter->num_queues; i++)
adapter->rx_ring[i].mtu = mtu;
}
static int ena_change_mtu(struct net_device *dev, int new_mtu)
{
struct ena_adapter *adapter = netdev_priv(dev);
int ret;
ret = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
if (!ret) {
netif_dbg(adapter, drv, dev, "set MTU to %d\n", new_mtu);
update_rx_ring_mtu(adapter, new_mtu);
dev->mtu = new_mtu;
} else {
netif_err(adapter, drv, dev, "Failed to set MTU to %d\n",
new_mtu);
}
return ret;
}
static int ena_init_rx_cpu_rmap(struct ena_adapter *adapter)
{
#ifdef CONFIG_RFS_ACCEL
u32 i;
int rc;
adapter->netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(adapter->num_queues);
if (!adapter->netdev->rx_cpu_rmap)
return -ENOMEM;
for (i = 0; i < adapter->num_queues; i++) {
int irq_idx = ENA_IO_IRQ_IDX(i);
rc = irq_cpu_rmap_add(adapter->netdev->rx_cpu_rmap,
pci_irq_vector(adapter->pdev, irq_idx));
if (rc) {
free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
adapter->netdev->rx_cpu_rmap = NULL;
return rc;
}
}
#endif /* CONFIG_RFS_ACCEL */
return 0;
}
static void ena_init_io_rings_common(struct ena_adapter *adapter,
struct ena_ring *ring, u16 qid)
{
ring->qid = qid;
ring->pdev = adapter->pdev;
ring->dev = &adapter->pdev->dev;
ring->netdev = adapter->netdev;
ring->napi = &adapter->ena_napi[qid].napi;
ring->adapter = adapter;
ring->ena_dev = adapter->ena_dev;
ring->per_napi_packets = 0;
ring->cpu = 0;
ring->first_interrupt = false;
ring->no_interrupt_event_cnt = 0;
u64_stats_init(&ring->syncp);
}
static void ena_init_io_rings(struct ena_adapter *adapter)
{
struct ena_com_dev *ena_dev;
struct ena_ring *txr, *rxr;
int i;
ena_dev = adapter->ena_dev;
for (i = 0; i < adapter->num_queues; i++) {
txr = &adapter->tx_ring[i];
rxr = &adapter->rx_ring[i];
/* TX/RX common ring state */
ena_init_io_rings_common(adapter, txr, i);
ena_init_io_rings_common(adapter, rxr, i);
/* TX specific ring state */
txr->ring_size = adapter->requested_tx_ring_size;
txr->tx_max_header_size = ena_dev->tx_max_header_size;
txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
txr->sgl_size = adapter->max_tx_sgl_size;
txr->smoothed_interval =
ena_com_get_nonadaptive_moderation_interval_tx(ena_dev);
/* RX specific ring state */
rxr->ring_size = adapter->requested_rx_ring_size;
rxr->rx_copybreak = adapter->rx_copybreak;
rxr->sgl_size = adapter->max_rx_sgl_size;
rxr->smoothed_interval =
ena_com_get_nonadaptive_moderation_interval_rx(ena_dev);
rxr->empty_rx_queue = 0;
adapter->ena_napi[i].dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
}
}
/* ena_setup_tx_resources - allocate I/O Tx resources (Descriptors)
* @adapter: network interface device structure
* @qid: queue index
*
* Return 0 on success, negative on failure
*/
static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
{
struct ena_ring *tx_ring = &adapter->tx_ring[qid];
struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)];
int size, i, node;
if (tx_ring->tx_buffer_info) {
netif_err(adapter, ifup,
adapter->netdev, "tx_buffer_info info is not NULL");
return -EEXIST;
}
size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
node = cpu_to_node(ena_irq->cpu);
tx_ring->tx_buffer_info = vzalloc_node(size, node);
if (!tx_ring->tx_buffer_info) {
tx_ring->tx_buffer_info = vzalloc(size);
if (!tx_ring->tx_buffer_info)
goto err_tx_buffer_info;
}
size = sizeof(u16) * tx_ring->ring_size;
tx_ring->free_ids = vzalloc_node(size, node);
if (!tx_ring->free_ids) {
tx_ring->free_ids = vzalloc(size);
if (!tx_ring->free_ids)
goto err_tx_free_ids;
}
size = tx_ring->tx_max_header_size;
tx_ring->push_buf_intermediate_buf = vzalloc_node(size, node);
if (!tx_ring->push_buf_intermediate_buf) {
tx_ring->push_buf_intermediate_buf = vzalloc(size);
if (!tx_ring->push_buf_intermediate_buf)
goto err_push_buf_intermediate_buf;
}
/* Req id ring for TX out of order completions */
for (i = 0; i < tx_ring->ring_size; i++)
tx_ring->free_ids[i] = i;
/* Reset tx statistics */
memset(&tx_ring->tx_stats, 0x0, sizeof(tx_ring->tx_stats));
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
tx_ring->cpu = ena_irq->cpu;
return 0;
err_push_buf_intermediate_buf:
vfree(tx_ring->free_ids);
tx_ring->free_ids = NULL;
err_tx_free_ids:
vfree(tx_ring->tx_buffer_info);
tx_ring->tx_buffer_info = NULL;
err_tx_buffer_info:
return -ENOMEM;
}
/* ena_free_tx_resources - Free I/O Tx Resources per Queue
* @adapter: network interface device structure
* @qid: queue index
*
* Free all transmit software resources
*/
static void ena_free_tx_resources(struct ena_adapter *adapter, int qid)
{
struct ena_ring *tx_ring = &adapter->tx_ring[qid];
vfree(tx_ring->tx_buffer_info);
tx_ring->tx_buffer_info = NULL;
vfree(tx_ring->free_ids);
tx_ring->free_ids = NULL;
vfree(tx_ring->push_buf_intermediate_buf);
tx_ring->push_buf_intermediate_buf = NULL;
}
/* ena_setup_all_tx_resources - allocate I/O Tx queues resources for All queues
* @adapter: private structure
*
* Return 0 on success, negative on failure
*/
static int ena_setup_all_tx_resources(struct ena_adapter *adapter)
{
int i, rc = 0;
for (i = 0; i < adapter->num_queues; i++) {
rc = ena_setup_tx_resources(adapter, i);
if (rc)
goto err_setup_tx;
}
return 0;
err_setup_tx:
netif_err(adapter, ifup, adapter->netdev,
"Tx queue %d: allocation failed\n", i);
/* rewind the index freeing the rings as we go */
while (i--)
ena_free_tx_resources(adapter, i);
return rc;
}
/* ena_free_all_io_tx_resources - Free I/O Tx Resources for All Queues
* @adapter: board private structure
*
* Free all transmit software resources
*/
static void ena_free_all_io_tx_resources(struct ena_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_queues; i++)
ena_free_tx_resources(adapter, i);
}
static int validate_rx_req_id(struct ena_ring *rx_ring, u16 req_id)
{
if (likely(req_id < rx_ring->ring_size))
return 0;
netif_err(rx_ring->adapter, rx_err, rx_ring->netdev,
"Invalid rx req_id: %hu\n", req_id);
u64_stats_update_begin(&rx_ring->syncp);
rx_ring->rx_stats.bad_req_id++;
u64_stats_update_end(&rx_ring->syncp);
/* Trigger device reset */
rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
set_bit(ENA_FLAG_TRIGGER_RESET, &rx_ring->adapter->flags);
return -EFAULT;
}
/* ena_setup_rx_resources - allocate I/O Rx resources (Descriptors)
* @adapter: network interface device structure
* @qid: queue index
*
* Returns 0 on success, negative on failure
*/
static int ena_setup_rx_resources(struct ena_adapter *adapter,
u32 qid)
{
struct ena_ring *rx_ring = &adapter->rx_ring[qid];
struct ena_irq *ena_irq = &adapter->irq_tbl[ENA_IO_IRQ_IDX(qid)];
int size, node, i;
if (rx_ring->rx_buffer_info) {
netif_err(adapter, ifup, adapter->netdev,
"rx_buffer_info is not NULL");
return -EEXIST;
}
/* alloc extra element so in rx path
* we can always prefetch rx_info + 1
*/
size = sizeof(struct ena_rx_buffer) * (rx_ring->ring_size + 1);
node = cpu_to_node(ena_irq->cpu);
rx_ring->rx_buffer_info = vzalloc_node(size, node);
if (!rx_ring->rx_buffer_info) {
rx_ring->rx_buffer_info = vzalloc(size);
if (!rx_ring->rx_buffer_info)
return -ENOMEM;
}
size = sizeof(u16) * rx_ring->ring_size;
rx_ring->free_ids = vzalloc_node(size, node);
if (!rx_ring->free_ids) {
rx_ring->free_ids = vzalloc(size);
if (!rx_ring->free_ids) {
vfree(rx_ring->rx_buffer_info);
rx_ring->rx_buffer_info = NULL;
return -ENOMEM;
}
}
/* Req id ring for receiving RX pkts out of order */
for (i = 0; i < rx_ring->ring_size; i++)
rx_ring->free_ids[i] = i;
/* Reset rx statistics */
memset(&rx_ring->rx_stats, 0x0, sizeof(rx_ring->rx_stats));
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
rx_ring->cpu = ena_irq->cpu;
return 0;
}
/* ena_free_rx_resources - Free I/O Rx Resources
* @adapter: network interface device structure
* @qid: queue index
*
* Free all receive software resources
*/
static void ena_free_rx_resources(struct ena_adapter *adapter,
u32 qid)
{
struct ena_ring *rx_ring = &adapter->rx_ring[qid];
vfree(rx_ring->rx_buffer_info);
rx_ring->rx_buffer_info = NULL;
vfree(rx_ring->free_ids);
rx_ring->free_ids = NULL;
}
/* ena_setup_all_rx_resources - allocate I/O Rx queues resources for all queues
* @adapter: board private structure
*
* Return 0 on success, negative on failure
*/
static int ena_setup_all_rx_resources(struct ena_adapter *adapter)
{
int i, rc = 0;
for (i = 0; i < adapter->num_queues; i++) {
rc = ena_setup_rx_resources(adapter, i);
if (rc)
goto err_setup_rx;
}
return 0;
err_setup_rx:
netif_err(adapter, ifup, adapter->netdev,
"Rx queue %d: allocation failed\n", i);
/* rewind the index freeing the rings as we go */
while (i--)
ena_free_rx_resources(adapter, i);
return rc;
}
/* ena_free_all_io_rx_resources - Free I/O Rx Resources for All Queues
* @adapter: board private structure
*
* Free all receive software resources
*/
static void ena_free_all_io_rx_resources(struct ena_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_queues; i++)
ena_free_rx_resources(adapter, i);
}
static int ena_alloc_rx_page(struct ena_ring *rx_ring,
struct ena_rx_buffer *rx_info, gfp_t gfp)
{
struct ena_com_buf *ena_buf;
struct page *page;
dma_addr_t dma;
/* if previous allocated page is not used */
if (unlikely(rx_info->page))
return 0;
page = alloc_page(gfp);
if (unlikely(!page)) {
u64_stats_update_begin(&rx_ring->syncp);
rx_ring->rx_stats.page_alloc_fail++;
u64_stats_update_end(&rx_ring->syncp);
return -ENOMEM;
}
dma = dma_map_page(rx_ring->dev, page, 0, ENA_PAGE_SIZE,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(rx_ring->dev, dma))) {
u64_stats_update_begin(&rx_ring->syncp);
rx_ring->rx_stats.dma_mapping_err++;
u64_stats_update_end(&rx_ring->syncp);
__free_page(page);
return -EIO;
}
netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
"alloc page %p, rx_info %p\n", page, rx_info);
rx_info->page = page;
rx_info->page_offset = 0;
ena_buf = &rx_info->ena_buf;
ena_buf->paddr = dma;
ena_buf->len = ENA_PAGE_SIZE;
return 0;
}
static void ena_free_rx_page(struct ena_ring *rx_ring,
struct ena_rx_buffer *rx_info)
{
struct page *page = rx_info->page;
struct ena_com_buf *ena_buf = &rx_info->ena_buf;
if (unlikely(!page)) {
netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
"Trying to free unallocated buffer\n");
return;
}
dma_unmap_page(rx_ring->dev, ena_buf->paddr, ENA_PAGE_SIZE,
DMA_FROM_DEVICE);
__free_page(page);
rx_info->page = NULL;
}
static int ena_refill_rx_bufs(struct ena_ring *rx_ring, u32 num)
{
u16 next_to_use, req_id;
u32 i;
int rc;
next_to_use = rx_ring->next_to_use;
for (i = 0; i < num; i++) {
struct ena_rx_buffer *rx_info;
req_id = rx_ring->free_ids[next_to_use];
rc = validate_rx_req_id(rx_ring, req_id);
if (unlikely(rc < 0))
break;
rx_info = &rx_ring->rx_buffer_info[req_id];
rc = ena_alloc_rx_page(rx_ring, rx_info,
GFP_ATOMIC | __GFP_COMP);
if (unlikely(rc < 0)) {
netif_warn(rx_ring->adapter, rx_err, rx_ring->netdev,
"failed to alloc buffer for rx queue %d\n",
rx_ring->qid);
break;
}
rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
&rx_info->ena_buf,
req_id);
if (unlikely(rc)) {
netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev,
"failed to add buffer for rx queue %d\n",
rx_ring->qid);
break;
}
next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
rx_ring->ring_size);
}
if (unlikely(i < num)) {
u64_stats_update_begin(&rx_ring->syncp);
rx_ring->rx_stats.refil_partial++;
u64_stats_update_end(&rx_ring->syncp);
