524 lines
12 KiB
C
524 lines
12 KiB
C
/*
|
|
* Copyright (C) 1994 Linus Torvalds
|
|
*
|
|
* Pentium III FXSR, SSE support
|
|
* General FPU state handling cleanups
|
|
* Gareth Hughes <gareth@valinux.com>, May 2000
|
|
*/
|
|
#include <asm/fpu/internal.h>
|
|
#include <asm/fpu/regset.h>
|
|
#include <asm/fpu/signal.h>
|
|
#include <asm/traps.h>
|
|
|
|
#include <linux/hardirq.h>
|
|
|
|
/*
|
|
* Represents the initial FPU state. It's mostly (but not completely) zeroes,
|
|
* depending on the FPU hardware format:
|
|
*/
|
|
union fpregs_state init_fpstate __read_mostly;
|
|
|
|
/*
|
|
* Track whether the kernel is using the FPU state
|
|
* currently.
|
|
*
|
|
* This flag is used:
|
|
*
|
|
* - by IRQ context code to potentially use the FPU
|
|
* if it's unused.
|
|
*
|
|
* - to debug kernel_fpu_begin()/end() correctness
|
|
*/
|
|
static DEFINE_PER_CPU(bool, in_kernel_fpu);
|
|
|
|
/*
|
|
* Track which context is using the FPU on the CPU:
|
|
*/
|
|
DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
|
|
|
|
static void kernel_fpu_disable(void)
|
|
{
|
|
WARN_ON_FPU(this_cpu_read(in_kernel_fpu));
|
|
this_cpu_write(in_kernel_fpu, true);
|
|
}
|
|
|
|
static void kernel_fpu_enable(void)
|
|
{
|
|
WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));
|
|
this_cpu_write(in_kernel_fpu, false);
|
|
}
|
|
|
|
static bool kernel_fpu_disabled(void)
|
|
{
|
|
return this_cpu_read(in_kernel_fpu);
|
|
}
|
|
|
|
/*
|
|
* Were we in an interrupt that interrupted kernel mode?
|
|
*
|
|
* On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
|
|
* pair does nothing at all: the thread must not have fpu (so
|
|
* that we don't try to save the FPU state), and TS must
|
|
* be set (so that the clts/stts pair does nothing that is
|
|
* visible in the interrupted kernel thread).
|
|
*
|
|
* Except for the eagerfpu case when we return true; in the likely case
|
|
* the thread has FPU but we are not going to set/clear TS.
|
|
*/
|
|
static bool interrupted_kernel_fpu_idle(void)
|
|
{
|
|
if (kernel_fpu_disabled())
|
|
return false;
|
|
|
|
if (use_eager_fpu())
|
|
return true;
|
|
|
|
return !current->thread.fpu.fpregs_active && (read_cr0() & X86_CR0_TS);
|
|
}
|
|
|
|
/*
|
|
* Were we in user mode (or vm86 mode) when we were
|
|
* interrupted?
|
|
*
|
|
* Doing kernel_fpu_begin/end() is ok if we are running
|
|
* in an interrupt context from user mode - we'll just
|
|
* save the FPU state as required.
|
|
*/
|
|
static bool interrupted_user_mode(void)
|
|
{
|
|
struct pt_regs *regs = get_irq_regs();
|
|
return regs && user_mode(regs);
|
|
}
|
|
|
|
/*
|
|
* Can we use the FPU in kernel mode with the
|
|
* whole "kernel_fpu_begin/end()" sequence?
|
|
*
|
|
* It's always ok in process context (ie "not interrupt")
|
|
* but it is sometimes ok even from an irq.
|
|
*/
|
|
bool irq_fpu_usable(void)
|
|
{
|
|
return !in_interrupt() ||
|
|
interrupted_user_mode() ||
|
|
interrupted_kernel_fpu_idle();
|
|
}
|
|
EXPORT_SYMBOL(irq_fpu_usable);
|
|
|
|
void __kernel_fpu_begin(void)
|
|
{
|
|
struct fpu *fpu = ¤t->thread.fpu;
|
|
|
|
WARN_ON_FPU(!irq_fpu_usable());
|
|
|
|
kernel_fpu_disable();
|
|
|
|
if (fpu->fpregs_active) {
|
|
copy_fpregs_to_fpstate(fpu);
|
|
} else {
|
|
this_cpu_write(fpu_fpregs_owner_ctx, NULL);
|
|
__fpregs_activate_hw();
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(__kernel_fpu_begin);
|
|
|
|
void __kernel_fpu_end(void)
|
|
{
|
|
struct fpu *fpu = ¤t->thread.fpu;
|
|
|
|
if (fpu->fpregs_active)
|
|
copy_kernel_to_fpregs(&fpu->state);
|
|
else
|
|
__fpregs_deactivate_hw();
|
|
|
|
kernel_fpu_enable();
|
|
}
|
|
EXPORT_SYMBOL(__kernel_fpu_end);
|
|
|
|
void kernel_fpu_begin(void)
|
|
{
|
|
preempt_disable();
|
|
__kernel_fpu_begin();
|
|
}
|
|
EXPORT_SYMBOL_GPL(kernel_fpu_begin);
|
|
|
|
void kernel_fpu_end(void)
|
|
{
|
|
__kernel_fpu_end();
|
|
preempt_enable();
|
|
}
|
|
EXPORT_SYMBOL_GPL(kernel_fpu_end);
|
|
|
|
/*
|
|
* CR0::TS save/restore functions:
|
|
*/
|
|
int irq_ts_save(void)
|
|
{
|
|
/*
|
|
* If in process context and not atomic, we can take a spurious DNA fault.
