OpenCloudOS-Kernel/drivers/iio/accel/bma180.c

1148 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* bma180.c - IIO driver for Bosch BMA180 triaxial acceleration sensor
*
* Copyright 2013 Oleksandr Kravchenko <x0199363@ti.com>
*
* Support for BMA250 (c) Peter Meerwald <pmeerw@pmeerw.net>
*
* SPI is not supported by driver
* BMA023/BMA150/SMB380: 7-bit I2C slave address 0x38
* BMA180: 7-bit I2C slave address 0x40 or 0x41
* BMA250: 7-bit I2C slave address 0x18 or 0x19
*/
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/of_device.h>
#include <linux/of.h>
#include <linux/bitops.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#define BMA180_DRV_NAME "bma180"
#define BMA180_IRQ_NAME "bma180_event"
enum chip_ids {
BMA023,
BMA150,
BMA180,
BMA250,
};
struct bma180_data;
struct bma180_part_info {
u8 chip_id;
const struct iio_chan_spec *channels;
unsigned int num_channels;
const int *scale_table;
unsigned int num_scales;
const int *bw_table;
unsigned int num_bw;
int temp_offset;
u8 int_reset_reg, int_reset_mask;
u8 sleep_reg, sleep_mask;
u8 bw_reg, bw_mask, bw_offset;
u8 scale_reg, scale_mask;
u8 power_reg, power_mask, lowpower_val;
u8 int_enable_reg, int_enable_mask;
u8 softreset_reg, softreset_val;
int (*chip_config)(struct bma180_data *data);
void (*chip_disable)(struct bma180_data *data);
};
/* Register set */
#define BMA023_CTRL_REG0 0x0a
#define BMA023_CTRL_REG1 0x0b
#define BMA023_CTRL_REG2 0x14
#define BMA023_CTRL_REG3 0x15
#define BMA023_RANGE_MASK GENMASK(4, 3) /* Range of accel values */
#define BMA023_BW_MASK GENMASK(2, 0) /* Accel bandwidth */
#define BMA023_SLEEP BIT(0)
#define BMA023_INT_RESET_MASK BIT(6)
#define BMA023_NEW_DATA_INT BIT(5) /* Intr every new accel data is ready */
#define BMA023_RESET_VAL BIT(1)
#define BMA180_CHIP_ID 0x00 /* Need to distinguish BMA180 from other */
#define BMA180_ACC_X_LSB 0x02 /* First of 6 registers of accel data */
#define BMA180_TEMP 0x08
#define BMA180_CTRL_REG0 0x0d
#define BMA180_RESET 0x10
#define BMA180_BW_TCS 0x20
#define BMA180_CTRL_REG3 0x21
#define BMA180_TCO_Z 0x30
#define BMA180_OFFSET_LSB1 0x35
/* BMA180_CTRL_REG0 bits */
#define BMA180_DIS_WAKE_UP BIT(0) /* Disable wake up mode */
#define BMA180_SLEEP BIT(1) /* 1 - chip will sleep */
#define BMA180_EE_W BIT(4) /* Unlock writing to addr from 0x20 */
#define BMA180_RESET_INT BIT(6) /* Reset pending interrupts */
/* BMA180_CTRL_REG3 bits */
#define BMA180_NEW_DATA_INT BIT(1) /* Intr every new accel data is ready */
/* BMA180_OFFSET_LSB1 skipping mode bit */
#define BMA180_SMP_SKIP BIT(0)
/* Bit masks for registers bit fields */
#define BMA180_RANGE 0x0e /* Range of measured accel values */
#define BMA180_BW 0xf0 /* Accel bandwidth */
#define BMA180_MODE_CONFIG 0x03 /* Config operation modes */
/* We have to write this value in reset register to do soft reset */
#define BMA180_RESET_VAL 0xb6
#define BMA023_ID_REG_VAL 0x02
#define BMA180_ID_REG_VAL 0x03
#define BMA250_ID_REG_VAL 0x03
/* Chip power modes */
#define BMA180_LOW_POWER 0x03
#define BMA250_RANGE_REG 0x0f
#define BMA250_BW_REG 0x10
#define BMA250_POWER_REG 0x11
#define BMA250_RESET_REG 0x14
#define BMA250_INT_ENABLE_REG 0x17
#define BMA250_INT_MAP_REG 0x1a
#define BMA250_INT_RESET_REG 0x21
#define BMA250_RANGE_MASK GENMASK(3, 0) /* Range of accel values */
#define BMA250_BW_MASK GENMASK(4, 0) /* Accel bandwidth */