netdev_warn(rx_ring->netdev,
"refilled rx qid %d with only %d buffers (from %d)\n",
rx_ring->qid, i, num);
}
/* ena_com_write_sq_doorbell issues a wmb() */
if (likely(i))
ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
rx_ring->next_to_use = next_to_use;
return i;
}
static void ena_free_rx_bufs(struct ena_adapter *adapter,
u32 qid)
{
struct ena_ring *rx_ring = &adapter->rx_ring[qid];
u32 i;
for (i = 0; i < rx_ring->ring_size; i++) {
struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
if (rx_info->page)
ena_free_rx_page(rx_ring, rx_info);
}
}
/* ena_refill_all_rx_bufs - allocate all queues Rx buffers
* @adapter: board private structure
*/
static void ena_refill_all_rx_bufs(struct ena_adapter *adapter)
{
struct ena_ring *rx_ring;
int i, rc, bufs_num;
for (i = 0; i < adapter->num_queues; i++) {
rx_ring = &adapter->rx_ring[i];
bufs_num = rx_ring->ring_size - 1;
rc = ena_refill_rx_bufs(rx_ring, bufs_num);
if (unlikely(rc != bufs_num))
netif_warn(rx_ring->adapter, rx_status, rx_ring->netdev,
"refilling Queue %d failed. allocated %d buffers from: %d\n",
i, rc, bufs_num);
}
}
static void ena_free_all_rx_bufs(struct ena_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_queues; i++)
ena_free_rx_bufs(adapter, i);
}
static void ena_unmap_tx_skb(struct ena_ring *tx_ring,
struct ena_tx_buffer *tx_info)
{
struct ena_com_buf *ena_buf;
u32 cnt;
int i;
ena_buf = tx_info->bufs;
cnt = tx_info->num_of_bufs;
if (unlikely(!cnt))
return;
if (tx_info->map_linear_data) {
dma_unmap_single(tx_ring->dev,
dma_unmap_addr(ena_buf, paddr),
dma_unmap_len(ena_buf, len),
DMA_TO_DEVICE);
ena_buf++;
cnt--;
}
/* unmap remaining mapped pages */
for (i = 0; i < cnt; i++) {
dma_unmap_page(tx_ring->dev, dma_unmap_addr(ena_buf, paddr),
dma_unmap_len(ena_buf, len), DMA_TO_DEVICE);
ena_buf++;
}
}
/* ena_free_tx_bufs - Free Tx Buffers per Queue
* @tx_ring: TX ring for which buffers be freed
*/
static void ena_free_tx_bufs(struct ena_ring *tx_ring)
{
bool print_once = true;
u32 i;
for (i = 0; i < tx_ring->ring_size; i++) {
struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
if (!tx_info->skb)
continue;
if (print_once) {
netdev_notice(tx_ring->netdev,
"free uncompleted tx skb qid %d idx 0x%x\n",
tx_ring->qid, i);
print_once = false;
} else {
netdev_dbg(tx_ring->netdev,
"free uncompleted tx skb qid %d idx 0x%x\n",
tx_ring->qid, i);
}
ena_unmap_tx_skb(tx_ring, tx_info);
dev_kfree_skb_any(tx_info->skb);
}
netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
tx_ring->qid));
}
static void ena_free_all_tx_bufs(struct ena_adapter *adapter)
{
struct ena_ring *tx_ring;
int i;
for (i = 0; i < adapter->num_queues; i++) {
tx_ring = &adapter->tx_ring[i];
ena_free_tx_bufs(tx_ring);
}
}
static void ena_destroy_all_tx_queues(struct ena_adapter *adapter)
{
u16 ena_qid;
int i;
for (i = 0; i < adapter->num_queues; i++) {
ena_qid = ENA_IO_TXQ_IDX(i);
ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
}
}
static void ena_destroy_all_rx_queues(struct ena_adapter *adapter)
{
u16 ena_qid;
int i;
for (i = 0; i < adapter->num_queues; i++) {
ena_qid = ENA_IO_RXQ_IDX(i);
cancel_work_sync(&adapter->ena_napi[i].dim.work);
ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
}
}
static void ena_destroy_all_io_queues(struct ena_adapter *adapter)
{
ena_destroy_all_tx_queues(adapter);
ena_destroy_all_rx_queues(adapter);
}
static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
{
struct ena_tx_buffer *tx_info = NULL;
if (likely(req_id < tx_ring->ring_size)) {
tx_info = &tx_ring->tx_buffer_info[req_id];
if (likely(tx_info->skb))
return 0;
}
if (tx_info)
netif_err(tx_ring->adapter, tx_done, tx_ring->netdev,
"tx_info doesn't have valid skb\n");
else
netif_err(tx_ring->adapter, tx_done, tx_ring->netdev,
"Invalid req_id: %hu\n", req_id);
u64_stats_update_begin(&tx_ring->syncp);
tx_ring->tx_stats.bad_req_id++;
u64_stats_update_end(&tx_ring->syncp);
/* Trigger device reset */
tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
set_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags);
return -EFAULT;
}
static int ena_clean_tx_irq(struct ena_ring *tx_ring, u32 budget)
{
struct netdev_queue *txq;
bool above_thresh;
u32 tx_bytes = 0;
u32 total_done = 0;
u16 next_to_clean;
u16 req_id;
int tx_pkts = 0;
int rc;
next_to_clean = tx_ring->next_to_clean;
txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->qid);
while (tx_pkts < budget) {
struct ena_tx_buffer *tx_info;
struct sk_buff *skb;
rc = ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq,
&req_id);
if (rc)
break;
rc = validate_tx_req_id(tx_ring, req_id);
if (rc)
break;
tx_info = &tx_ring->tx_buffer_info[req_id];
skb = tx_info->skb;
/* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
prefetch(&skb->end);
tx_info->skb = NULL;
tx_info->last_jiffies = 0;
ena_unmap_tx_skb(tx_ring, tx_info);
netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev,
"tx_poll: q %d skb %p completed\n", tx_ring->qid,
skb);
tx_bytes += skb->len;
dev_kfree_skb(skb);
tx_pkts++;
total_done += tx_info->tx_descs;
tx_ring->free_ids[next_to_clean] = req_id;
next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
tx_ring->ring_size);
}
tx_ring->next_to_clean = next_to_clean;
ena_com_comp_ack(tx_ring->ena_com_io_sq, total_done);
ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
netif_dbg(tx_ring->adapter, tx_done, tx_ring->netdev,
"tx_poll: q %d done. total pkts: %d\n",
tx_ring->qid, tx_pkts);
/* need to make the rings circular update visible to
* ena_start_xmit() before checking for netif_queue_stopped().
*/
smp_mb();
above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
ENA_TX_WAKEUP_THRESH);
if (unlikely(netif_tx_queue_stopped(txq) && above_thresh)) {
__netif_tx_lock(txq, smp_processor_id());
above_thresh =
ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
ENA_TX_WAKEUP_THRESH);
if (netif_tx_queue_stopped(txq) && above_thresh &&
test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags)) {
netif_tx_wake_queue(txq);
u64_stats_update_begin(&tx_ring->syncp);
tx_ring->tx_stats.queue_wakeup++;
u64_stats_update_end(&tx_ring->syncp);
}
__netif_tx_unlock(txq);
}
return tx_pkts;
}
static struct sk_buff *ena_alloc_skb(struct ena_ring *rx_ring, bool frags)
{
struct sk_buff *skb;
if (frags)
skb = napi_get_frags(rx_ring->napi);
else
skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
rx_ring->rx_copybreak);
if (unlikely(!skb)) {
u64_stats_update_begin(&rx_ring->syncp);
rx_ring->rx_stats.skb_alloc_fail++;
u64_stats_update_end(&rx_ring->syncp);
netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
"Failed to allocate skb. frags: %d\n", frags);
return NULL;
}
return skb;
}
static struct sk_buff *ena_rx_skb(struct ena_ring *rx_ring,
struct ena_com_rx_buf_info *ena_bufs,
u32 descs,
u16 *next_to_clean)
{
struct sk_buff *skb;
struct ena_rx_buffer *rx_info;
u16 len, req_id, buf = 0;
void *va;
len = ena_bufs[buf].len;
req_id = ena_bufs[buf].req_id;
rx_info = &rx_ring->rx_buffer_info[req_id];
if (unlikely(!rx_info->page)) {
netif_err(rx_ring->adapter, rx_err, rx_ring->netdev,
"Page is NULL\n");
return NULL;
}
netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
"rx_info %p page %p\n",
rx_info, rx_info->page);
/* save virt address of first buffer */
va = page_address(rx_info->page) + rx_info->page_offset;
prefetch(va + NET_IP_ALIGN);
if (len <= rx_ring->rx_copybreak) {
skb = ena_alloc_skb(rx_ring, false);
if (unlikely(!skb))
return NULL;
netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
"rx allocated small packet. len %d. data_len %d\n",
skb->len, skb->data_len);
/* sync this buffer for CPU use */
dma_sync_single_for_cpu(rx_ring->dev,
dma_unmap_addr(&rx_info->ena_buf, paddr),
len,
DMA_FROM_DEVICE);
skb_copy_to_linear_data(skb, va, len);
dma_sync_single_for_device(rx_ring->dev,
dma_unmap_addr(&rx_info->ena_buf, paddr),
len,
DMA_FROM_DEVICE);
skb_put(skb, len);
skb->protocol = eth_type_trans(skb, rx_ring->netdev);
rx_ring->free_ids[*next_to_clean] = req_id;
*next_to_clean = ENA_RX_RING_IDX_ADD(*next_to_clean, descs,
rx_ring->ring_size);
return skb;
}
skb = ena_alloc_skb(rx_ring, true);
if (unlikely(!skb))
return NULL;
do {
dma_unmap_page(rx_ring->dev,
dma_unmap_addr(&rx_info->ena_buf, paddr),
ENA_PAGE_SIZE, DMA_FROM_DEVICE);
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_info->page,
rx_info->page_offset, len, ENA_PAGE_SIZE);
netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
"rx skb updated. len %d. data_len %d\n",
skb->len, skb->data_len);
rx_info->page = NULL;
rx_ring->free_ids[*next_to_clean] = req_id;
*next_to_clean =
ENA_RX_RING_IDX_NEXT(*next_to_clean,
rx_ring->ring_size);
if (likely(--descs == 0))
break;
buf++;
len = ena_bufs[buf].len;
req_id = ena_bufs[buf].req_id;
rx_info = &rx_ring->rx_buffer_info[req_id];
} while (1);
return skb;
}
/* ena_rx_checksum - indicate in skb if hw indicated a good cksum
* @adapter: structure containing adapter specific data
* @ena_rx_ctx: received packet context/metadata
* @skb: skb currently being received and modified
*/
static void ena_rx_checksum(struct ena_ring *rx_ring,
struct ena_com_rx_ctx *ena_rx_ctx,
struct sk_buff *skb)
{
/* Rx csum disabled */
if (unlikely(!(rx_ring->netdev->features & NETIF_F_RXCSUM))) {
skb->ip_summed = CHECKSUM_NONE;
return;
}
/* For fragmented packets the checksum isn't valid */
if (ena_rx_ctx->frag) {
skb->ip_summed = CHECKSUM_NONE;
return;
}
/* if IP and error */
if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) &&
(ena_rx_ctx->l3_csum_err))) {
/* ipv4 checksum error */
skb->ip_summed = CHECKSUM_NONE;
u64_stats_update_begin(&rx_ring->syncp);
rx_ring->rx_stats.bad_csum++;
u64_stats_update_end(&rx_ring->syncp);
netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
"RX IPv4 header checksum error\n");
return;
}
/* if TCP/UDP */
if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
(ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP))) {
if (unlikely(ena_rx_ctx->l4_csum_err)) {
/* TCP/UDP checksum error */
u64_stats_update_begin(&rx_ring->syncp);
rx_ring->rx_stats.bad_csum++;
u64_stats_update_end(&rx_ring->syncp);
netif_dbg(rx_ring->adapter, rx_err, rx_ring->netdev,
"RX L4 checksum error\n");
skb->ip_summed = CHECKSUM_NONE;
return;
}
if (likely(ena_rx_ctx->l4_csum_checked)) {
skb->ip_summed = CHECKSUM_UNNECESSARY;
u64_stats_update_begin(&rx_ring->syncp);
rx_ring->rx_stats.csum_good++;
u64_stats_update_end(&rx_ring->syncp);
} else {
u64_stats_update_begin(&rx_ring->syncp);
rx_ring->rx_stats.csum_unchecked++;
u64_stats_update_end(&rx_ring->syncp);
skb->ip_summed = CHECKSUM_NONE;
}
} else {
skb->ip_summed = CHECKSUM_NONE;
return;
}
}
static void ena_set_rx_hash(struct ena_ring *rx_ring,
struct ena_com_rx_ctx *ena_rx_ctx,
struct sk_buff *skb)
{
enum pkt_hash_types hash_type;
if (likely(rx_ring->netdev->features & NETIF_F_RXHASH)) {
if (likely((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
(ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)))
hash_type = PKT_HASH_TYPE_L4;
else
hash_type = PKT_HASH_TYPE_NONE;
/* Override hash type if the packet is fragmented */
if (ena_rx_ctx->frag)
hash_type = PKT_HASH_TYPE_NONE;
skb_set_hash(skb, ena_rx_ctx->hash, hash_type);
}
}
/* ena_clean_rx_irq - Cleanup RX irq
* @rx_ring: RX ring to clean
* @napi: napi handler
* @budget: how many packets driver is allowed to clean
*
* Returns the number of cleaned buffers.