|
|
* Otherwise, doing clts() in process context requires disabling preemption
|
|
* or some heavy lifting like kernel_fpu_begin()
|
|
*/
|
|
if (!in_atomic())
|
|
return 0;
|
|
|
|
if (read_cr0() & X86_CR0_TS) {
|
|
clts();
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(irq_ts_save);
|
|
|
|
void irq_ts_restore(int TS_state)
|
|
{
|
|
if (TS_state)
|
|
stts();
|
|
}
|
|
EXPORT_SYMBOL_GPL(irq_ts_restore);
|
|
|
|
/*
|
|
* Save the FPU state (mark it for reload if necessary):
|
|
*
|
|
* This only ever gets called for the current task.
|
|
*/
|
|
void fpu__save(struct fpu *fpu)
|
|
{
|
|
WARN_ON_FPU(fpu != ¤t->thread.fpu);
|
|
|
|
preempt_disable();
|
|
if (fpu->fpregs_active) {
|
|
if (!copy_fpregs_to_fpstate(fpu))
|
|
fpregs_deactivate(fpu);
|
|
}
|
|
preempt_enable();
|
|
}
|
|
EXPORT_SYMBOL_GPL(fpu__save);
|
|
|
|
/*
|
|
* Legacy x87 fpstate state init:
|
|
*/
|
|
static inline void fpstate_init_fstate(struct fregs_state *fp)
|
|
{
|
|
fp->cwd = 0xffff037fu;
|
|
fp->swd = 0xffff0000u;
|
|
fp->twd = 0xffffffffu;
|
|
fp->fos = 0xffff0000u;
|
|
}
|
|
|
|
void fpstate_init(union fpregs_state *state)
|
|
{
|
|
if (!cpu_has_fpu) {
|
|
fpstate_init_soft(&state->soft);
|
|
return;
|
|
}
|
|
|
|
memset(state, 0, xstate_size);
|
|
|
|
if (cpu_has_fxsr)
|
|
fpstate_init_fxstate(&state->fxsave);
|
|
else
|
|
fpstate_init_fstate(&state->fsave);
|
|
}
|
|
EXPORT_SYMBOL_GPL(fpstate_init);
|
|
|
|
/*
|
|
* Copy the current task's FPU state to a new task's FPU context.
|
|
*
|
|
* In both the 'eager' and the 'lazy' case we save hardware registers
|
|
* directly to the destination buffer.
|
|
*/
|
|
static void fpu_copy(struct fpu *dst_fpu, struct fpu *src_fpu)
|
|
{
|
|
WARN_ON_FPU(src_fpu != ¤t->thread.fpu);
|
|
|
|
/*
|
|
* Don't let 'init optimized' areas of the XSAVE area
|
|
* leak into the child task:
|
|
*/
|
|
if (use_eager_fpu())
|
|
memset(&dst_fpu->state.xsave, 0, xstate_size);
|
|
|
|
/*
|
|
* Save current FPU registers directly into the child
|
|
* FPU context, without any memory-to-memory copying.
|
|
*
|
|
* If the FPU context got destroyed in the process (FNSAVE
|
|
* done on old CPUs) then copy it back into the source
|
|
* context and mark the current task for lazy restore.
|
|
*
|
|
* We have to do all this with preemption disabled,
|
|
* mostly because of the FNSAVE case, because in that
|
|
* case we must not allow preemption in the window
|
|
* between the FNSAVE and us marking the context lazy.
|
|
*
|
|
* It shouldn't be an issue as even FNSAVE is plenty
|
|
* fast in terms of critical section length.
