OpenCloudOS-Kernel/drivers/gpu/drm/msm/msm_drv.c

1491 lines
35 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2016-2018, 2020-2021 The Linux Foundation. All rights reserved.
* Copyright (C) 2013 Red Hat
* Author: Rob Clark <robdclark@gmail.com>
*/
#include <linux/dma-mapping.h>
#include <linux/kthread.h>
#include <linux/sched/mm.h>
#include <linux/uaccess.h>
#include <uapi/linux/sched/types.h>
#include <drm/drm_drv.h>
#include <drm/drm_file.h>
#include <drm/drm_ioctl.h>
#include <drm/drm_prime.h>
#include <drm/drm_of.h>
#include <drm/drm_vblank.h>
#include "disp/msm_disp_snapshot.h"
#include "msm_drv.h"
#include "msm_debugfs.h"
#include "msm_fence.h"
#include "msm_gem.h"
#include "msm_gpu.h"
#include "msm_kms.h"
#include "adreno/adreno_gpu.h"
/*
* MSM driver version:
* - 1.0.0 - initial interface
* - 1.1.0 - adds madvise, and support for submits with > 4 cmd buffers
* - 1.2.0 - adds explicit fence support for submit ioctl
* - 1.3.0 - adds GMEM_BASE + NR_RINGS params, SUBMITQUEUE_NEW +
* SUBMITQUEUE_CLOSE ioctls, and MSM_INFO_IOVA flag for
* MSM_GEM_INFO ioctl.
* - 1.4.0 - softpin, MSM_RELOC_BO_DUMP, and GEM_INFO support to set/get
* GEM object's debug name
* - 1.5.0 - Add SUBMITQUERY_QUERY ioctl
* - 1.6.0 - Syncobj support
* - 1.7.0 - Add MSM_PARAM_SUSPENDS to access suspend count
* - 1.8.0 - Add MSM_BO_CACHED_COHERENT for supported GPUs (a6xx)
*/
#define MSM_VERSION_MAJOR 1
#define MSM_VERSION_MINOR 8
#define MSM_VERSION_PATCHLEVEL 0
static const struct drm_mode_config_funcs mode_config_funcs = {
.fb_create = msm_framebuffer_create,
.output_poll_changed = drm_fb_helper_output_poll_changed,
.atomic_check = drm_atomic_helper_check,
.atomic_commit = drm_atomic_helper_commit,
};
static const struct drm_mode_config_helper_funcs mode_config_helper_funcs = {
.atomic_commit_tail = msm_atomic_commit_tail,
};
#ifdef CONFIG_DRM_MSM_REGISTER_LOGGING
static bool reglog;
MODULE_PARM_DESC(reglog, "Enable register read/write logging");
module_param(reglog, bool, 0600);
#else
#define reglog 0
#endif
#ifdef CONFIG_DRM_FBDEV_EMULATION
static bool fbdev = true;
MODULE_PARM_DESC(fbdev, "Enable fbdev compat layer");
module_param(fbdev, bool, 0600);
#endif
static char *vram = "16m";
MODULE_PARM_DESC(vram, "Configure VRAM size (for devices without IOMMU/GPUMMU)");
module_param(vram, charp, 0);
bool dumpstate;
MODULE_PARM_DESC(dumpstate, "Dump KMS state on errors");
module_param(dumpstate, bool, 0600);
static bool modeset = true;
MODULE_PARM_DESC(modeset, "Use kernel modesetting [KMS] (1=on (default), 0=disable)");
module_param(modeset, bool, 0600);
/*
* Util/helpers:
*/
struct clk *msm_clk_bulk_get_clock(struct clk_bulk_data *bulk, int count,
const char *name)
{
int i;
char n[32];
snprintf(n, sizeof(n), "%s_clk", name);
for (i = 0; bulk && i < count; i++) {
if (!strcmp(bulk[i].id, name) || !strcmp(bulk[i].id, n))
return bulk[i].clk;
}
return NULL;
}
struct clk *msm_clk_get(struct platform_device *pdev, const char *name)
{
struct clk *clk;
char name2[32];
clk = devm_clk_get(&pdev->dev, name);
if (!IS_ERR(clk) || PTR_ERR(clk) == -EPROBE_DEFER)
return clk;