#define BMA250_BW_OFFSET 8
#define BMA250_SUSPEND_MASK BIT(7) /* chip will sleep */
#define BMA250_LOWPOWER_MASK BIT(6)
#define BMA250_DATA_INTEN_MASK BIT(4)
#define BMA250_INT1_DATA_MASK BIT(0)
#define BMA250_INT_RESET_MASK BIT(7) /* Reset pending interrupts */
struct bma180_data {
struct regulator *vdd_supply;
struct regulator *vddio_supply;
struct i2c_client *client;
struct iio_trigger *trig;
const struct bma180_part_info *part_info;
struct iio_mount_matrix orientation;
struct mutex mutex;
bool sleep_state;
int scale;
int bw;
bool pmode;
/* Ensure timestamp is naturally aligned */
struct {
s16 chan[4];
s64 timestamp __aligned(8);
} scan;
};
enum bma180_chan {
AXIS_X,
AXIS_Y,
AXIS_Z,
TEMP
};
static int bma023_bw_table[] = { 25, 50, 100, 190, 375, 750, 1500 }; /* Hz */
static int bma023_scale_table[] = { 2452, 4903, 9709, };
static int bma180_bw_table[] = { 10, 20, 40, 75, 150, 300 }; /* Hz */
static int bma180_scale_table[] = { 1275, 1863, 2452, 3727, 4903, 9709, 19417 };
static int bma250_bw_table[] = { 8, 16, 31, 63, 125, 250, 500, 1000 }; /* Hz */
static int bma250_scale_table[] = { 0, 0, 0, 38344, 0, 76590, 0, 0, 153180, 0,
0, 0, 306458 };
static int bma180_get_data_reg(struct bma180_data *data, enum bma180_chan chan)
{
int ret;
if (data->sleep_state)
return -EBUSY;
switch (chan) {
case TEMP:
ret = i2c_smbus_read_byte_data(data->client, BMA180_TEMP);
if (ret < 0)
dev_err(&data->client->dev, "failed to read temp register\n");
break;
default:
ret = i2c_smbus_read_word_data(data->client,
BMA180_ACC_X_LSB + chan * 2);
if (ret < 0)
dev_err(&data->client->dev,
"failed to read accel_%c register\n",
'x' + chan);
}
return ret;
}
static int bma180_set_bits(struct bma180_data *data, u8 reg, u8 mask, u8 val)
{
int ret = i2c_smbus_read_byte_data(data->client, reg);
u8 reg_val = (ret & ~mask) | (val << (ffs(mask) - 1));
if (ret < 0)
return ret;
return i2c_smbus_write_byte_data(data->client, reg, reg_val);
}
static int bma180_reset_intr(struct bma180_data *data)
{
int ret = bma180_set_bits(data, data->part_info->int_reset_reg,
data->part_info->int_reset_mask, 1);
if (ret)
dev_err(&data->client->dev, "failed to reset interrupt\n");
return ret;
}
static int bma180_set_new_data_intr_state(struct bma180_data *data, bool state)
{
int ret = bma180_set_bits(data, data->part_info->int_enable_reg,
data->part_info->int_enable_mask, state);
if (ret)
goto err;
ret = bma180_reset_intr(data);
if (ret)
goto err;
return 0;
err:
dev_err(&data->client->dev,
"failed to set new data interrupt state %d\n", state);
return ret;
}
static int bma180_set_sleep_state(struct bma180_data *data, bool state)
{
int ret = bma180_set_bits(data, data->part_info->sleep_reg,
data->part_info->sleep_mask, state);
if (ret) {
dev_err(&data->client->dev,
"failed to set sleep state %d\n", state);
return ret;
}
data->sleep_state = state;
return 0;
}
static int bma180_set_ee_writing_state(struct bma180_data *data, bool state)
{
int ret = bma180_set_bits(data, BMA180_CTRL_REG0, BMA180_EE_W, state);
if (ret)
dev_err(&data->client->dev,
"failed to set ee writing state %d\n", state);
return ret;
}
static int bma180_set_bw(struct bma180_data *data, int val)
{
int ret, i;
if (data->sleep_state)
return -EBUSY;
for (i = 0; i < data->part_info->num_bw; ++i) {
if (data->part_info->bw_table[i] == val) {
ret = bma180_set_bits(data, data->part_info->bw_reg,