*/
static int ena_clean_rx_irq(struct ena_ring *rx_ring, struct napi_struct *napi,
u32 budget)
{
u16 next_to_clean = rx_ring->next_to_clean;
u32 res_budget, work_done;
struct ena_com_rx_ctx ena_rx_ctx;
struct ena_adapter *adapter;
struct sk_buff *skb;
int refill_required;
int refill_threshold;
int rc = 0;
int total_len = 0;
int rx_copybreak_pkt = 0;
int i;
netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
"%s qid %d\n", __func__, rx_ring->qid);
res_budget = budget;
do {
ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
ena_rx_ctx.max_bufs = rx_ring->sgl_size;
ena_rx_ctx.descs = 0;
rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
rx_ring->ena_com_io_sq,
&ena_rx_ctx);
if (unlikely(rc))
goto error;
if (unlikely(ena_rx_ctx.descs == 0))
break;
netif_dbg(rx_ring->adapter, rx_status, rx_ring->netdev,
"rx_poll: q %d got packet from ena. descs #: %d l3 proto %d l4 proto %d hash: %x\n",
rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
/* allocate skb and fill it */
skb = ena_rx_skb(rx_ring, rx_ring->ena_bufs, ena_rx_ctx.descs,
&next_to_clean);
/* exit if we failed to retrieve a buffer */
if (unlikely(!skb)) {
for (i = 0; i < ena_rx_ctx.descs; i++) {
rx_ring->free_ids[next_to_clean] =
rx_ring->ena_bufs[i].req_id;
next_to_clean =
ENA_RX_RING_IDX_NEXT(next_to_clean,
rx_ring->ring_size);
}
break;
}
ena_rx_checksum(rx_ring, &ena_rx_ctx, skb);
ena_set_rx_hash(rx_ring, &ena_rx_ctx, skb);
skb_record_rx_queue(skb, rx_ring->qid);
if (rx_ring->ena_bufs[0].len <= rx_ring->rx_copybreak) {
total_len += rx_ring->ena_bufs[0].len;
rx_copybreak_pkt++;
napi_gro_receive(napi, skb);
} else {
total_len += skb->len;
napi_gro_frags(napi);
}
res_budget--;
} while (likely(res_budget));
work_done = budget - res_budget;
rx_ring->per_napi_packets += work_done;
u64_stats_update_begin(&rx_ring->syncp);
rx_ring->rx_stats.bytes += total_len;
rx_ring->rx_stats.cnt += work_done;
rx_ring->rx_stats.rx_copybreak_pkt += rx_copybreak_pkt;
u64_stats_update_end(&rx_ring->syncp);
rx_ring->next_to_clean = next_to_clean;
refill_required = ena_com_free_desc(rx_ring->ena_com_io_sq);
refill_threshold =
min_t(int, rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER,
ENA_RX_REFILL_THRESH_PACKET);
/* Optimization, try to batch new rx buffers */
if (refill_required > refill_threshold) {
ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
ena_refill_rx_bufs(rx_ring, refill_required);
}
return work_done;
error:
adapter = netdev_priv(rx_ring->netdev);
u64_stats_update_begin(&rx_ring->syncp);
rx_ring->rx_stats.bad_desc_num++;
u64_stats_update_end(&rx_ring->syncp);
/* Too many desc from the device. Trigger reset */
adapter->reset_reason = ENA_REGS_RESET_TOO_MANY_RX_DESCS;
set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
return 0;
}
static void ena_dim_work(struct work_struct *w)
{
struct dim *dim = container_of(w, struct dim, work);
struct dim_cq_moder cur_moder =
net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
struct ena_napi *ena_napi = container_of(dim, struct ena_napi, dim);
ena_napi->rx_ring->smoothed_interval = cur_moder.usec;
dim->state = DIM_START_MEASURE;
}
static void ena_adjust_adaptive_rx_intr_moderation(struct ena_napi *ena_napi)
{
struct dim_sample dim_sample;
struct ena_ring *rx_ring = ena_napi->rx_ring;
if (!rx_ring->per_napi_packets)
return;
rx_ring->non_empty_napi_events++;
dim_update_sample(rx_ring->non_empty_napi_events,
rx_ring->rx_stats.cnt,
rx_ring->rx_stats.bytes,
&dim_sample);
net_dim(&ena_napi->dim, dim_sample);
rx_ring->per_napi_packets = 0;
}
static void ena_unmask_interrupt(struct ena_ring *tx_ring,
struct ena_ring *rx_ring)
{
struct ena_eth_io_intr_reg intr_reg;
u32 rx_interval = ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev) ?
rx_ring->smoothed_interval :
ena_com_get_nonadaptive_moderation_interval_rx(rx_ring->ena_dev);
/* Update intr register: rx intr delay,
* tx intr delay and interrupt unmask
*/
ena_com_update_intr_reg(&intr_reg,
rx_interval,
tx_ring->smoothed_interval,
true);
/* It is a shared MSI-X.
* Tx and Rx CQ have pointer to it.
* So we use one of them to reach the intr reg
*/
ena_com_unmask_intr(rx_ring->ena_com_io_cq, &intr_reg);
}
static void ena_update_ring_numa_node(struct ena_ring *tx_ring,
struct ena_ring *rx_ring)
{
int cpu = get_cpu();
int numa_node;
/* Check only one ring since the 2 rings are running on the same cpu */
if (likely(tx_ring->cpu == cpu))
goto out;
numa_node = cpu_to_node(cpu);
put_cpu();
if (numa_node != NUMA_NO_NODE) {
ena_com_update_numa_node(tx_ring->ena_com_io_cq, numa_node);
ena_com_update_numa_node(rx_ring->ena_com_io_cq, numa_node);
}
tx_ring->cpu = cpu;
rx_ring->cpu = cpu;
return;
out:
put_cpu();
}
static int ena_io_poll(struct napi_struct *napi, int budget)
{
struct ena_napi *ena_napi = container_of(napi, struct ena_napi, napi);
struct ena_ring *tx_ring, *rx_ring;
u32 tx_work_done;
u32 rx_work_done;
int tx_budget;
int napi_comp_call = 0;
int ret;
tx_ring = ena_napi->tx_ring;
rx_ring = ena_napi->rx_ring;
tx_budget = tx_ring->ring_size / ENA_TX_POLL_BUDGET_DIVIDER;
if (!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) ||
test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags)) {
napi_complete_done(napi, 0);
return 0;
}
tx_work_done = ena_clean_tx_irq(tx_ring, tx_budget);
rx_work_done = ena_clean_rx_irq(rx_ring, napi, budget);
/* If the device is about to reset or down, avoid unmask
* the interrupt and return 0 so NAPI won't reschedule
*/
if (unlikely(!test_bit(ENA_FLAG_DEV_UP, &tx_ring->adapter->flags) ||
test_bit(ENA_FLAG_TRIGGER_RESET, &tx_ring->adapter->flags))) {
napi_complete_done(napi, 0);
ret = 0;
} else if ((budget > rx_work_done) && (tx_budget > tx_work_done)) {
napi_comp_call = 1;
/* Update numa and unmask the interrupt only when schedule
* from the interrupt context (vs from sk_busy_loop)
*/
if (napi_complete_done(napi, rx_work_done)) {
/* We apply adaptive moderation on Rx path only.
* Tx uses static interrupt moderation.
*/
if (ena_com_get_adaptive_moderation_enabled(rx_ring->ena_dev))
ena_adjust_adaptive_rx_intr_moderation(ena_napi);
ena_unmask_interrupt(tx_ring, rx_ring);
}
ena_update_ring_numa_node(tx_ring, rx_ring);
ret = rx_work_done;
} else {
ret = budget;
}
u64_stats_update_begin(&tx_ring->syncp);
tx_ring->tx_stats.napi_comp += napi_comp_call;
tx_ring->tx_stats.tx_poll++;
u64_stats_update_end(&tx_ring->syncp);
return ret;
}
static irqreturn_t ena_intr_msix_mgmnt(int irq, void *data)
{
struct ena_adapter *adapter = (struct ena_adapter *)data;
ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
/* Don't call the aenq handler before probe is done */
if (likely(test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags)))
ena_com_aenq_intr_handler(adapter->ena_dev, data);
return IRQ_HANDLED;
}
/* ena_intr_msix_io - MSI-X Interrupt Handler for Tx/Rx
* @irq: interrupt number
* @data: pointer to a network interface private napi device structure
*/
static irqreturn_t ena_intr_msix_io(int irq, void *data)
{
struct ena_napi *ena_napi = data;
ena_napi->tx_ring->first_interrupt = true;
ena_napi->rx_ring->first_interrupt = true;
napi_schedule_irqoff(&ena_napi->napi);
return IRQ_HANDLED;
}
/* Reserve a single MSI-X vector for management (admin + aenq).
* plus reserve one vector for each potential io queue.
* the number of potential io queues is the minimum of what the device
* supports and the number of vCPUs.
*/
static int ena_enable_msix(struct ena_adapter *adapter, int num_queues)
{
int msix_vecs, irq_cnt;
if (test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) {
netif_err(adapter, probe, adapter->netdev,
"Error, MSI-X is already enabled\n");
return -EPERM;
}
/* Reserved the max msix vectors we might need */
msix_vecs = ENA_MAX_MSIX_VEC(num_queues);
netif_dbg(adapter, probe, adapter->netdev,
"trying to enable MSI-X, vectors %d\n", msix_vecs);
irq_cnt = pci_alloc_irq_vectors(adapter->pdev, ENA_MIN_MSIX_VEC,
msix_vecs, PCI_IRQ_MSIX);
if (irq_cnt < 0) {
netif_err(adapter, probe, adapter->netdev,
"Failed to enable MSI-X. irq_cnt %d\n", irq_cnt);
return -ENOSPC;
}
if (irq_cnt != msix_vecs) {
netif_notice(adapter, probe, adapter->netdev,
"enable only %d MSI-X (out of %d), reduce the number of queues\n",
irq_cnt, msix_vecs);
adapter->num_queues = irq_cnt - ENA_ADMIN_MSIX_VEC;
}
if (ena_init_rx_cpu_rmap(adapter))
netif_warn(adapter, probe, adapter->netdev,
"Failed to map IRQs to CPUs\n");
adapter->msix_vecs = irq_cnt;
set_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags);
return 0;
}
static void ena_setup_mgmnt_intr(struct ena_adapter *adapter)
{
u32 cpu;
snprintf(adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].name,
ENA_IRQNAME_SIZE, "ena-mgmnt@pci:%s",
pci_name(adapter->pdev));
adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].handler =
ena_intr_msix_mgmnt;
adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].data = adapter;
adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].vector =
pci_irq_vector(adapter->pdev, ENA_MGMNT_IRQ_IDX);
cpu = cpumask_first(cpu_online_mask);
adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].cpu = cpu;
cpumask_set_cpu(cpu,
&adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].affinity_hint_mask);
}
static void ena_setup_io_intr(struct ena_adapter *adapter)
{
struct net_device *netdev;
int irq_idx, i, cpu;
netdev = adapter->netdev;
for (i = 0; i < adapter->num_queues; i++) {
irq_idx = ENA_IO_IRQ_IDX(i);
cpu = i % num_online_cpus();
snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
"%s-Tx-Rx-%d", netdev->name, i);
adapter->irq_tbl[irq_idx].handler = ena_intr_msix_io;
adapter->irq_tbl[irq_idx].data = &adapter->ena_napi[i];
adapter->irq_tbl[irq_idx].vector =
pci_irq_vector(adapter->pdev, irq_idx);
adapter->irq_tbl[irq_idx].cpu = cpu;
cpumask_set_cpu(cpu,
&adapter->irq_tbl[irq_idx].affinity_hint_mask);
}
}
static int ena_request_mgmnt_irq(struct ena_adapter *adapter)
{
unsigned long flags = 0;
struct ena_irq *irq;
int rc;
irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
rc = request_irq(irq->vector, irq->handler, flags, irq->name,
irq->data);
if (rc) {
netif_err(adapter, probe, adapter->netdev,
"failed to request admin irq\n");
return rc;
}
netif_dbg(adapter, probe, adapter->netdev,
"set affinity hint of mgmnt irq.to 0x%lx (irq vector: %d)\n",
irq->affinity_hint_mask.bits[0], irq->vector);
irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask);
return rc;
}
static int ena_request_io_irq(struct ena_adapter *adapter)
{
unsigned long flags = 0;
struct ena_irq *irq;
int rc = 0, i, k;
if (!test_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags)) {
netif_err(adapter, ifup, adapter->netdev,
"Failed to request I/O IRQ: MSI-X is not enabled\n");
return -EINVAL;
}
for (i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++) {
irq = &adapter->irq_tbl[i];
rc = request_irq(irq->vector, irq->handler, flags, irq->name,
irq->data);
if (rc) {
netif_err(adapter, ifup, adapter->netdev,
"Failed to request I/O IRQ. index %d rc %d\n",
i, rc);
goto err;
}
netif_dbg(adapter, ifup, adapter->netdev,
"set affinity hint of irq. index %d to 0x%lx (irq vector: %d)\n",
i, irq->affinity_hint_mask.bits[0], irq->vector);
irq_set_affinity_hint(irq->vector, &irq->affinity_hint_mask);
}
return rc;
err:
for (k = ENA_IO_IRQ_FIRST_IDX; k < i; k++) {
irq = &adapter->irq_tbl[k];
free_irq(irq->vector, irq->data);
}
return rc;
}
static void ena_free_mgmnt_irq(struct ena_adapter *adapter)
{
struct ena_irq *irq;
irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
synchronize_irq(irq->vector);
irq_set_affinity_hint(irq->vector, NULL);
free_irq(irq->vector, irq->data);
}
static void ena_free_io_irq(struct ena_adapter *adapter)
{
struct ena_irq *irq;
int i;
#ifdef CONFIG_RFS_ACCEL
if (adapter->msix_vecs >= 1) {
free_irq_cpu_rmap(adapter->netdev->rx_cpu_rmap);
adapter->netdev->rx_cpu_rmap = NULL;
}
#endif /* CONFIG_RFS_ACCEL */
for (i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++) {
irq = &adapter->irq_tbl[i];
irq_set_affinity_hint(irq->vector, NULL);
free_irq(irq->vector, irq->data);
}
}
static void ena_disable_msix(struct ena_adapter *adapter)