snprintf(name2, sizeof(name2), "%s_clk", name);
clk = devm_clk_get(&pdev->dev, name2);
if (!IS_ERR(clk))
dev_warn(&pdev->dev, "Using legacy clk name binding. Use "
"\"%s\" instead of \"%s\"\n", name, name2);
return clk;
}
static void __iomem *_msm_ioremap(struct platform_device *pdev, const char *name,
const char *dbgname, bool quiet, phys_addr_t *psize)
{
struct resource *res;
unsigned long size;
void __iomem *ptr;
if (name)
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name);
else
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
if (!quiet)
DRM_DEV_ERROR(&pdev->dev, "failed to get memory resource: %s\n", name);
return ERR_PTR(-EINVAL);
}
size = resource_size(res);
ptr = devm_ioremap(&pdev->dev, res->start, size);
if (!ptr) {
if (!quiet)
DRM_DEV_ERROR(&pdev->dev, "failed to ioremap: %s\n", name);
return ERR_PTR(-ENOMEM);
}
if (reglog)
printk(KERN_DEBUG "IO:region %s %p %08lx\n", dbgname, ptr, size);
if (psize)
*psize = size;
return ptr;
}
void __iomem *msm_ioremap(struct platform_device *pdev, const char *name,
const char *dbgname)
{
return _msm_ioremap(pdev, name, dbgname, false, NULL);
}
void __iomem *msm_ioremap_quiet(struct platform_device *pdev, const char *name,
const char *dbgname)
{
return _msm_ioremap(pdev, name, dbgname, true, NULL);
}
void __iomem *msm_ioremap_size(struct platform_device *pdev, const char *name,
const char *dbgname, phys_addr_t *psize)
{
return _msm_ioremap(pdev, name, dbgname, false, psize);
}
void msm_writel(u32 data, void __iomem *addr)
{
if (reglog)
printk(KERN_DEBUG "IO:W %p %08x\n", addr, data);
writel(data, addr);
}
u32 msm_readl(const void __iomem *addr)
{
u32 val = readl(addr);
if (reglog)
pr_err("IO:R %p %08x\n", addr, val);
return val;
}
void msm_rmw(void __iomem *addr, u32 mask, u32 or)
{
u32 val = msm_readl(addr);
val &= ~mask;
msm_writel(val | or, addr);
}
static enum hrtimer_restart msm_hrtimer_worktimer(struct hrtimer *t)
{
struct msm_hrtimer_work *work = container_of(t,
struct msm_hrtimer_work, timer);
kthread_queue_work(work->worker, &work->work);
return HRTIMER_NORESTART;
}
void msm_hrtimer_queue_work(struct msm_hrtimer_work *work,
ktime_t wakeup_time,
enum hrtimer_mode mode)
{
hrtimer_start(&work->timer, wakeup_time, mode);
}
void msm_hrtimer_work_init(struct msm_hrtimer_work *work,
struct kthread_worker *worker,
kthread_work_func_t fn,
clockid_t clock_id,
enum hrtimer_mode mode)
{
hrtimer_init(&work->timer, clock_id, mode);
work->timer.function = msm_hrtimer_worktimer;
work->worker = worker;
kthread_init_work(&work->work, fn);
}
static irqreturn_t msm_irq(int irq, void *arg)
{
struct drm_device *dev = arg;
struct msm_drm_private *priv = dev->dev_private;
struct msm_kms *kms = priv->kms;
BUG_ON(!kms);
return kms->funcs->irq(kms);
}
static void msm_irq_preinstall(struct drm_device *dev)
{
struct msm_drm_private *priv = dev->dev_private;
struct msm_kms *kms = priv->kms;
BUG_ON(!kms);
kms->funcs->irq_preinstall(kms);
}
static int msm_irq_postinstall(struct drm_device *dev)
{
struct msm_drm_private *priv = dev->dev_private;
struct msm_kms *kms = priv->kms;
BUG_ON(!kms);
if (kms->funcs->irq_postinstall)