data->part_info->bw_mask,
i + data->part_info->bw_offset);
if (ret) {
dev_err(&data->client->dev,
"failed to set bandwidth\n");
return ret;
}
data->bw = val;
return 0;
}
}
return -EINVAL;
}
static int bma180_set_scale(struct bma180_data *data, int val)
{
int ret, i;
if (data->sleep_state)
return -EBUSY;
for (i = 0; i < data->part_info->num_scales; ++i)
if (data->part_info->scale_table[i] == val) {
ret = bma180_set_bits(data, data->part_info->scale_reg,
data->part_info->scale_mask, i);
if (ret) {
dev_err(&data->client->dev,
"failed to set scale\n");
return ret;
}
data->scale = val;
return 0;
}
return -EINVAL;
}
static int bma180_set_pmode(struct bma180_data *data, bool mode)
{
u8 reg_val = mode ? data->part_info->lowpower_val : 0;
int ret = bma180_set_bits(data, data->part_info->power_reg,
data->part_info->power_mask, reg_val);
if (ret) {
dev_err(&data->client->dev, "failed to set power mode\n");
return ret;
}
data->pmode = mode;
return 0;
}
static int bma180_soft_reset(struct bma180_data *data)
{
int ret = i2c_smbus_write_byte_data(data->client,
data->part_info->softreset_reg,
data->part_info->softreset_val);
if (ret)
dev_err(&data->client->dev, "failed to reset the chip\n");
return ret;
}
static int bma180_chip_init(struct bma180_data *data)
{
/* Try to read chip_id register. It must return 0x03. */
int ret = i2c_smbus_read_byte_data(data->client, BMA180_CHIP_ID);
if (ret < 0)
return ret;
if (ret != data->part_info->chip_id) {
dev_err(&data->client->dev, "wrong chip ID %d expected %d\n",
ret, data->part_info->chip_id);
return -ENODEV;
}
ret = bma180_soft_reset(data);
if (ret)
return ret;
/*
* No serial transaction should occur within minimum 10 us
* after soft_reset command
*/
msleep(20);
return bma180_set_new_data_intr_state(data, false);
}
static int bma023_chip_config(struct bma180_data *data)
{
int ret = bma180_chip_init(data);
if (ret)
goto err;
ret = bma180_set_bw(data, 50); /* 50 Hz */
if (ret)
goto err;
ret = bma180_set_scale(data, 2452); /* 2 G */
if (ret)
goto err;
return 0;
err:
dev_err(&data->client->dev, "failed to config the chip\n");
return ret;
}
static int bma180_chip_config(struct bma180_data *data)
{
int ret = bma180_chip_init(data);
if (ret)
goto err;
ret = bma180_set_pmode(data, false);
if (ret)
goto err;
ret = bma180_set_bits(data, BMA180_CTRL_REG0, BMA180_DIS_WAKE_UP, 1);
if (ret)
goto err;
ret = bma180_set_ee_writing_state(data, true);
if (ret)
goto err;
ret = bma180_set_bits(data, BMA180_OFFSET_LSB1, BMA180_SMP_SKIP, 1);
if (ret)
goto err;
ret = bma180_set_bw(data, 20); /* 20 Hz */
if (ret)
goto err;
ret = bma180_set_scale(data, 2452); /* 2 G */
if (ret)
goto err;
return 0;
err:
dev_err(&data->client->dev, "failed to config the chip\n");
return ret;
}
static int bma250_chip_config(struct bma180_data *data)
{
int ret = bma180_chip_init(data);
if (ret)
goto err;
ret = bma180_set_pmode(data, false);
if (ret)
goto err;
ret = bma180_set_bw(data, 16); /* 16 Hz */
if (ret)
goto err;
ret = bma180_set_scale(data, 38344); /* 2 G */
if (ret)
goto err;
/*
* This enables dataready interrupt on the INT1 pin
* FIXME: support using the INT2 pin
*/
ret = bma180_set_bits(data, BMA250_INT_MAP_REG, BMA250_INT1_DATA_MASK, 1);
if (ret)
goto err;
return 0;
err:
dev_err(&data->client->dev, "failed to config the chip\n");
return ret;
}
static void bma023_chip_disable(struct bma180_data *data)