{
if (test_and_clear_bit(ENA_FLAG_MSIX_ENABLED, &adapter->flags))
pci_free_irq_vectors(adapter->pdev);
}
static void ena_disable_io_intr_sync(struct ena_adapter *adapter)
{
int i;
if (!netif_running(adapter->netdev))
return;
for (i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++)
synchronize_irq(adapter->irq_tbl[i].vector);
}
static void ena_del_napi(struct ena_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_queues; i++)
netif_napi_del(&adapter->ena_napi[i].napi);
}
static void ena_init_napi(struct ena_adapter *adapter)
{
struct ena_napi *napi;
int i;
for (i = 0; i < adapter->num_queues; i++) {
napi = &adapter->ena_napi[i];
netif_napi_add(adapter->netdev,
&adapter->ena_napi[i].napi,
ena_io_poll,
ENA_NAPI_BUDGET);
napi->rx_ring = &adapter->rx_ring[i];
napi->tx_ring = &adapter->tx_ring[i];
napi->qid = i;
}
}
static void ena_napi_disable_all(struct ena_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_queues; i++)
napi_disable(&adapter->ena_napi[i].napi);
}
static void ena_napi_enable_all(struct ena_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_queues; i++)
napi_enable(&adapter->ena_napi[i].napi);
}
/* Configure the Rx forwarding */
static int ena_rss_configure(struct ena_adapter *adapter)
{
struct ena_com_dev *ena_dev = adapter->ena_dev;
int rc;
/* In case the RSS table wasn't initialized by probe */
if (!ena_dev->rss.tbl_log_size) {
rc = ena_rss_init_default(adapter);
if (rc && (rc != -EOPNOTSUPP)) {
netif_err(adapter, ifup, adapter->netdev,
"Failed to init RSS rc: %d\n", rc);
return rc;
}
}
/* Set indirect table */
rc = ena_com_indirect_table_set(ena_dev);
if (unlikely(rc && rc != -EOPNOTSUPP))
return rc;
/* Configure hash function (if supported) */
rc = ena_com_set_hash_function(ena_dev);
if (unlikely(rc && (rc != -EOPNOTSUPP)))
return rc;
/* Configure hash inputs (if supported) */
rc = ena_com_set_hash_ctrl(ena_dev);
if (unlikely(rc && (rc != -EOPNOTSUPP)))
return rc;
return 0;
}
static int ena_up_complete(struct ena_adapter *adapter)
{
int rc;
rc = ena_rss_configure(adapter);
if (rc)
return rc;
ena_change_mtu(adapter->netdev, adapter->netdev->mtu);
ena_refill_all_rx_bufs(adapter);
/* enable transmits */
netif_tx_start_all_queues(adapter->netdev);
ena_napi_enable_all(adapter);
return 0;
}
static int ena_create_io_tx_queue(struct ena_adapter *adapter, int qid)
{
struct ena_com_create_io_ctx ctx;
struct ena_com_dev *ena_dev;
struct ena_ring *tx_ring;
u32 msix_vector;
u16 ena_qid;
int rc;
ena_dev = adapter->ena_dev;
tx_ring = &adapter->tx_ring[qid];
msix_vector = ENA_IO_IRQ_IDX(qid);
ena_qid = ENA_IO_TXQ_IDX(qid);
memset(&ctx, 0x0, sizeof(ctx));
ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
ctx.qid = ena_qid;
ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
ctx.msix_vector = msix_vector;
ctx.queue_size = tx_ring->ring_size;
ctx.numa_node = cpu_to_node(tx_ring->cpu);
rc = ena_com_create_io_queue(ena_dev, &ctx);
if (rc) {
netif_err(adapter, ifup, adapter->netdev,
"Failed to create I/O TX queue num %d rc: %d\n",
qid, rc);
return rc;
}
rc = ena_com_get_io_handlers(ena_dev, ena_qid,
&tx_ring->ena_com_io_sq,
&tx_ring->ena_com_io_cq);
if (rc) {
netif_err(adapter, ifup, adapter->netdev,
"Failed to get TX queue handlers. TX queue num %d rc: %d\n",
qid, rc);
ena_com_destroy_io_queue(ena_dev, ena_qid);
return rc;
}
ena_com_update_numa_node(tx_ring->ena_com_io_cq, ctx.numa_node);
return rc;
}
static int ena_create_all_io_tx_queues(struct ena_adapter *adapter)
{
struct ena_com_dev *ena_dev = adapter->ena_dev;
int rc, i;
for (i = 0; i < adapter->num_queues; i++) {
rc = ena_create_io_tx_queue(adapter, i);
if (rc)
goto create_err;
}
return 0;
create_err:
while (i--)
ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
return rc;
}
static int ena_create_io_rx_queue(struct ena_adapter *adapter, int qid)
{
struct ena_com_dev *ena_dev;
struct ena_com_create_io_ctx ctx;
struct ena_ring *rx_ring;
u32 msix_vector;
u16 ena_qid;
int rc;
ena_dev = adapter->ena_dev;
rx_ring = &adapter->rx_ring[qid];
msix_vector = ENA_IO_IRQ_IDX(qid);
ena_qid = ENA_IO_RXQ_IDX(qid);
memset(&ctx, 0x0, sizeof(ctx));
ctx.qid = ena_qid;
ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
ctx.msix_vector = msix_vector;
ctx.queue_size = rx_ring->ring_size;
ctx.numa_node = cpu_to_node(rx_ring->cpu);
rc = ena_com_create_io_queue(ena_dev, &ctx);
if (rc) {
netif_err(adapter, ifup, adapter->netdev,
"Failed to create I/O RX queue num %d rc: %d\n",
qid, rc);
return rc;
}
rc = ena_com_get_io_handlers(ena_dev, ena_qid,
&rx_ring->ena_com_io_sq,
&rx_ring->ena_com_io_cq);
if (rc) {
netif_err(adapter, ifup, adapter->netdev,
"Failed to get RX queue handlers. RX queue num %d rc: %d\n",
qid, rc);
ena_com_destroy_io_queue(ena_dev, ena_qid);
return rc;
}
ena_com_update_numa_node(rx_ring->ena_com_io_cq, ctx.numa_node);
return rc;
}
static int ena_create_all_io_rx_queues(struct ena_adapter *adapter)
{
struct ena_com_dev *ena_dev = adapter->ena_dev;
int rc, i;
for (i = 0; i < adapter->num_queues; i++) {
rc = ena_create_io_rx_queue(adapter, i);
if (rc)
goto create_err;
INIT_WORK(&adapter->ena_napi[i].dim.work, ena_dim_work);
}
return 0;
create_err:
while (i--) {
cancel_work_sync(&adapter->ena_napi[i].dim.work);
ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
}
return rc;
}
static void set_io_rings_size(struct ena_adapter *adapter,
int new_tx_size, int new_rx_size)
{
int i;
for (i = 0; i < adapter->num_queues; i++) {
adapter->tx_ring[i].ring_size = new_tx_size;
adapter->rx_ring[i].ring_size = new_rx_size;
}
}
/* This function allows queue allocation to backoff when the system is
* low on memory. If there is not enough memory to allocate io queues
* the driver will try to allocate smaller queues.
*
* The backoff algorithm is as follows:
* 1. Try to allocate TX and RX and if successful.
* 1.1. return success
*
* 2. Divide by 2 the size of the larger of RX and TX queues (or both if their size is the same).
*
* 3. If TX or RX is smaller than 256
* 3.1. return failure.
* 4. else
* 4.1. go back to 1.
*/
static int create_queues_with_size_backoff(struct ena_adapter *adapter)
{
int rc, cur_rx_ring_size, cur_tx_ring_size;
int new_rx_ring_size, new_tx_ring_size;
/* current queue sizes might be set to smaller than the requested
* ones due to past queue allocation failures.
*/
set_io_rings_size(adapter, adapter->requested_tx_ring_size,
adapter->requested_rx_ring_size);
while (1) {
rc = ena_setup_all_tx_resources(adapter);
if (rc)
goto err_setup_tx;
rc = ena_create_all_io_tx_queues(adapter);
if (rc)
goto err_create_tx_queues;
rc = ena_setup_all_rx_resources(adapter);
if (rc)
goto err_setup_rx;
rc = ena_create_all_io_rx_queues(adapter);
if (rc)
goto err_create_rx_queues;
return 0;
err_create_rx_queues:
ena_free_all_io_rx_resources(adapter);
err_setup_rx:
ena_destroy_all_tx_queues(adapter);
err_create_tx_queues:
ena_free_all_io_tx_resources(adapter);
err_setup_tx:
if (rc != -ENOMEM) {
netif_err(adapter, ifup, adapter->netdev,
"Queue creation failed with error code %d\n",
rc);
return rc;
}
cur_tx_ring_size = adapter->tx_ring[0].ring_size;
cur_rx_ring_size = adapter->rx_ring[0].ring_size;
netif_err(adapter, ifup, adapter->netdev,
"Not enough memory to create queues with sizes TX=%d, RX=%d\n",
cur_tx_ring_size, cur_rx_ring_size);
new_tx_ring_size = cur_tx_ring_size;
new_rx_ring_size = cur_rx_ring_size;
/* Decrease the size of the larger queue, or
* decrease both if they are the same size.
*/
if (cur_rx_ring_size <= cur_tx_ring_size)
new_tx_ring_size = cur_tx_ring_size / 2;
if (cur_rx_ring_size >= cur_tx_ring_size)
new_rx_ring_size = cur_rx_ring_size / 2;
if (new_tx_ring_size < ENA_MIN_RING_SIZE ||
new_rx_ring_size < ENA_MIN_RING_SIZE) {
netif_err(adapter, ifup, adapter->netdev,
"Queue creation failed with the smallest possible queue size of %d for both queues. Not retrying with smaller queues\n",
ENA_MIN_RING_SIZE);
return rc;
}
netif_err(adapter, ifup, adapter->netdev,
"Retrying queue creation with sizes TX=%d, RX=%d\n",
new_tx_ring_size,
new_rx_ring_size);
set_io_rings_size(adapter, new_tx_ring_size,
new_rx_ring_size);
}
}
static int ena_up(struct ena_adapter *adapter)
{
int rc, i;
netdev_dbg(adapter->netdev, "%s\n", __func__);
ena_setup_io_intr(adapter);
/* napi poll functions should be initialized before running
* request_irq(), to handle a rare condition where there is a pending
* interrupt, causing the ISR to fire immediately while the poll
* function wasn't set yet, causing a null dereference
*/
ena_init_napi(adapter);
rc = ena_request_io_irq(adapter);
if (rc)
goto err_req_irq;
rc = create_queues_with_size_backoff(adapter);
if (rc)
goto err_create_queues_with_backoff;
rc = ena_up_complete(adapter);
if (rc)
goto err_up;
if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags))
netif_carrier_on(adapter->netdev);
u64_stats_update_begin(&adapter->syncp);
adapter->dev_stats.interface_up++;
u64_stats_update_end(&adapter->syncp);
set_bit(ENA_FLAG_DEV_UP, &adapter->flags);
/* Enable completion queues interrupt */
for (i = 0; i < adapter->num_queues; i++)
ena_unmask_interrupt(&adapter->tx_ring[i],
&adapter->rx_ring[i]);
/* schedule napi in case we had pending packets
* from the last time we disable napi
*/
for (i = 0; i < adapter->num_queues; i++)
napi_schedule(&adapter->ena_napi[i].napi);
return rc;
err_up:
ena_destroy_all_tx_queues(adapter);
ena_free_all_io_tx_resources(adapter);
ena_destroy_all_rx_queues(adapter);
ena_free_all_io_rx_resources(adapter);
err_create_queues_with_backoff:
ena_free_io_irq(adapter);
err_req_irq:
ena_del_napi(adapter);
return rc;
}
static void ena_down(struct ena_adapter *adapter)
{
netif_info(adapter, ifdown, adapter->netdev, "%s\n", __func__);
clear_bit(ENA_FLAG_DEV_UP, &adapter->flags);
u64_stats_update_begin(&adapter->syncp);
adapter->dev_stats.interface_down++;
u64_stats_update_end(&adapter->syncp);
netif_carrier_off(adapter->netdev);
netif_tx_disable(adapter->netdev);
/* After this point the napi handler won't enable the tx queue */
ena_napi_disable_all(adapter);
/* After destroy the queue there won't be any new interrupts */
if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags)) {
int rc;
rc = ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason);
if (rc)
dev_err(&adapter->pdev->dev, "Device reset failed\n");
/* stop submitting admin commands on a device that was reset */
ena_com_set_admin_running_state(adapter->ena_dev, false);
}
ena_destroy_all_io_queues(adapter);
ena_disable_io_intr_sync(adapter);
ena_free_io_irq(adapter);
ena_del_napi(adapter);
ena_free_all_tx_bufs(adapter);
ena_free_all_rx_bufs(adapter);
ena_free_all_io_tx_resources(adapter);
ena_free_all_io_rx_resources(adapter);
}
/* ena_open - Called when a network interface is made active
* @netdev: network interface device structure
*
* Returns 0 on success, negative value on failure
*
* The open entry point is called when a network interface is made
* active by the system (IFF_UP). At this point all resources needed
* for transmit and receive operations are allocated, the interrupt
* handler is registered with the OS, the watchdog timer is started,
* and the stack is notified that the interface is ready.
*/
static int ena_open(struct net_device *netdev)
{
struct ena_adapter *adapter = netdev_priv(netdev);
int rc;
/* Notify the stack of the actual queue counts. */
rc = netif_set_real_num_tx_queues(netdev, adapter->num_queues);
if (rc) {
netif_err(adapter, ifup, netdev, "Can't set num tx queues\n");
return rc;
}
rc = netif_set_real_num_rx_queues(netdev, adapter->num_queues);
if (rc) {
netif_err(adapter, ifup, netdev, "Can't set num rx queues\n");
return rc;
}
rc = ena_up(adapter);
if (rc)
return rc;
return rc;
}
/* ena_close - Disables a network interface
* @netdev: network interface device structure
*
* Returns 0, this is not allowed to fail
*
* The close entry point is called when an interface is de-activated
* by the OS. The hardware is still under the drivers control, but
* needs to be disabled. A global MAC reset is issued to stop the
* hardware, and all transmit and receive resources are freed.