|
|
*/
|
|
preempt_disable();
|
|
if (!copy_fpregs_to_fpstate(dst_fpu)) {
|
|
memcpy(&src_fpu->state, &dst_fpu->state, xstate_size);
|
|
fpregs_deactivate(src_fpu);
|
|
}
|
|
preempt_enable();
|
|
}
|
|
|
|
int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu)
|
|
{
|
|
dst_fpu->counter = 0;
|
|
dst_fpu->fpregs_active = 0;
|
|
dst_fpu->last_cpu = -1;
|
|
|
|
if (src_fpu->fpstate_active && cpu_has_fpu)
|
|
fpu_copy(dst_fpu, src_fpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Activate the current task's in-memory FPU context,
|
|
* if it has not been used before:
|
|
*/
|
|
void fpu__activate_curr(struct fpu *fpu)
|
|
{
|
|
WARN_ON_FPU(fpu != ¤t->thread.fpu);
|
|
|
|
if (!fpu->fpstate_active) {
|
|
fpstate_init(&fpu->state);
|
|
|
|
/* Safe to do for the current task: */
|
|
fpu->fpstate_active = 1;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(fpu__activate_curr);
|
|
|
|
/*
|
|
* This function must be called before we read a task's fpstate.
|
|
*
|
|
* If the task has not used the FPU before then initialize its
|
|
* fpstate.
|
|
*
|
|
* If the task has used the FPU before then save it.
|
|
*/
|
|
void fpu__activate_fpstate_read(struct fpu *fpu)
|
|
{
|
|
/*
|
|
* If fpregs are active (in the current CPU), then
|
|
* copy them to the fpstate:
|
|
*/
|
|
if (fpu->fpregs_active) {
|
|
fpu__save(fpu);
|
|
} else {
|
|
if (!fpu->fpstate_active) {
|
|
fpstate_init(&fpu->state);
|
|
|
|
/* Safe to do for current and for stopped child tasks: */
|
|
fpu->fpstate_active = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function must be called before we write a task's fpstate.
|
|
*
|
|
* If the task has used the FPU before then unlazy it.
|
|
* If the task has not used the FPU before then initialize its fpstate.
|
|
*
|
|
* After this function call, after registers in the fpstate are
|
|
* modified and the child task has woken up, the child task will
|
|
* restore the modified FPU state from the modified context. If we
|
|
* didn't clear its lazy status here then the lazy in-registers
|
|
* state pending on its former CPU could be restored, corrupting
|
|
* the modifications.
|
|
*/
|
|
void fpu__activate_fpstate_write(struct fpu *fpu)
|
|
{
|
|
/*
|
|
* Only stopped child tasks can be used to modify the FPU
|
|
* state in the fpstate buffer:
|
|
*/
|
|
WARN_ON_FPU(fpu == ¤t->thread.fpu);
|
|
|
|
if (fpu->fpstate_active) {
|
|
/* Invalidate any lazy state: */
|
|
fpu->last_cpu = -1;
|
|
} else {
|
|
fpstate_init(&fpu->state);
|
|
|
|
/* Safe to do for stopped child tasks: */
|
|
fpu->fpstate_active = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 'fpu__restore()' is called to copy FPU registers from
|
|
* the FPU fpstate to the live hw registers and to activate
|
|
* access to the hardware registers, so that FPU instructions
|
|
* can be used afterwards.
|
|
*
|
|
* Must be called with kernel preemption disabled (for example
|
|
* with local interrupts disabled, as it is in the case of
|
|
* do_device_not_available()).
|
|
*/
|
|
void fpu__restore(struct fpu *fpu)
|
|
{
|
|
fpu__activate_curr(fpu);
|
|
|
|
/* Avoid __kernel_fpu_begin() right after fpregs_activate() */
|
|
kernel_fpu_disable();
|
|
fpregs_activate(fpu);
|
|
copy_kernel_to_fpregs(&fpu->state);
|
|
fpu->counter++;
|
|
kernel_fpu_enable();
|
|
}
|
|
EXPORT_SYMBOL_GPL(fpu__restore);
|
|
|
|
/*
|
|
* Drops current FPU state: deactivates the fpregs and
|
|
* the fpstate. NOTE: it still leaves previous contents
|
|
* in the fpregs in the eager-FPU case.
|
|
*
|
|
* This function can be used in cases where we know that
|
|
* a state-restore is coming: either an explicit one,
|
|
* or a reschedule.
|
|
*/
|
|
void fpu__drop(struct fpu *fpu)
|
|
{
|
|
preempt_disable();
|
|
fpu->counter = 0;
|
|
|
|
if (fpu->fpregs_active) {
|
|
/* Ignore delayed exceptions from user space */
|
|
asm volatile("1: fwait\n"
|
|
"2:\n"
|
|
_ASM_EXTABLE(1b, 2b));
|
|
fpregs_deactivate(fpu);
|
|
}
|
|
|
|
fpu->fpstate_active = 0;
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
/*
|
|
* Clear FPU registers by setting them up from
|
|
* the init fpstate:
|
|
*/
|
|
static inline void copy_init_fpstate_to_fpregs(void)
|
|
{
|
|
if (use_xsave())
|
|
copy_kernel_to_xregs(&init_fpstate.xsave, -1);
|
|
else
|
|
copy_kernel_to_fxregs(&init_fpstate.fxsave);
|
|
}
|
|
|
|
/*
|
|
* Clear the FPU state back to init state.