{
if (bma180_set_sleep_state(data, true))
goto err;
return;
err:
dev_err(&data->client->dev, "failed to disable the chip\n");
}
static void bma180_chip_disable(struct bma180_data *data)
{
if (bma180_set_new_data_intr_state(data, false))
goto err;
if (bma180_set_ee_writing_state(data, false))
goto err;
if (bma180_set_sleep_state(data, true))
goto err;
return;
err:
dev_err(&data->client->dev, "failed to disable the chip\n");
}
static void bma250_chip_disable(struct bma180_data *data)
{
if (bma180_set_new_data_intr_state(data, false))
goto err;
if (bma180_set_sleep_state(data, true))
goto err;
return;
err:
dev_err(&data->client->dev, "failed to disable the chip\n");
}
static ssize_t bma180_show_avail(char *buf, const int *vals, unsigned int n,
bool micros)
{
size_t len = 0;
int i;
for (i = 0; i < n; i++) {
if (!vals[i])
continue;
len += scnprintf(buf + len, PAGE_SIZE - len,
micros ? "0.%06d " : "%d ", vals[i]);
}
buf[len - 1] = '\n';
return len;
}
static ssize_t bma180_show_filter_freq_avail(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct bma180_data *data = iio_priv(dev_to_iio_dev(dev));
return bma180_show_avail(buf, data->part_info->bw_table,
data->part_info->num_bw, false);
}
static ssize_t bma180_show_scale_avail(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct bma180_data *data = iio_priv(dev_to_iio_dev(dev));
return bma180_show_avail(buf, data->part_info->scale_table,
data->part_info->num_scales, true);
}
static IIO_DEVICE_ATTR(in_accel_filter_low_pass_3db_frequency_available,
S_IRUGO, bma180_show_filter_freq_avail, NULL, 0);
static IIO_DEVICE_ATTR(in_accel_scale_available,
S_IRUGO, bma180_show_scale_avail, NULL, 0);
static struct attribute *bma180_attributes[] = {
&iio_dev_attr_in_accel_filter_low_pass_3db_frequency_available.
dev_attr.attr,
&iio_dev_attr_in_accel_scale_available.dev_attr.attr,
NULL,
};
static const struct attribute_group bma180_attrs_group = {
.attrs = bma180_attributes,
};
static int bma180_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val, int *val2,
long mask)
{
struct bma180_data *data = iio_priv(indio_dev);
int ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
mutex_lock(&data->mutex);
ret = bma180_get_data_reg(data, chan->scan_index);
mutex_unlock(&data->mutex);
iio_device_release_direct_mode(indio_dev);
if (ret < 0)
return ret;
if (chan->scan_type.sign == 's') {
*val = sign_extend32(ret >> chan->scan_type.shift,
chan->scan_type.realbits - 1);
} else {
*val = ret;
}
return IIO_VAL_INT;
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
*val = data->bw;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_ACCEL:
*val = 0;
*val2 = data->scale;
return IIO_VAL_INT_PLUS_MICRO;
case IIO_TEMP:
*val = 500;
return IIO_VAL_INT;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_OFFSET:
*val = data->part_info->temp_offset;
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static int bma180_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int val, int val2, long mask)
{
struct bma180_data *data = iio_priv(indio_dev);
int ret;
switch (mask) {
case IIO_CHAN_INFO_SCALE:
if (val)
return -EINVAL;
mutex_lock(&data->mutex);
ret = bma180_set_scale(data, val2);
mutex_unlock(&data->mutex);
return ret;
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
if (val2)
return -EINVAL;
mutex_lock(&data->mutex);
ret = bma180_set_bw(data, val);