*/
static int ena_close(struct net_device *netdev)
{
struct ena_adapter *adapter = netdev_priv(netdev);
netif_dbg(adapter, ifdown, netdev, "%s\n", __func__);
if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))
return 0;
if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
ena_down(adapter);
/* Check for device status and issue reset if needed*/
check_for_admin_com_state(adapter);
if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
netif_err(adapter, ifdown, adapter->netdev,
"Destroy failure, restarting device\n");
ena_dump_stats_to_dmesg(adapter);
/* rtnl lock already obtained in dev_ioctl() layer */
ena_destroy_device(adapter, false);
ena_restore_device(adapter);
}
return 0;
}
int ena_update_queue_sizes(struct ena_adapter *adapter,
u32 new_tx_size,
u32 new_rx_size)
{
bool dev_up;
dev_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
ena_close(adapter->netdev);
adapter->requested_tx_ring_size = new_tx_size;
adapter->requested_rx_ring_size = new_rx_size;
ena_init_io_rings(adapter);
return dev_up ? ena_up(adapter) : 0;
}
static void ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct sk_buff *skb)
{
u32 mss = skb_shinfo(skb)->gso_size;
struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
u8 l4_protocol = 0;
if ((skb->ip_summed == CHECKSUM_PARTIAL) || mss) {
ena_tx_ctx->l4_csum_enable = 1;
if (mss) {
ena_tx_ctx->tso_enable = 1;
ena_meta->l4_hdr_len = tcp_hdr(skb)->doff;
ena_tx_ctx->l4_csum_partial = 0;
} else {
ena_tx_ctx->tso_enable = 0;
ena_meta->l4_hdr_len = 0;
ena_tx_ctx->l4_csum_partial = 1;
}
switch (ip_hdr(skb)->version) {
case IPVERSION:
ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
if (ip_hdr(skb)->frag_off & htons(IP_DF))
ena_tx_ctx->df = 1;
if (mss)
ena_tx_ctx->l3_csum_enable = 1;
l4_protocol = ip_hdr(skb)->protocol;
break;
case 6:
ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
l4_protocol = ipv6_hdr(skb)->nexthdr;
break;
default:
break;
}
if (l4_protocol == IPPROTO_TCP)
ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
else
ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
ena_meta->mss = mss;
ena_meta->l3_hdr_len = skb_network_header_len(skb);
ena_meta->l3_hdr_offset = skb_network_offset(skb);
ena_tx_ctx->meta_valid = 1;
} else {
ena_tx_ctx->meta_valid = 0;
}
}
static int ena_check_and_linearize_skb(struct ena_ring *tx_ring,
struct sk_buff *skb)
{
int num_frags, header_len, rc;
num_frags = skb_shinfo(skb)->nr_frags;
header_len = skb_headlen(skb);
if (num_frags < tx_ring->sgl_size)
return 0;
if ((num_frags == tx_ring->sgl_size) &&
(header_len < tx_ring->tx_max_header_size))
return 0;
u64_stats_update_begin(&tx_ring->syncp);
tx_ring->tx_stats.linearize++;
u64_stats_update_end(&tx_ring->syncp);
rc = skb_linearize(skb);
if (unlikely(rc)) {
u64_stats_update_begin(&tx_ring->syncp);
tx_ring->tx_stats.linearize_failed++;
u64_stats_update_end(&tx_ring->syncp);
}
return rc;
}
static int ena_tx_map_skb(struct ena_ring *tx_ring,
struct ena_tx_buffer *tx_info,
struct sk_buff *skb,
void **push_hdr,
u16 *header_len)
{
struct ena_adapter *adapter = tx_ring->adapter;
struct ena_com_buf *ena_buf;
dma_addr_t dma;
u32 skb_head_len, frag_len, last_frag;
u16 push_len = 0;
u16 delta = 0;
int i = 0;
skb_head_len = skb_headlen(skb);
tx_info->skb = skb;
ena_buf = tx_info->bufs;
if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
/* When the device is LLQ mode, the driver will copy
* the header into the device memory space.
* the ena_com layer assume the header is in a linear
* memory space.
* This assumption might be wrong since part of the header
* can be in the fragmented buffers.
* Use skb_header_pointer to make sure the header is in a
* linear memory space.
*/
push_len = min_t(u32, skb->len, tx_ring->tx_max_header_size);
*push_hdr = skb_header_pointer(skb, 0, push_len,
tx_ring->push_buf_intermediate_buf);
*header_len = push_len;
if (unlikely(skb->data != *push_hdr)) {
u64_stats_update_begin(&tx_ring->syncp);
tx_ring->tx_stats.llq_buffer_copy++;
u64_stats_update_end(&tx_ring->syncp);
delta = push_len - skb_head_len;
}
} else {
*push_hdr = NULL;
*header_len = min_t(u32, skb_head_len,
tx_ring->tx_max_header_size);
}
netif_dbg(adapter, tx_queued, adapter->netdev,
"skb: %p header_buf->vaddr: %p push_len: %d\n", skb,
*push_hdr, push_len);
if (skb_head_len > push_len) {
dma = dma_map_single(tx_ring->dev, skb->data + push_len,
skb_head_len - push_len, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
goto error_report_dma_error;
ena_buf->paddr = dma;
ena_buf->len = skb_head_len - push_len;
ena_buf++;
tx_info->num_of_bufs++;
tx_info->map_linear_data = 1;
} else {
tx_info->map_linear_data = 0;
}
last_frag = skb_shinfo(skb)->nr_frags;
for (i = 0; i < last_frag; i++) {
const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
frag_len = skb_frag_size(frag);
if (unlikely(delta >= frag_len)) {
delta -= frag_len;
continue;
}
dma = skb_frag_dma_map(tx_ring->dev, frag, delta,
frag_len - delta, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
goto error_report_dma_error;
ena_buf->paddr = dma;
ena_buf->len = frag_len - delta;
ena_buf++;
tx_info->num_of_bufs++;
delta = 0;
}
return 0;
error_report_dma_error:
u64_stats_update_begin(&tx_ring->syncp);
tx_ring->tx_stats.dma_mapping_err++;
u64_stats_update_end(&tx_ring->syncp);
netdev_warn(adapter->netdev, "failed to map skb\n");
tx_info->skb = NULL;
tx_info->num_of_bufs += i;
ena_unmap_tx_skb(tx_ring, tx_info);
return -EINVAL;
}
/* Called with netif_tx_lock. */
static netdev_tx_t ena_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct ena_adapter *adapter = netdev_priv(dev);
struct ena_tx_buffer *tx_info;
struct ena_com_tx_ctx ena_tx_ctx;
struct ena_ring *tx_ring;
struct netdev_queue *txq;
void *push_hdr;
u16 next_to_use, req_id, header_len;
int qid, rc, nb_hw_desc;
netif_dbg(adapter, tx_queued, dev, "%s skb %p\n", __func__, skb);
/* Determine which tx ring we will be placed on */
qid = skb_get_queue_mapping(skb);
tx_ring = &adapter->tx_ring[qid];
txq = netdev_get_tx_queue(dev, qid);
rc = ena_check_and_linearize_skb(tx_ring, skb);
if (unlikely(rc))
goto error_drop_packet;
skb_tx_timestamp(skb);
next_to_use = tx_ring->next_to_use;
req_id = tx_ring->free_ids[next_to_use];
tx_info = &tx_ring->tx_buffer_info[req_id];
tx_info->num_of_bufs = 0;
WARN(tx_info->skb, "SKB isn't NULL req_id %d\n", req_id);
rc = ena_tx_map_skb(tx_ring, tx_info, skb, &push_hdr, &header_len);
if (unlikely(rc))
goto error_drop_packet;
memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
ena_tx_ctx.ena_bufs = tx_info->bufs;
ena_tx_ctx.push_header = push_hdr;
ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
ena_tx_ctx.req_id = req_id;
ena_tx_ctx.header_len = header_len;
/* set flags and meta data */
ena_tx_csum(&ena_tx_ctx, skb);
if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq, &ena_tx_ctx))) {
netif_dbg(adapter, tx_queued, dev,
"llq tx max burst size of queue %d achieved, writing doorbell to send burst\n",
qid);
ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
}
/* prepare the packet's descriptors to dma engine */
rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq, &ena_tx_ctx,
&nb_hw_desc);
/* ena_com_prepare_tx() can't fail due to overflow of tx queue,
* since the number of free descriptors in the queue is checked
* after sending the previous packet. In case there isn't enough
* space in the queue for the next packet, it is stopped
* until there is again enough available space in the queue.
* All other failure reasons of ena_com_prepare_tx() are fatal
* and therefore require a device reset.
*/
if (unlikely(rc)) {
netif_err(adapter, tx_queued, dev,
"failed to prepare tx bufs\n");
u64_stats_update_begin(&tx_ring->syncp);
tx_ring->tx_stats.prepare_ctx_err++;
u64_stats_update_end(&tx_ring->syncp);
adapter->reset_reason = ENA_REGS_RESET_DRIVER_INVALID_STATE;
set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
goto error_unmap_dma;
}
netdev_tx_sent_queue(txq, skb->len);
u64_stats_update_begin(&tx_ring->syncp);
tx_ring->tx_stats.cnt++;
tx_ring->tx_stats.bytes += skb->len;
u64_stats_update_end(&tx_ring->syncp);
tx_info->tx_descs = nb_hw_desc;
tx_info->last_jiffies = jiffies;
tx_info->print_once = 0;
tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
tx_ring->ring_size);
/* stop the queue when no more space available, the packet can have up
* to sgl_size + 2. one for the meta descriptor and one for header
* (if the header is larger than tx_max_header_size).
*/
if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
tx_ring->sgl_size + 2))) {
netif_dbg(adapter, tx_queued, dev, "%s stop queue %d\n",
__func__, qid);
netif_tx_stop_queue(txq);
u64_stats_update_begin(&tx_ring->syncp);
tx_ring->tx_stats.queue_stop++;
u64_stats_update_end(&tx_ring->syncp);
/* There is a rare condition where this function decide to
* stop the queue but meanwhile clean_tx_irq updates
* next_to_completion and terminates.
* The queue will remain stopped forever.
* To solve this issue add a mb() to make sure that
* netif_tx_stop_queue() write is vissible before checking if
* there is additional space in the queue.