|
|
*
|
|
* Called by sys_execve(), by the signal handler code and by various
|
|
* error paths.
|
|
*/
|
|
void fpu__clear(struct fpu *fpu)
|
|
{
|
|
WARN_ON_FPU(fpu != ¤t->thread.fpu); /* Almost certainly an anomaly */
|
|
|
|
if (!use_eager_fpu()) {
|
|
/* FPU state will be reallocated lazily at the first use. */
|
|
fpu__drop(fpu);
|
|
} else {
|
|
if (!fpu->fpstate_active) {
|
|
fpu__activate_curr(fpu);
|
|
user_fpu_begin();
|
|
}
|
|
copy_init_fpstate_to_fpregs();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* x87 math exception handling:
|
|
*/
|
|
|
|
static inline unsigned short get_fpu_cwd(struct fpu *fpu)
|
|
{
|
|
if (cpu_has_fxsr) {
|
|
return fpu->state.fxsave.cwd;
|
|
} else {
|
|
return (unsigned short)fpu->state.fsave.cwd;
|
|
}
|
|
}
|
|
|
|
static inline unsigned short get_fpu_swd(struct fpu *fpu)
|
|
{
|
|
if (cpu_has_fxsr) {
|
|
return fpu->state.fxsave.swd;
|
|
} else {
|
|
return (unsigned short)fpu->state.fsave.swd;
|
|
}
|
|
}
|
|
|
|
static inline unsigned short get_fpu_mxcsr(struct fpu *fpu)
|
|
{
|
|
if (cpu_has_xmm) {
|
|
return fpu->state.fxsave.mxcsr;
|
|
} else {
|
|
return MXCSR_DEFAULT;
|
|
}
|
|
}
|
|
|
|
int fpu__exception_code(struct fpu *fpu, int trap_nr)
|
|
{
|
|
int err;
|
|
|
|
if (trap_nr == X86_TRAP_MF) {
|
|
unsigned short cwd, swd;
|
|
/*
|
|
* (~cwd & swd) will mask out exceptions that are not set to unmasked
|
|
* status. 0x3f is the exception bits in these regs, 0x200 is the
|
|
* C1 reg you need in case of a stack fault, 0x040 is the stack
|
|
* fault bit. We should only be taking one exception at a time,
|
|
* so if this combination doesn't produce any single exception,
|
|
* then we have a bad program that isn't synchronizing its FPU usage
|
|
* and it will suffer the consequences since we won't be able to
|
|
* fully reproduce the context of the exception
|
|
*/
|
|
cwd = get_fpu_cwd(fpu);
|
|
swd = get_fpu_swd(fpu);
|
|
|
|
err = swd & ~cwd;
|
|
} else {
|
|
/*
|
|
* The SIMD FPU exceptions are handled a little differently, as there
|
|
* is only a single status/control register. Thus, to determine which
|
|
* unmasked exception was caught we must mask the exception mask bits
|
|
* at 0x1f80, and then use these to mask the exception bits at 0x3f.
|
|
*/
|
|
unsigned short mxcsr = get_fpu_mxcsr(fpu);
|
|
err = ~(mxcsr >> 7) & mxcsr;
|
|
}
|
|
|
|
if (err & 0x001) { /* Invalid op */
|
|
/*
|
|
* swd & 0x240 == 0x040: Stack Underflow
|
|
* swd & 0x240 == 0x240: Stack Overflow
|
|
* User must clear the SF bit (0x40) if set
|
|
*/
|
|
return FPE_FLTINV;
|
|
} else if (err & 0x004) { /* Divide by Zero */
|
|
return FPE_FLTDIV;
|
|
} else if (err & 0x008) { /* Overflow */
|
|
return FPE_FLTOVF;
|
|
} else if (err & 0x012) { /* Denormal, Underflow */
|
|
return FPE_FLTUND;
|
|
} else if (err & 0x020) { /* Precision */
|
|
return FPE_FLTRES;
|
|
}
|
|
|
|
/*
|
|
* If we're using IRQ 13, or supposedly even some trap
|
|
* X86_TRAP_MF implementations, it's possible
|
|
* we get a spurious trap, which is not an error.
|
|
*/
|
|
return 0;
|
|
}
|