mutex_unlock(&data->mutex);
return ret;
default:
return -EINVAL;
}
}
static const struct iio_info bma180_info = {
.attrs = &bma180_attrs_group,
.read_raw = bma180_read_raw,
.write_raw = bma180_write_raw,
};
static const char * const bma180_power_modes[] = { "low_noise", "low_power" };
static int bma180_get_power_mode(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan)
{
struct bma180_data *data = iio_priv(indio_dev);
return data->pmode;
}
static int bma180_set_power_mode(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan, unsigned int mode)
{
struct bma180_data *data = iio_priv(indio_dev);
int ret;
mutex_lock(&data->mutex);
ret = bma180_set_pmode(data, mode);
mutex_unlock(&data->mutex);
return ret;
}
static const struct iio_mount_matrix *
bma180_accel_get_mount_matrix(const struct iio_dev *indio_dev,
const struct iio_chan_spec *chan)
{
struct bma180_data *data = iio_priv(indio_dev);
return &data->orientation;
}
static const struct iio_enum bma180_power_mode_enum = {
.items = bma180_power_modes,
.num_items = ARRAY_SIZE(bma180_power_modes),
.get = bma180_get_power_mode,
.set = bma180_set_power_mode,
};
static const struct iio_chan_spec_ext_info bma023_ext_info[] = {
IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bma180_accel_get_mount_matrix),
{ }
};
static const struct iio_chan_spec_ext_info bma180_ext_info[] = {
IIO_ENUM("power_mode", IIO_SHARED_BY_TYPE, &bma180_power_mode_enum),
IIO_ENUM_AVAILABLE("power_mode", IIO_SHARED_BY_TYPE, &bma180_power_mode_enum),
IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bma180_accel_get_mount_matrix),
{ }
};
#define BMA023_ACC_CHANNEL(_axis, _bits) { \
.type = IIO_ACCEL, \
.modified = 1, \
.channel2 = IIO_MOD_##_axis, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), \
.scan_index = AXIS_##_axis, \
.scan_type = { \
.sign = 's', \
.realbits = _bits, \
.storagebits = 16, \
.shift = 16 - _bits, \
}, \
.ext_info = bma023_ext_info, \
}
#define BMA150_TEMP_CHANNEL { \
.type = IIO_TEMP, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_OFFSET), \
.scan_index = TEMP, \
.scan_type = { \
.sign = 'u', \
.realbits = 8, \
.storagebits = 16, \
}, \
}
#define BMA180_ACC_CHANNEL(_axis, _bits) { \
.type = IIO_ACCEL, \
.modified = 1, \
.channel2 = IIO_MOD_##_axis, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), \
.scan_index = AXIS_##_axis, \
.scan_type = { \
.sign = 's', \
.realbits = _bits, \
.storagebits = 16, \
.shift = 16 - _bits, \
}, \
.ext_info = bma180_ext_info, \
}
#define BMA180_TEMP_CHANNEL { \
.type = IIO_TEMP, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_OFFSET), \
.scan_index = TEMP, \
.scan_type = { \
.sign = 's', \
.realbits = 8, \
.storagebits = 16, \
}, \
}
static const struct iio_chan_spec bma023_channels[] = {
BMA023_ACC_CHANNEL(X, 10),
BMA023_ACC_CHANNEL(Y, 10),
BMA023_ACC_CHANNEL(Z, 10),
IIO_CHAN_SOFT_TIMESTAMP(4),
};
static const struct iio_chan_spec bma150_channels[] = {
BMA023_ACC_CHANNEL(X, 10),
BMA023_ACC_CHANNEL(Y, 10),
BMA023_ACC_CHANNEL(Z, 10),
BMA150_TEMP_CHANNEL,
IIO_CHAN_SOFT_TIMESTAMP(4),
};
static const struct iio_chan_spec bma180_channels[] = {
BMA180_ACC_CHANNEL(X, 14),
BMA180_ACC_CHANNEL(Y, 14),
BMA180_ACC_CHANNEL(Z, 14),
BMA180_TEMP_CHANNEL,
IIO_CHAN_SOFT_TIMESTAMP(4),
};
static const struct iio_chan_spec bma250_channels[] = {
BMA180_ACC_CHANNEL(X, 10),
BMA180_ACC_CHANNEL(Y, 10),