*/
smp_mb();
if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
ENA_TX_WAKEUP_THRESH)) {
netif_tx_wake_queue(txq);
u64_stats_update_begin(&tx_ring->syncp);
tx_ring->tx_stats.queue_wakeup++;
u64_stats_update_end(&tx_ring->syncp);
}
}
if (netif_xmit_stopped(txq) || !netdev_xmit_more()) {
/* trigger the dma engine. ena_com_write_sq_doorbell()
* has a mb
*/
ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
u64_stats_update_begin(&tx_ring->syncp);
tx_ring->tx_stats.doorbells++;
u64_stats_update_end(&tx_ring->syncp);
}
return NETDEV_TX_OK;
error_unmap_dma:
ena_unmap_tx_skb(tx_ring, tx_info);
tx_info->skb = NULL;
error_drop_packet:
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
static u16 ena_select_queue(struct net_device *dev, struct sk_buff *skb,
struct net_device *sb_dev)
{
u16 qid;
/* we suspect that this is good for in--kernel network services that
* want to loop incoming skb rx to tx in normal user generated traffic,
* most probably we will not get to this
*/
if (skb_rx_queue_recorded(skb))
qid = skb_get_rx_queue(skb);
else
qid = netdev_pick_tx(dev, skb, NULL);
return qid;
}
static void ena_config_host_info(struct ena_com_dev *ena_dev,
struct pci_dev *pdev)
{
struct ena_admin_host_info *host_info;
int rc;
/* Allocate only the host info */
rc = ena_com_allocate_host_info(ena_dev);
if (rc) {
pr_err("Cannot allocate host info\n");
return;
}
host_info = ena_dev->host_attr.host_info;
host_info->bdf = (pdev->bus->number << 8) | pdev->devfn;
host_info->os_type = ENA_ADMIN_OS_LINUX;
host_info->kernel_ver = LINUX_VERSION_CODE;
strlcpy(host_info->kernel_ver_str, utsname()->version,
sizeof(host_info->kernel_ver_str) - 1);
host_info->os_dist = 0;
strncpy(host_info->os_dist_str, utsname()->release,
sizeof(host_info->os_dist_str) - 1);
host_info->driver_version =
(DRV_MODULE_VER_MAJOR) |
(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
(DRV_MODULE_VER_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT) |
("K"[0] << ENA_ADMIN_HOST_INFO_MODULE_TYPE_SHIFT);
host_info->num_cpus = num_online_cpus();
host_info->driver_supported_features =
ENA_ADMIN_HOST_INFO_INTERRUPT_MODERATION_MASK;
rc = ena_com_set_host_attributes(ena_dev);
if (rc) {
if (rc == -EOPNOTSUPP)
pr_warn("Cannot set host attributes\n");
else
pr_err("Cannot set host attributes\n");
goto err;
}
return;
err:
ena_com_delete_host_info(ena_dev);
}
static void ena_config_debug_area(struct ena_adapter *adapter)
{
u32 debug_area_size;
int rc, ss_count;
ss_count = ena_get_sset_count(adapter->netdev, ETH_SS_STATS);
if (ss_count <= 0) {
netif_err(adapter, drv, adapter->netdev,
"SS count is negative\n");
return;
}
/* allocate 32 bytes for each string and 64bit for the value */
debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
rc = ena_com_allocate_debug_area(adapter->ena_dev, debug_area_size);
if (rc) {
pr_err("Cannot allocate debug area\n");
return;
}
rc = ena_com_set_host_attributes(adapter->ena_dev);
if (rc) {
if (rc == -EOPNOTSUPP)
netif_warn(adapter, drv, adapter->netdev,
"Cannot set host attributes\n");
else
netif_err(adapter, drv, adapter->netdev,
"Cannot set host attributes\n");
goto err;
}
return;
err:
ena_com_delete_debug_area(adapter->ena_dev);
}
static void ena_get_stats64(struct net_device *netdev,
struct rtnl_link_stats64 *stats)
{
struct ena_adapter *adapter = netdev_priv(netdev);
struct ena_ring *rx_ring, *tx_ring;
unsigned int start;
u64 rx_drops;
int i;
if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
return;
for (i = 0; i < adapter->num_queues; i++) {
u64 bytes, packets;
tx_ring = &adapter->tx_ring[i];
do {
start = u64_stats_fetch_begin_irq(&tx_ring->syncp);
packets = tx_ring->tx_stats.cnt;
bytes = tx_ring->tx_stats.bytes;
} while (u64_stats_fetch_retry_irq(&tx_ring->syncp, start));
stats->tx_packets += packets;
stats->tx_bytes += bytes;
rx_ring = &adapter->rx_ring[i];
do {
start = u64_stats_fetch_begin_irq(&rx_ring->syncp);
packets = rx_ring->rx_stats.cnt;
bytes = rx_ring->rx_stats.bytes;
} while (u64_stats_fetch_retry_irq(&rx_ring->syncp, start));
stats->rx_packets += packets;
stats->rx_bytes += bytes;
}
do {
start = u64_stats_fetch_begin_irq(&adapter->syncp);
rx_drops = adapter->dev_stats.rx_drops;
} while (u64_stats_fetch_retry_irq(&adapter->syncp, start));
stats->rx_dropped = rx_drops;
stats->multicast = 0;
stats->collisions = 0;
stats->rx_length_errors = 0;
stats->rx_crc_errors = 0;
stats->rx_frame_errors = 0;
stats->rx_fifo_errors = 0;
stats->rx_missed_errors = 0;
stats->tx_window_errors = 0;
stats->rx_errors = 0;
stats->tx_errors = 0;
}
static const struct net_device_ops ena_netdev_ops = {
.ndo_open = ena_open,
.ndo_stop = ena_close,
.ndo_start_xmit = ena_start_xmit,
.ndo_select_queue = ena_select_queue,
.ndo_get_stats64 = ena_get_stats64,
.ndo_tx_timeout = ena_tx_timeout,
.ndo_change_mtu = ena_change_mtu,
.ndo_set_mac_address = NULL,
.ndo_validate_addr = eth_validate_addr,
};
static int ena_device_validate_params(struct ena_adapter *adapter,
struct ena_com_dev_get_features_ctx *get_feat_ctx)
{
struct net_device *netdev = adapter->netdev;
int rc;
rc = ether_addr_equal(get_feat_ctx->dev_attr.mac_addr,
adapter->mac_addr);
if (!rc) {
netif_err(adapter, drv, netdev,
"Error, mac address are different\n");
return -EINVAL;
}
if (get_feat_ctx->dev_attr.max_mtu < netdev->mtu) {
netif_err(adapter, drv, netdev,
"Error, device max mtu is smaller than netdev MTU\n");
return -EINVAL;
}
return 0;
}
static int ena_device_init(struct ena_com_dev *ena_dev, struct pci_dev *pdev,
struct ena_com_dev_get_features_ctx *get_feat_ctx,
bool *wd_state)
{
struct device *dev = &pdev->dev;
bool readless_supported;
u32 aenq_groups;
int dma_width;
int rc;
rc = ena_com_mmio_reg_read_request_init(ena_dev);
if (rc) {
dev_err(dev, "failed to init mmio read less\n");
return rc;
}
/* The PCIe configuration space revision id indicate if mmio reg
* read is disabled
*/
readless_supported = !(pdev->revision & ENA_MMIO_DISABLE_REG_READ);
ena_com_set_mmio_read_mode(ena_dev, readless_supported);
rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
if (rc) {
dev_err(dev, "Can not reset device\n");
goto err_mmio_read_less;
}
rc = ena_com_validate_version(ena_dev);
if (rc) {
dev_err(dev, "device version is too low\n");
goto err_mmio_read_less;
}
dma_width = ena_com_get_dma_width(ena_dev);
if (dma_width < 0) {
dev_err(dev, "Invalid dma width value %d", dma_width);
rc = dma_width;
goto err_mmio_read_less;
}
rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(dma_width));
if (rc) {
dev_err(dev, "pci_set_dma_mask failed 0x%x\n", rc);
goto err_mmio_read_less;
}
rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(dma_width));
if (rc) {
dev_err(dev, "err_pci_set_consistent_dma_mask failed 0x%x\n",
rc);
goto err_mmio_read_less;
}
/* ENA admin level init */
rc = ena_com_admin_init(ena_dev, &aenq_handlers);
if (rc) {
dev_err(dev,
"Can not initialize ena admin queue with device\n");
goto err_mmio_read_less;
}
/* To enable the msix interrupts the driver needs to know the number
* of queues. So the driver uses polling mode to retrieve this
* information
*/
ena_com_set_admin_polling_mode(ena_dev, true);
ena_config_host_info(ena_dev, pdev);
/* Get Device Attributes*/
rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
if (rc) {
dev_err(dev, "Cannot get attribute for ena device rc=%d\n", rc);
goto err_admin_init;
}
/* Try to turn all the available aenq groups */
aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
BIT(ENA_ADMIN_FATAL_ERROR) |
BIT(ENA_ADMIN_WARNING) |
BIT(ENA_ADMIN_NOTIFICATION) |
BIT(ENA_ADMIN_KEEP_ALIVE);
aenq_groups &= get_feat_ctx->aenq.supported_groups;
rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
if (rc) {
dev_err(dev, "Cannot configure aenq groups rc= %d\n", rc);
goto err_admin_init;
}
*wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
return 0;
err_admin_init:
ena_com_delete_host_info(ena_dev);
ena_com_admin_destroy(ena_dev);
err_mmio_read_less:
ena_com_mmio_reg_read_request_destroy(ena_dev);
return rc;
}
static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter,
int io_vectors)
{
struct ena_com_dev *ena_dev = adapter->ena_dev;
struct device *dev = &adapter->pdev->dev;
int rc;
rc = ena_enable_msix(adapter, io_vectors);
if (rc) {
dev_err(dev, "Can not reserve msix vectors\n");
return rc;
}
ena_setup_mgmnt_intr(adapter);
rc = ena_request_mgmnt_irq(adapter);
if (rc) {
dev_err(dev, "Can not setup management interrupts\n");
goto err_disable_msix;
}
ena_com_set_admin_polling_mode(ena_dev, false);
ena_com_admin_aenq_enable(ena_dev);
return 0;
err_disable_msix:
ena_disable_msix(adapter);
return rc;
}
static void ena_destroy_device(struct ena_adapter *adapter, bool graceful)
{
struct net_device *netdev = adapter->netdev;
struct ena_com_dev *ena_dev = adapter->ena_dev;
bool dev_up;
if (!test_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags))
return;
netif_carrier_off(netdev);
del_timer_sync(&adapter->timer_service);
dev_up = test_bit(ENA_FLAG_DEV_UP, &adapter->flags);
adapter->dev_up_before_reset = dev_up;
if (!graceful)
ena_com_set_admin_running_state(ena_dev, false);
if (test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
ena_down(adapter);
/* Stop the device from sending AENQ events (in case reset flag is set
* and device is up, ena_down() already reset the device.
*/
if (!(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags) && dev_up))
ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason);
ena_free_mgmnt_irq(adapter);
ena_disable_msix(adapter);
ena_com_abort_admin_commands(ena_dev);
ena_com_wait_for_abort_completion(ena_dev);
ena_com_admin_destroy(ena_dev);
ena_com_mmio_reg_read_request_destroy(ena_dev);
adapter->reset_reason = ENA_REGS_RESET_NORMAL;
clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
}
static int ena_restore_device(struct ena_adapter *adapter)
{
struct ena_com_dev_get_features_ctx get_feat_ctx;
struct ena_com_dev *ena_dev = adapter->ena_dev;
struct pci_dev *pdev = adapter->pdev;
bool wd_state;
int rc;
set_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
rc = ena_device_init(ena_dev, adapter->pdev, &get_feat_ctx, &wd_state);
if (rc) {
dev_err(&pdev->dev, "Can not initialize device\n");
goto err;
}
adapter->wd_state = wd_state;
rc = ena_device_validate_params(adapter, &get_feat_ctx);
if (rc) {
dev_err(&pdev->dev, "Validation of device parameters failed\n");
goto err_device_destroy;
}
rc = ena_enable_msix_and_set_admin_interrupts(adapter,
adapter->num_queues);
if (rc) {
dev_err(&pdev->dev, "Enable MSI-X failed\n");
goto err_device_destroy;
}
/* If the interface was up before the reset bring it up */
if (adapter->dev_up_before_reset) {
rc = ena_up(adapter);
if (rc) {
dev_err(&pdev->dev, "Failed to create I/O queues\n");
goto err_disable_msix;
}
}
set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
if (test_bit(ENA_FLAG_LINK_UP, &adapter->flags))
netif_carrier_on(adapter->netdev);
mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
dev_err(&pdev->dev,
"Device reset completed successfully, Driver info: %s\n",
version);
return rc;
err_disable_msix:
ena_free_mgmnt_irq(adapter);
ena_disable_msix(adapter);
err_device_destroy:
ena_com_abort_admin_commands(ena_dev);
ena_com_wait_for_abort_completion(ena_dev);
ena_com_admin_destroy(ena_dev);
ena_com_dev_reset(ena_dev, ENA_REGS_RESET_DRIVER_INVALID_STATE);
ena_com_mmio_reg_read_request_destroy(ena_dev);
err:
clear_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
clear_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags);
dev_err(&pdev->dev,
"Reset attempt failed. Can not reset the device\n");
return rc;
}
static void ena_fw_reset_device(struct work_struct *work)
{
struct ena_adapter *adapter =
container_of(work, struct ena_adapter, reset_task);
struct pci_dev *pdev = adapter->pdev;
if (unlikely(!test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
dev_err(&pdev->dev,
"device reset schedule while reset bit is off\n");
return;
}
rtnl_lock();
ena_destroy_device(adapter, false);
ena_restore_device(adapter);
rtnl_unlock();
}
static int check_for_rx_interrupt_queue(struct ena_adapter *adapter,
struct ena_ring *rx_ring)
{
if (likely(rx_ring->first_interrupt))
return 0;
if (ena_com_cq_empty(rx_ring->ena_com_io_cq))
return 0;
rx_ring->no_interrupt_event_cnt++;
if (rx_ring->no_interrupt_event_cnt == ENA_MAX_NO_INTERRUPT_ITERATIONS) {
netif_err(adapter, rx_err, adapter->netdev,
"Potential MSIX issue on Rx side Queue = %d. Reset the device\n",
rx_ring->qid);
adapter->reset_reason = ENA_REGS_RESET_MISS_INTERRUPT;
smp_mb__before_atomic();
set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
return -EIO;
}
return 0;
}
static int check_missing_comp_in_tx_queue(struct ena_adapter *adapter,
struct ena_ring *tx_ring)
{
struct ena_tx_buffer *tx_buf;
unsigned long last_jiffies;
u32 missed_tx = 0;
int i, rc = 0;
for (i = 0; i < tx_ring->ring_size; i++) {
tx_buf = &tx_ring->tx_buffer_info[i];
last_jiffies = tx_buf->last_jiffies;
if (last_jiffies == 0)
/* no pending Tx at this location */
continue;
if (unlikely(!tx_ring->first_interrupt && time_is_before_jiffies(last_jiffies +
2 * adapter->missing_tx_completion_to))) {
/* If after graceful period interrupt is still not
* received, we schedule a reset
*/
netif_err(adapter, tx_err, adapter->netdev,
"Potential MSIX issue on Tx side Queue = %d. Reset the device\n",
tx_ring->qid);
adapter->reset_reason = ENA_REGS_RESET_MISS_INTERRUPT;
smp_mb__before_atomic();
set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
return -EIO;
}
if (unlikely(time_is_before_jiffies(last_jiffies +
adapter->missing_tx_completion_to))) {
if (!tx_buf->print_once)
netif_notice(adapter, tx_err, adapter->netdev,
"Found a Tx that wasn't completed on time, qid %d, index %d.\n",
tx_ring->qid, i);
tx_buf->print_once = 1;
missed_tx++;
}
}
if (unlikely(missed_tx > adapter->missing_tx_completion_threshold)) {
netif_err(adapter, tx_err, adapter->netdev,
"The number of lost tx completions is above the threshold (%d > %d). Reset the device\n",
missed_tx,
adapter->missing_tx_completion_threshold);
adapter->reset_reason =
ENA_REGS_RESET_MISS_TX_CMPL;
set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
rc = -EIO;
}
u64_stats_update_begin(&tx_ring->syncp);
tx_ring->tx_stats.missed_tx = missed_tx;
u64_stats_update_end(&tx_ring->syncp);
return rc;
}
static void check_for_missing_completions(struct ena_adapter *adapter)
{
struct ena_ring *tx_ring;
struct ena_ring *rx_ring;
int i, budget, rc;
/* Make sure the driver doesn't turn the device in other process */
smp_rmb();
if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
return;
if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
return;
if (adapter->missing_tx_completion_to == ENA_HW_HINTS_NO_TIMEOUT)
return;
budget = ENA_MONITORED_TX_QUEUES;
for (i = adapter->last_monitored_tx_qid; i < adapter->num_queues; i++) {
tx_ring = &adapter->tx_ring[i];
rx_ring = &adapter->rx_ring[i];
rc = check_missing_comp_in_tx_queue(adapter, tx_ring);
if (unlikely(rc))
return;
rc = check_for_rx_interrupt_queue(adapter, rx_ring);
if (unlikely(rc))
return;
budget--;
if (!budget)
break;
}
adapter->last_monitored_tx_qid = i % adapter->num_queues;
}
/* trigger napi schedule after 2 consecutive detections */
#define EMPTY_RX_REFILL 2
/* For the rare case where the device runs out of Rx descriptors and the
* napi handler failed to refill new Rx descriptors (due to a lack of memory
* for example).