BMA180_ACC_CHANNEL(Z, 10),
BMA180_TEMP_CHANNEL,
IIO_CHAN_SOFT_TIMESTAMP(4),
};
static const struct bma180_part_info bma180_part_info[] = {
[BMA023] = {
.chip_id = BMA023_ID_REG_VAL,
.channels = bma023_channels,
.num_channels = ARRAY_SIZE(bma023_channels),
.scale_table = bma023_scale_table,
.num_scales = ARRAY_SIZE(bma023_scale_table),
.bw_table = bma023_bw_table,
.num_bw = ARRAY_SIZE(bma023_bw_table),
/* No temperature channel */
.temp_offset = 0,
.int_reset_reg = BMA023_CTRL_REG0,
.int_reset_mask = BMA023_INT_RESET_MASK,
.sleep_reg = BMA023_CTRL_REG0,
.sleep_mask = BMA023_SLEEP,
.bw_reg = BMA023_CTRL_REG2,
.bw_mask = BMA023_BW_MASK,
.scale_reg = BMA023_CTRL_REG2,
.scale_mask = BMA023_RANGE_MASK,
/* No power mode on bma023 */
.power_reg = 0,
.power_mask = 0,
.lowpower_val = 0,
.int_enable_reg = BMA023_CTRL_REG3,
.int_enable_mask = BMA023_NEW_DATA_INT,
.softreset_reg = BMA023_CTRL_REG0,
.softreset_val = BMA023_RESET_VAL,
.chip_config = bma023_chip_config,
.chip_disable = bma023_chip_disable,
},
[BMA150] = {
.chip_id = BMA023_ID_REG_VAL,
.channels = bma150_channels,
.num_channels = ARRAY_SIZE(bma150_channels),
.scale_table = bma023_scale_table,
.num_scales = ARRAY_SIZE(bma023_scale_table),
.bw_table = bma023_bw_table,
.num_bw = ARRAY_SIZE(bma023_bw_table),
.temp_offset = -60, /* 0 LSB @ -30 degree C */
.int_reset_reg = BMA023_CTRL_REG0,
.int_reset_mask = BMA023_INT_RESET_MASK,
.sleep_reg = BMA023_CTRL_REG0,
.sleep_mask = BMA023_SLEEP,
.bw_reg = BMA023_CTRL_REG2,
.bw_mask = BMA023_BW_MASK,
.scale_reg = BMA023_CTRL_REG2,
.scale_mask = BMA023_RANGE_MASK,
/* No power mode on bma150 */
.power_reg = 0,
.power_mask = 0,
.lowpower_val = 0,
.int_enable_reg = BMA023_CTRL_REG3,
.int_enable_mask = BMA023_NEW_DATA_INT,
.softreset_reg = BMA023_CTRL_REG0,
.softreset_val = BMA023_RESET_VAL,
.chip_config = bma023_chip_config,
.chip_disable = bma023_chip_disable,
},
[BMA180] = {
.chip_id = BMA180_ID_REG_VAL,
.channels = bma180_channels,
.num_channels = ARRAY_SIZE(bma180_channels),
.scale_table = bma180_scale_table,
.num_scales = ARRAY_SIZE(bma180_scale_table),
.bw_table = bma180_bw_table,
.num_bw = ARRAY_SIZE(bma180_bw_table),
.temp_offset = 48, /* 0 LSB @ 24 degree C */
.int_reset_reg = BMA180_CTRL_REG0,
.int_reset_mask = BMA180_RESET_INT,
.sleep_reg = BMA180_CTRL_REG0,
.sleep_mask = BMA180_SLEEP,
.bw_reg = BMA180_BW_TCS,
.bw_mask = BMA180_BW,
.scale_reg = BMA180_OFFSET_LSB1,
.scale_mask = BMA180_RANGE,
.power_reg = BMA180_TCO_Z,
.power_mask = BMA180_MODE_CONFIG,
.lowpower_val = BMA180_LOW_POWER,
.int_enable_reg = BMA180_CTRL_REG3,
.int_enable_mask = BMA180_NEW_DATA_INT,
.softreset_reg = BMA180_RESET,
.softreset_val = BMA180_RESET_VAL,
.chip_config = bma180_chip_config,
.chip_disable = bma180_chip_disable,
},
[BMA250] = {
.chip_id = BMA250_ID_REG_VAL,
.channels = bma250_channels,
.num_channels = ARRAY_SIZE(bma250_channels),
.scale_table = bma250_scale_table,
.num_scales = ARRAY_SIZE(bma250_scale_table),
.bw_table = bma250_bw_table,
.num_bw = ARRAY_SIZE(bma250_bw_table),
.temp_offset = 48, /* 0 LSB @ 24 degree C */
.int_reset_reg = BMA250_INT_RESET_REG,
.int_reset_mask = BMA250_INT_RESET_MASK,
.sleep_reg = BMA250_POWER_REG,
.sleep_mask = BMA250_SUSPEND_MASK,
.bw_reg = BMA250_BW_REG,
.bw_mask = BMA250_BW_MASK,
.bw_offset = BMA250_BW_OFFSET,
.scale_reg = BMA250_RANGE_REG,
.scale_mask = BMA250_RANGE_MASK,
.power_reg = BMA250_POWER_REG,
.power_mask = BMA250_LOWPOWER_MASK,
.lowpower_val = 1,
.int_enable_reg = BMA250_INT_ENABLE_REG,
.int_enable_mask = BMA250_DATA_INTEN_MASK,
.softreset_reg = BMA250_RESET_REG,
.softreset_val = BMA180_RESET_VAL,
.chip_config = bma250_chip_config,
.chip_disable = bma250_chip_disable,
},
};
static irqreturn_t bma180_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct bma180_data *data = iio_priv(indio_dev);
s64 time_ns = iio_get_time_ns(indio_dev);
int bit, ret, i = 0;
mutex_lock(&data->mutex);
for_each_set_bit(bit, indio_dev->active_scan_mask,
indio_dev->masklength) {
ret = bma180_get_data_reg(data, bit);
if (ret < 0) {
mutex_unlock(&data->mutex);
goto err;
}
data->scan.chan[i++] = ret;
}
mutex_unlock(&data->mutex);
iio_push_to_buffers_with_timestamp(indio_dev, &data->scan, time_ns);
err:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static int bma180_data_rdy_trigger_set_state(struct iio_trigger *trig,
bool state)
{
struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
struct bma180_data *data = iio_priv(indio_dev);
return bma180_set_new_data_intr_state(data, state);
}
static void bma180_trig_reen(struct iio_trigger *trig)
{
struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
struct bma180_data *data = iio_priv(indio_dev);
int ret;
ret = bma180_reset_intr(data);
if (ret)
dev_err(&data->client->dev, "failed to reset interrupt\n");
}
static const struct iio_trigger_ops bma180_trigger_ops = {
.set_trigger_state = bma180_data_rdy_trigger_set_state,
.reenable = bma180_trig_reen,
};
static int bma180_probe(struct i2c_client *client)
{
const struct i2c_device_id *id = i2c_client_get_device_id(client);
struct device *dev = &client->dev;
struct bma180_data *data;
struct iio_dev *indio_dev;
enum chip_ids chip;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
i2c_set_clientdata(client, indio_dev);
data->client = client;
if (client->dev.of_node)
chip = (uintptr_t)of_device_get_match_data(dev);
else
chip = id->driver_data;
data->part_info = &bma180_part_info[chip];
ret = iio_read_mount_matrix(dev, &data->orientation);
if (ret)
return ret;
data->vdd_supply = devm_regulator_get(dev, "vdd");
if (IS_ERR(data->vdd_supply))
return dev_err_probe(dev, PTR_ERR(data->vdd_supply),
"Failed to get vdd regulator\n");
data->vddio_supply = devm_regulator_get(dev, "vddio");
if (IS_ERR(data->vddio_supply))
return dev_err_probe(dev, PTR_ERR(data->vddio_supply),
"Failed to get vddio regulator\n");
/* Typical voltage 2.4V these are min and max */
ret = regulator_set_voltage(data->vdd_supply, 1620000, 3600000);
if (ret)
return ret;
ret = regulator_set_voltage(data->vddio_supply, 1200000, 3600000);
if (ret)
return ret;
ret = regulator_enable(data->vdd_supply);
if (ret) {
dev_err(dev, "Failed to enable vdd regulator: %d\n", ret);
return ret;
}
ret = regulator_enable(data->vddio_supply);
if (ret) {
dev_err(dev, "Failed to enable vddio regulator: %d\n", ret);
goto err_disable_vdd;
}
/* Wait to make sure we started up properly (3 ms at least) */
usleep_range(3000, 5000);
ret = data->part_info->chip_config(data);
if (ret < 0)
goto err_chip_disable;
mutex_init(&data->mutex);
indio_dev->channels = data->part_info->channels;
indio_dev->num_channels = data->part_info->num_channels;
indio_dev->name = id->name;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &bma180_info;
if (client->irq > 0) {