* This case will lead to a deadlock:
* The device won't send interrupts since all the new Rx packets will be dropped
* The napi handler won't allocate new Rx descriptors so the device will be
* able to send new packets.
*
* This scenario can happen when the kernel's vm.min_free_kbytes is too small.
* It is recommended to have at least 512MB, with a minimum of 128MB for
* constrained environment).
*
* When such a situation is detected - Reschedule napi
*/
static void check_for_empty_rx_ring(struct ena_adapter *adapter)
{
struct ena_ring *rx_ring;
int i, refill_required;
if (!test_bit(ENA_FLAG_DEV_UP, &adapter->flags))
return;
if (test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))
return;
for (i = 0; i < adapter->num_queues; i++) {
rx_ring = &adapter->rx_ring[i];
refill_required =
ena_com_free_desc(rx_ring->ena_com_io_sq);
if (unlikely(refill_required == (rx_ring->ring_size - 1))) {
rx_ring->empty_rx_queue++;
if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) {
u64_stats_update_begin(&rx_ring->syncp);
rx_ring->rx_stats.empty_rx_ring++;
u64_stats_update_end(&rx_ring->syncp);
netif_err(adapter, drv, adapter->netdev,
"trigger refill for ring %d\n", i);
napi_schedule(rx_ring->napi);
rx_ring->empty_rx_queue = 0;
}
} else {
rx_ring->empty_rx_queue = 0;
}
}
}
/* Check for keep alive expiration */
static void check_for_missing_keep_alive(struct ena_adapter *adapter)
{
unsigned long keep_alive_expired;
if (!adapter->wd_state)
return;
if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
return;
keep_alive_expired = round_jiffies(adapter->last_keep_alive_jiffies +
adapter->keep_alive_timeout);
if (unlikely(time_is_before_jiffies(keep_alive_expired))) {
netif_err(adapter, drv, adapter->netdev,
"Keep alive watchdog timeout.\n");
u64_stats_update_begin(&adapter->syncp);
adapter->dev_stats.wd_expired++;
u64_stats_update_end(&adapter->syncp);
adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
}
}
static void check_for_admin_com_state(struct ena_adapter *adapter)
{
if (unlikely(!ena_com_get_admin_running_state(adapter->ena_dev))) {
netif_err(adapter, drv, adapter->netdev,
"ENA admin queue is not in running state!\n");
u64_stats_update_begin(&adapter->syncp);
adapter->dev_stats.admin_q_pause++;
u64_stats_update_end(&adapter->syncp);
adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
set_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
}
}
static void ena_update_hints(struct ena_adapter *adapter,
struct ena_admin_ena_hw_hints *hints)
{
struct net_device *netdev = adapter->netdev;
if (hints->admin_completion_tx_timeout)
adapter->ena_dev->admin_queue.completion_timeout =
hints->admin_completion_tx_timeout * 1000;
if (hints->mmio_read_timeout)
/* convert to usec */
adapter->ena_dev->mmio_read.reg_read_to =
hints->mmio_read_timeout * 1000;
if (hints->missed_tx_completion_count_threshold_to_reset)
adapter->missing_tx_completion_threshold =
hints->missed_tx_completion_count_threshold_to_reset;
if (hints->missing_tx_completion_timeout) {
if (hints->missing_tx_completion_timeout == ENA_HW_HINTS_NO_TIMEOUT)
adapter->missing_tx_completion_to = ENA_HW_HINTS_NO_TIMEOUT;
else
adapter->missing_tx_completion_to =
msecs_to_jiffies(hints->missing_tx_completion_timeout);
}
if (hints->netdev_wd_timeout)
netdev->watchdog_timeo = msecs_to_jiffies(hints->netdev_wd_timeout);
if (hints->driver_watchdog_timeout) {
if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
else
adapter->keep_alive_timeout =
msecs_to_jiffies(hints->driver_watchdog_timeout);
}
}
static void ena_update_host_info(struct ena_admin_host_info *host_info,
struct net_device *netdev)
{
host_info->supported_network_features[0] =
netdev->features & GENMASK_ULL(31, 0);
host_info->supported_network_features[1] =
(netdev->features & GENMASK_ULL(63, 32)) >> 32;
}
static void ena_timer_service(struct timer_list *t)
{
struct ena_adapter *adapter = from_timer(adapter, t, timer_service);
u8 *debug_area = adapter->ena_dev->host_attr.debug_area_virt_addr;
struct ena_admin_host_info *host_info =
adapter->ena_dev->host_attr.host_info;
check_for_missing_keep_alive(adapter);
check_for_admin_com_state(adapter);
check_for_missing_completions(adapter);
check_for_empty_rx_ring(adapter);
if (debug_area)
ena_dump_stats_to_buf(adapter, debug_area);
if (host_info)
ena_update_host_info(host_info, adapter->netdev);
if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
netif_err(adapter, drv, adapter->netdev,
"Trigger reset is on\n");
ena_dump_stats_to_dmesg(adapter);
queue_work(ena_wq, &adapter->reset_task);
return;
}
/* Reset the timer */
mod_timer(&adapter->timer_service, jiffies + HZ);
}
static int ena_calc_io_queue_num(struct pci_dev *pdev,
struct ena_com_dev *ena_dev,
struct ena_com_dev_get_features_ctx *get_feat_ctx)
{
int io_tx_sq_num, io_tx_cq_num, io_rx_num, io_queue_num;
if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
struct ena_admin_queue_ext_feature_fields *max_queue_ext =
&get_feat_ctx->max_queue_ext.max_queue_ext;
io_rx_num = min_t(int, max_queue_ext->max_rx_sq_num,
max_queue_ext->max_rx_cq_num);
io_tx_sq_num = max_queue_ext->max_tx_sq_num;
io_tx_cq_num = max_queue_ext->max_tx_cq_num;
} else {
struct ena_admin_queue_feature_desc *max_queues =
&get_feat_ctx->max_queues;
io_tx_sq_num = max_queues->max_sq_num;
io_tx_cq_num = max_queues->max_cq_num;
io_rx_num = min_t(int, io_tx_sq_num, io_tx_cq_num);
}
/* In case of LLQ use the llq fields for the tx SQ/CQ */
if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
io_queue_num = min_t(int, num_online_cpus(), ENA_MAX_NUM_IO_QUEUES);
io_queue_num = min_t(int, io_queue_num, io_rx_num);
io_queue_num = min_t(int, io_queue_num, io_tx_sq_num);
io_queue_num = min_t(int, io_queue_num, io_tx_cq_num);
/* 1 IRQ for for mgmnt and 1 IRQs for each IO direction */
io_queue_num = min_t(int, io_queue_num, pci_msix_vec_count(pdev) - 1);
if (unlikely(!io_queue_num)) {
dev_err(&pdev->dev, "The device doesn't have io queues\n");
return -EFAULT;
}
return io_queue_num;
}
static int ena_set_queues_placement_policy(struct pci_dev *pdev,
struct ena_com_dev *ena_dev,
struct ena_admin_feature_llq_desc *llq,
struct ena_llq_configurations *llq_default_configurations)
{
bool has_mem_bar;
int rc;
u32 llq_feature_mask;
llq_feature_mask = 1 << ENA_ADMIN_LLQ;
if (!(ena_dev->supported_features & llq_feature_mask)) {
dev_err(&pdev->dev,
"LLQ is not supported Fallback to host mode policy.\n");
ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
return 0;
}
has_mem_bar = pci_select_bars(pdev, IORESOURCE_MEM) & BIT(ENA_MEM_BAR);
rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
if (unlikely(rc)) {
dev_err(&pdev->dev,
"Failed to configure the device mode. Fallback to host mode policy.\n");
ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
return 0;
}
/* Nothing to config, exit */
if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
return 0;
if (!has_mem_bar) {
dev_err(&pdev->dev,
"ENA device does not expose LLQ bar. Fallback to host mode policy.\n");
ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
return 0;
}
ena_dev->mem_bar = devm_ioremap_wc(&pdev->dev,
pci_resource_start(pdev, ENA_MEM_BAR),
pci_resource_len(pdev, ENA_MEM_BAR));
if (!ena_dev->mem_bar)
return -EFAULT;
return 0;
}
static void ena_set_dev_offloads(struct ena_com_dev_get_features_ctx *feat,
struct net_device *netdev)
{
netdev_features_t dev_features = 0;
/* Set offload features */
if (feat->offload.tx &
ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
dev_features |= NETIF_F_IP_CSUM;
if (feat->offload.tx &
ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)
dev_features |= NETIF_F_IPV6_CSUM;
if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
dev_features |= NETIF_F_TSO;
if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK)
dev_features |= NETIF_F_TSO6;
if (feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_ECN_MASK)
dev_features |= NETIF_F_TSO_ECN;
if (feat->offload.rx_supported &
ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
dev_features |= NETIF_F_RXCSUM;
if (feat->offload.rx_supported &
ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK)
dev_features |= NETIF_F_RXCSUM;
netdev->features =
dev_features |
NETIF_F_SG |
NETIF_F_RXHASH |
NETIF_F_HIGHDMA;
netdev->hw_features |= netdev->features;
netdev->vlan_features |= netdev->features;
}
static void ena_set_conf_feat_params(struct ena_adapter *adapter,
struct ena_com_dev_get_features_ctx *feat)
{
struct net_device *netdev = adapter->netdev;
/* Copy mac address */
if (!is_valid_ether_addr(feat->dev_attr.mac_addr)) {
eth_hw_addr_random(netdev);
ether_addr_copy(adapter->mac_addr, netdev->dev_addr);
} else {
ether_addr_copy(adapter->mac_addr, feat->dev_attr.mac_addr);
ether_addr_copy(netdev->dev_addr, adapter->mac_addr);
}
/* Set offload features */
ena_set_dev_offloads(feat, netdev);
adapter->max_mtu = feat->dev_attr.max_mtu;
netdev->max_mtu = adapter->max_mtu;
netdev->min_mtu = ENA_MIN_MTU;
}
static int ena_rss_init_default(struct ena_adapter *adapter)
{
struct ena_com_dev *ena_dev = adapter->ena_dev;
struct device *dev = &adapter->pdev->dev;
int rc, i;
u32 val;
rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
if (unlikely(rc)) {
dev_err(dev, "Cannot init indirect table\n");
goto err_rss_init;
}
for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
val = ethtool_rxfh_indir_default(i, adapter->num_queues);
rc = ena_com_indirect_table_fill_entry(ena_dev, i,
ENA_IO_RXQ_IDX(val));
if (unlikely(rc && (rc != -EOPNOTSUPP))) {
dev_err(dev, "Cannot fill indirect table\n");
goto err_fill_indir;
}
}
rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
if (unlikely(rc && (rc != -EOPNOTSUPP))) {
dev_err(dev, "Cannot fill hash function\n");
goto err_fill_indir;
}
rc = ena_com_set_default_hash_ctrl(ena_dev);
if (unlikely(rc && (rc != -EOPNOTSUPP))) {
dev_err(dev, "Cannot fill hash control\n");
goto err_fill_indir;
}
return 0;
err_fill_indir:
ena_com_rss_destroy(ena_dev);
err_rss_init:
return rc;
}
static void ena_release_bars(struct ena_com_dev *ena_dev, struct pci_dev *pdev)
{
int release_bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK;
pci_release_selected_regions(pdev, release_bars);
}
static void set_default_llq_configurations(struct ena_llq_configurations *llq_config)
{
llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
llq_config->llq_ring_entry_size = ENA_ADMIN_LIST_ENTRY_SIZE_128B;
llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
llq_config->llq_num_decs_before_header = ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
llq_config->llq_ring_entry_size_value = 128;
}
static int ena_calc_queue_size(struct ena_calc_queue_size_ctx *ctx)
{
struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
struct ena_com_dev *ena_dev = ctx->ena_dev;
u32 tx_queue_size = ENA_DEFAULT_RING_SIZE;
u32 rx_queue_size = ENA_DEFAULT_RING_SIZE;
u32 max_tx_queue_size;
u32 max_rx_queue_size;
if (ctx->ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
struct ena_admin_queue_ext_feature_fields *max_queue_ext =
&ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
max_rx_queue_size = min_t(u32, max_queue_ext->max_rx_cq_depth,
max_queue_ext->max_rx_sq_depth);
max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
max_tx_queue_size = min_t(u32, max_tx_queue_size,
llq->max_llq_depth);
else
max_tx_queue_size = min_t(u32, max_tx_queue_size,
max_queue_ext->max_tx_sq_depth);
ctx->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
max_queue_ext->max_per_packet_tx_descs);
ctx->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
max_queue_ext->max_per_packet_rx_descs);
} else {
struct ena_admin_queue_feature_desc *max_queues =
&ctx->get_feat_ctx->max_queues;
max_rx_queue_size = min_t(u32, max_queues->max_cq_depth,
max_queues->max_sq_depth);
max_tx_queue_size = max_queues->max_cq_depth;
if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
max_tx_queue_size = min_t(u32, max_tx_queue_size,
llq->max_llq_depth);
else
max_tx_queue_size = min_t(u32, max_tx_queue_size,
max_queues->max_sq_depth);
ctx->max_tx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
max_queues->max_packet_tx_descs);
ctx->max_rx_sgl_size = min_t(u16, ENA_PKT_MAX_BUFS,
max_queues->max_packet_rx_descs);
}
max_tx_queue_size = rounddown_pow_of_two(max_tx_queue_size);
max_rx_queue_size = rounddown_pow_of_two(max_rx_queue_size);
tx_queue_size = clamp_val(tx_queue_size, ENA_MIN_RING_SIZE,
max_tx_queue_size);
rx_queue_size = clamp_val(rx_queue_size, ENA_MIN_RING_SIZE,
max_rx_queue_size);
tx_queue_size = rounddown_pow_of_two(tx_queue_size);
rx_queue_size = rounddown_pow_of_two(rx_queue_size);
ctx->max_tx_queue_size = max_tx_queue_size;
ctx->max_rx_queue_size = max_rx_queue_size;
ctx->tx_queue_size = tx_queue_size;
ctx->rx_queue_size = rx_queue_size;
return 0;
}
/* ena_probe - Device Initialization Routine
* @pdev: PCI device information struct
* @ent: entry in ena_pci_tbl
*
* Returns 0 on success, negative on failure
*
* ena_probe initializes an adapter identified by a pci_dev structure.