data->trig = iio_trigger_alloc(dev, "%s-dev%d", indio_dev->name,
iio_device_id(indio_dev));
if (!data->trig) {
ret = -ENOMEM;
goto err_chip_disable;
}
ret = devm_request_irq(dev, client->irq,
iio_trigger_generic_data_rdy_poll, IRQF_TRIGGER_RISING,
"bma180_event", data->trig);
if (ret) {
dev_err(dev, "unable to request IRQ\n");
goto err_trigger_free;
}
data->trig->ops = &bma180_trigger_ops;
iio_trigger_set_drvdata(data->trig, indio_dev);
ret = iio_trigger_register(data->trig);
if (ret)
goto err_trigger_free;
indio_dev->trig = iio_trigger_get(data->trig);
}
ret = iio_triggered_buffer_setup(indio_dev, NULL,
bma180_trigger_handler, NULL);
if (ret < 0) {
dev_err(dev, "unable to setup iio triggered buffer\n");
goto err_trigger_unregister;
}
ret = iio_device_register(indio_dev);
if (ret < 0) {
dev_err(dev, "unable to register iio device\n");
goto err_buffer_cleanup;
}
return 0;
err_buffer_cleanup:
iio_triggered_buffer_cleanup(indio_dev);
err_trigger_unregister:
if (data->trig)
iio_trigger_unregister(data->trig);
err_trigger_free:
iio_trigger_free(data->trig);
err_chip_disable:
data->part_info->chip_disable(data);
regulator_disable(data->vddio_supply);
err_disable_vdd:
regulator_disable(data->vdd_supply);
return ret;
}
static void bma180_remove(struct i2c_client *client)
{
struct iio_dev *indio_dev = i2c_get_clientdata(client);
struct bma180_data *data = iio_priv(indio_dev);
iio_device_unregister(indio_dev);
iio_triggered_buffer_cleanup(indio_dev);
if (data->trig) {
iio_trigger_unregister(data->trig);
iio_trigger_free(data->trig);
}
mutex_lock(&data->mutex);
data->part_info->chip_disable(data);
mutex_unlock(&data->mutex);
regulator_disable(data->vddio_supply);
regulator_disable(data->vdd_supply);
}
static int bma180_suspend(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct bma180_data *data = iio_priv(indio_dev);
int ret;
mutex_lock(&data->mutex);
ret = bma180_set_sleep_state(data, true);
mutex_unlock(&data->mutex);
return ret;
}
static int bma180_resume(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct bma180_data *data = iio_priv(indio_dev);
int ret;
mutex_lock(&data->mutex);
ret = bma180_set_sleep_state(data, false);
mutex_unlock(&data->mutex);
return ret;
}
static DEFINE_SIMPLE_DEV_PM_OPS(bma180_pm_ops, bma180_suspend, bma180_resume);
static const struct i2c_device_id bma180_ids[] = {
{ "bma023", BMA023 },
{ "bma150", BMA150 },
{ "bma180", BMA180 },
{ "bma250", BMA250 },
{ "smb380", BMA150 },
{ }
};
MODULE_DEVICE_TABLE(i2c, bma180_ids);
static const struct of_device_id bma180_of_match[] = {
{
.compatible = "bosch,bma023",
.data = (void *)BMA023
},
{
.compatible = "bosch,bma150",
.data = (void *)BMA150
},
{
.compatible = "bosch,bma180",
.data = (void *)BMA180
},
{
.compatible = "bosch,bma250",
.data = (void *)BMA250
},
{
.compatible = "bosch,smb380",
.data = (void *)BMA150
},
{ }
};
MODULE_DEVICE_TABLE(of, bma180_of_match);
static struct i2c_driver bma180_driver = {
.driver = {
.name = "bma180",
.pm = pm_sleep_ptr(&bma180_pm_ops),
.of_match_table = bma180_of_match,
},
.probe_new = bma180_probe,
.remove = bma180_remove,
.id_table = bma180_ids,
};
module_i2c_driver(bma180_driver);
MODULE_AUTHOR("Kravchenko Oleksandr <x0199363@ti.com>");
MODULE_AUTHOR("Texas Instruments, Inc.");
MODULE_DESCRIPTION("Bosch BMA023/BMA1x0/BMA250 triaxial acceleration sensor");
MODULE_LICENSE("GPL");