* The OS initialization, configuring of the adapter private structure,
* and a hardware reset occur.
*/
static int ena_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct ena_com_dev_get_features_ctx get_feat_ctx;
struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
struct ena_llq_configurations llq_config;
struct ena_com_dev *ena_dev = NULL;
struct ena_adapter *adapter;
int io_queue_num, bars, rc;
struct net_device *netdev;
static int adapters_found;
char *queue_type_str;
bool wd_state;
dev_dbg(&pdev->dev, "%s\n", __func__);
dev_info_once(&pdev->dev, "%s", version);
rc = pci_enable_device_mem(pdev);
if (rc) {
dev_err(&pdev->dev, "pci_enable_device_mem() failed!\n");
return rc;
}
pci_set_master(pdev);
ena_dev = vzalloc(sizeof(*ena_dev));
if (!ena_dev) {
rc = -ENOMEM;
goto err_disable_device;
}
bars = pci_select_bars(pdev, IORESOURCE_MEM) & ENA_BAR_MASK;
rc = pci_request_selected_regions(pdev, bars, DRV_MODULE_NAME);
if (rc) {
dev_err(&pdev->dev, "pci_request_selected_regions failed %d\n",
rc);
goto err_free_ena_dev;
}
ena_dev->reg_bar = devm_ioremap(&pdev->dev,
pci_resource_start(pdev, ENA_REG_BAR),
pci_resource_len(pdev, ENA_REG_BAR));
if (!ena_dev->reg_bar) {
dev_err(&pdev->dev, "failed to remap regs bar\n");
rc = -EFAULT;
goto err_free_region;
}
ena_dev->dmadev = &pdev->dev;
rc = ena_device_init(ena_dev, pdev, &get_feat_ctx, &wd_state);
if (rc) {
dev_err(&pdev->dev, "ena device init failed\n");
if (rc == -ETIME)
rc = -EPROBE_DEFER;
goto err_free_region;
}
set_default_llq_configurations(&llq_config);
rc = ena_set_queues_placement_policy(pdev, ena_dev, &get_feat_ctx.llq,
&llq_config);
if (rc) {
dev_err(&pdev->dev, "ena device init failed\n");
goto err_device_destroy;
}
calc_queue_ctx.ena_dev = ena_dev;
calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
calc_queue_ctx.pdev = pdev;
/* Initial Tx and RX interrupt delay. Assumes 1 usec granularity.
* Updated during device initialization with the real granularity
*/
ena_dev->intr_moder_tx_interval = ENA_INTR_INITIAL_TX_INTERVAL_USECS;
ena_dev->intr_moder_rx_interval = ENA_INTR_INITIAL_RX_INTERVAL_USECS;
ena_dev->intr_delay_resolution = ENA_DEFAULT_INTR_DELAY_RESOLUTION;
io_queue_num = ena_calc_io_queue_num(pdev, ena_dev, &get_feat_ctx);
rc = ena_calc_queue_size(&calc_queue_ctx);
if (rc || io_queue_num <= 0) {
rc = -EFAULT;
goto err_device_destroy;
}
dev_info(&pdev->dev, "creating %d io queues. rx queue size: %d tx queue size. %d LLQ is %s\n",
io_queue_num,
calc_queue_ctx.rx_queue_size,
calc_queue_ctx.tx_queue_size,
(ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) ?
"ENABLED" : "DISABLED");
/* dev zeroed in init_etherdev */
netdev = alloc_etherdev_mq(sizeof(struct ena_adapter), io_queue_num);
if (!netdev) {
dev_err(&pdev->dev, "alloc_etherdev_mq failed\n");
rc = -ENOMEM;
goto err_device_destroy;
}
SET_NETDEV_DEV(netdev, &pdev->dev);
adapter = netdev_priv(netdev);
pci_set_drvdata(pdev, adapter);
adapter->ena_dev = ena_dev;
adapter->netdev = netdev;
adapter->pdev = pdev;
ena_set_conf_feat_params(adapter, &get_feat_ctx);
adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
adapter->reset_reason = ENA_REGS_RESET_NORMAL;
adapter->requested_tx_ring_size = calc_queue_ctx.tx_queue_size;
adapter->requested_rx_ring_size = calc_queue_ctx.rx_queue_size;
adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
adapter->num_queues = io_queue_num;
adapter->last_monitored_tx_qid = 0;
adapter->rx_copybreak = ENA_DEFAULT_RX_COPYBREAK;
adapter->wd_state = wd_state;
snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d", adapters_found);
rc = ena_com_init_interrupt_moderation(adapter->ena_dev);
if (rc) {
dev_err(&pdev->dev,
"Failed to query interrupt moderation feature\n");
goto err_netdev_destroy;
}
ena_init_io_rings(adapter);
netdev->netdev_ops = &ena_netdev_ops;
netdev->watchdog_timeo = TX_TIMEOUT;
ena_set_ethtool_ops(netdev);
netdev->priv_flags |= IFF_UNICAST_FLT;
u64_stats_init(&adapter->syncp);
rc = ena_enable_msix_and_set_admin_interrupts(adapter, io_queue_num);
if (rc) {
dev_err(&pdev->dev,
"Failed to enable and set the admin interrupts\n");
goto err_worker_destroy;
}
rc = ena_rss_init_default(adapter);
if (rc && (rc != -EOPNOTSUPP)) {
dev_err(&pdev->dev, "Cannot init RSS rc: %d\n", rc);
goto err_free_msix;
}
ena_config_debug_area(adapter);
memcpy(adapter->netdev->perm_addr, adapter->mac_addr, netdev->addr_len);
netif_carrier_off(netdev);
rc = register_netdev(netdev);
if (rc) {
dev_err(&pdev->dev, "Cannot register net device\n");
goto err_rss;
}
INIT_WORK(&adapter->reset_task, ena_fw_reset_device);
adapter->last_keep_alive_jiffies = jiffies;
adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
adapter->missing_tx_completion_to = TX_TIMEOUT;
adapter->missing_tx_completion_threshold = MAX_NUM_OF_TIMEOUTED_PACKETS;
ena_update_hints(adapter, &get_feat_ctx.hw_hints);
timer_setup(&adapter->timer_service, ena_timer_service, 0);
mod_timer(&adapter->timer_service, round_jiffies(jiffies + HZ));
if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
queue_type_str = "Regular";
else
queue_type_str = "Low Latency";
dev_info(&pdev->dev,
"%s found at mem %lx, mac addr %pM Queues %d, Placement policy: %s\n",
DEVICE_NAME, (long)pci_resource_start(pdev, 0),
netdev->dev_addr, io_queue_num, queue_type_str);
set_bit(ENA_FLAG_DEVICE_RUNNING, &adapter->flags);
adapters_found++;
return 0;
err_rss:
ena_com_delete_debug_area(ena_dev);
ena_com_rss_destroy(ena_dev);
err_free_msix:
ena_com_dev_reset(ena_dev, ENA_REGS_RESET_INIT_ERR);
/* stop submitting admin commands on a device that was reset */
ena_com_set_admin_running_state(ena_dev, false);
ena_free_mgmnt_irq(adapter);
ena_disable_msix(adapter);
err_worker_destroy:
del_timer(&adapter->timer_service);
err_netdev_destroy:
free_netdev(netdev);
err_device_destroy:
ena_com_delete_host_info(ena_dev);
ena_com_admin_destroy(ena_dev);
err_free_region:
ena_release_bars(ena_dev, pdev);
err_free_ena_dev:
vfree(ena_dev);
err_disable_device:
pci_disable_device(pdev);
return rc;
}
/*****************************************************************************/
/* ena_remove - Device Removal Routine
* @pdev: PCI device information struct
*
* ena_remove is called by the PCI subsystem to alert the driver
* that it should release a PCI device.
*/
static void ena_remove(struct pci_dev *pdev)
{
struct ena_adapter *adapter = pci_get_drvdata(pdev);
struct ena_com_dev *ena_dev;
struct net_device *netdev;
ena_dev = adapter->ena_dev;
netdev = adapter->netdev;
#ifdef CONFIG_RFS_ACCEL
if ((adapter->msix_vecs >= 1) && (netdev->rx_cpu_rmap)) {
free_irq_cpu_rmap(netdev->rx_cpu_rmap);
netdev->rx_cpu_rmap = NULL;
}
#endif /* CONFIG_RFS_ACCEL */
del_timer_sync(&adapter->timer_service);
cancel_work_sync(&adapter->reset_task);
rtnl_lock();
ena_destroy_device(adapter, true);
rtnl_unlock();
unregister_netdev(netdev);
free_netdev(netdev);
ena_com_rss_destroy(ena_dev);
ena_com_delete_debug_area(ena_dev);
ena_com_delete_host_info(ena_dev);
ena_release_bars(ena_dev, pdev);
pci_disable_device(pdev);
vfree(ena_dev);
}
#ifdef CONFIG_PM
/* ena_suspend - PM suspend callback
* @pdev: PCI device information struct
* @state:power state
*/
static int ena_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct ena_adapter *adapter = pci_get_drvdata(pdev);
u64_stats_update_begin(&adapter->syncp);
adapter->dev_stats.suspend++;
u64_stats_update_end(&adapter->syncp);
rtnl_lock();
if (unlikely(test_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags))) {
dev_err(&pdev->dev,
"ignoring device reset request as the device is being suspended\n");
clear_bit(ENA_FLAG_TRIGGER_RESET, &adapter->flags);
}
ena_destroy_device(adapter, true);
rtnl_unlock();
return 0;
}
/* ena_resume - PM resume callback
* @pdev: PCI device information struct
*
*/
static int ena_resume(struct pci_dev *pdev)
{
struct ena_adapter *adapter = pci_get_drvdata(pdev);
int rc;
u64_stats_update_begin(&adapter->syncp);
adapter->dev_stats.resume++;
u64_stats_update_end(&adapter->syncp);
rtnl_lock();
rc = ena_restore_device(adapter);
rtnl_unlock();
return rc;
}
#endif
static struct pci_driver ena_pci_driver = {
.name = DRV_MODULE_NAME,
.id_table = ena_pci_tbl,
.probe = ena_probe,
.remove = ena_remove,
#ifdef CONFIG_PM
.suspend = ena_suspend,
.resume = ena_resume,
#endif
.sriov_configure = pci_sriov_configure_simple,
};
static int __init ena_init(void)
{
pr_info("%s", version);
ena_wq = create_singlethread_workqueue(DRV_MODULE_NAME);
if (!ena_wq) {
pr_err("Failed to create workqueue\n");
return -ENOMEM;
}
return pci_register_driver(&ena_pci_driver);
}
static void __exit ena_cleanup(void)
{
pci_unregister_driver(&ena_pci_driver);
if (ena_wq) {
destroy_workqueue(ena_wq);
ena_wq = NULL;
}
}
/******************************************************************************
******************************** AENQ Handlers *******************************
*****************************************************************************/
/* ena_update_on_link_change:
* Notify the network interface about the change in link status
*/
static void ena_update_on_link_change(void *adapter_data,
struct ena_admin_aenq_entry *aenq_e)
{
struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
struct ena_admin_aenq_link_change_desc *aenq_desc =
(struct ena_admin_aenq_link_change_desc *)aenq_e;
int status = aenq_desc->flags &
ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
if (status) {
netdev_dbg(adapter->netdev, "%s\n", __func__);
set_bit(ENA_FLAG_LINK_UP, &adapter->flags);
if (!test_bit(ENA_FLAG_ONGOING_RESET, &adapter->flags))
netif_carrier_on(adapter->netdev);
} else {
clear_bit(ENA_FLAG_LINK_UP, &adapter->flags);
netif_carrier_off(adapter->netdev);
}
}
static void ena_keep_alive_wd(void *adapter_data,
struct ena_admin_aenq_entry *aenq_e)
{
struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
struct ena_admin_aenq_keep_alive_desc *desc;
u64 rx_drops;
desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
adapter->last_keep_alive_jiffies = jiffies;
rx_drops = ((u64)desc->rx_drops_high << 32) | desc->rx_drops_low;
u64_stats_update_begin(&adapter->syncp);
adapter->dev_stats.rx_drops = rx_drops;
u64_stats_update_end(&adapter->syncp);
}
static void ena_notification(void *adapter_data,
struct ena_admin_aenq_entry *aenq_e)
{
struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
struct ena_admin_ena_hw_hints *hints;
WARN(aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION,
"Invalid group(%x) expected %x\n",
aenq_e->aenq_common_desc.group,
ENA_ADMIN_NOTIFICATION);
switch (aenq_e->aenq_common_desc.syndrom) {
case ENA_ADMIN_UPDATE_HINTS:
hints = (struct ena_admin_ena_hw_hints *)
(&aenq_e->inline_data_w4);
ena_update_hints(adapter, hints);
break;
default:
netif_err(adapter, drv, adapter->netdev,
"Invalid aenq notification link state %d\n",
aenq_e->aenq_common_desc.syndrom);
}
}
/* This handler will called for unknown event group or unimplemented handlers*/
static void unimplemented_aenq_handler(void *data,
struct ena_admin_aenq_entry *aenq_e)
{
struct ena_adapter *adapter = (struct ena_adapter *)data;
netif_err(adapter, drv, adapter->netdev,
"Unknown event was received or event with unimplemented handler\n");
}
static struct ena_aenq_handlers aenq_handlers = {
.handlers = {
[ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
[ENA_ADMIN_NOTIFICATION] = ena_notification,
[ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
},
.unimplemented_handler = unimplemented_aenq_handler
};
module_init(ena_init);
module_exit(ena_cleanup);