return kms->funcs->irq_postinstall(kms);
return 0;
}
static int msm_irq_install(struct drm_device *dev, unsigned int irq)
{
int ret;
if (irq == IRQ_NOTCONNECTED)
return -ENOTCONN;
msm_irq_preinstall(dev);
ret = request_irq(irq, msm_irq, 0, dev->driver->name, dev);
if (ret)
return ret;
ret = msm_irq_postinstall(dev);
if (ret) {
free_irq(irq, dev);
return ret;
}
return 0;
}
static void msm_irq_uninstall(struct drm_device *dev)
{
struct msm_drm_private *priv = dev->dev_private;
struct msm_kms *kms = priv->kms;
kms->funcs->irq_uninstall(kms);
free_irq(kms->irq, dev);
}
struct msm_vblank_work {
struct work_struct work;
int crtc_id;
bool enable;
struct msm_drm_private *priv;
};
static void vblank_ctrl_worker(struct work_struct *work)
{
struct msm_vblank_work *vbl_work = container_of(work,
struct msm_vblank_work, work);
struct msm_drm_private *priv = vbl_work->priv;
struct msm_kms *kms = priv->kms;
if (vbl_work->enable)
kms->funcs->enable_vblank(kms, priv->crtcs[vbl_work->crtc_id]);
else
kms->funcs->disable_vblank(kms, priv->crtcs[vbl_work->crtc_id]);
kfree(vbl_work);
}
static int vblank_ctrl_queue_work(struct msm_drm_private *priv,
int crtc_id, bool enable)
{
struct msm_vblank_work *vbl_work;
vbl_work = kzalloc(sizeof(*vbl_work), GFP_ATOMIC);
if (!vbl_work)
return -ENOMEM;
INIT_WORK(&vbl_work->work, vblank_ctrl_worker);
vbl_work->crtc_id = crtc_id;
vbl_work->enable = enable;
vbl_work->priv = priv;
queue_work(priv->wq, &vbl_work->work);
return 0;
}
static int msm_drm_uninit(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct msm_drm_private *priv = platform_get_drvdata(pdev);
struct drm_device *ddev = priv->dev;
struct msm_kms *kms = priv->kms;
int i;
/*
* Shutdown the hw if we're far enough along where things might be on.
* If we run this too early, we'll end up panicking in any variety of
* places. Since we don't register the drm device until late in
* msm_drm_init, drm_dev->registered is used as an indicator that the
* shutdown will be successful.
*/
if (ddev->registered) {
drm_dev_unregister(ddev);
drm_atomic_helper_shutdown(ddev);
}
/* We must cancel and cleanup any pending vblank enable/disable
* work before msm_irq_uninstall() to avoid work re-enabling an
* irq after uninstall has disabled it.
*/
flush_workqueue(priv->wq);
/* clean up event worker threads */
for (i = 0; i < priv->num_crtcs; i++) {
if (priv->event_thread[i].worker)
kthread_destroy_worker(priv->event_thread[i].worker);
}
msm_gem_shrinker_cleanup(ddev);
drm_kms_helper_poll_fini(ddev);
msm_perf_debugfs_cleanup(priv);
msm_rd_debugfs_cleanup(priv);
#ifdef CONFIG_DRM_FBDEV_EMULATION
if (fbdev && priv->fbdev)
msm_fbdev_free(ddev);
#endif
msm_disp_snapshot_destroy(ddev);
drm_mode_config_cleanup(ddev);
pm_runtime_get_sync(dev);
msm_irq_uninstall(ddev);
pm_runtime_put_sync(dev);
if (kms && kms->funcs)
kms->funcs->destroy(kms);
if (priv->vram.paddr) {
unsigned long attrs = DMA_ATTR_NO_KERNEL_MAPPING;
drm_mm_takedown(&priv->vram.mm);
dma_free_attrs(dev, priv->vram.size, NULL,
priv->vram.paddr, attrs);
}
component_unbind_all(dev, ddev);
ddev->dev_private = NULL;
drm_dev_put(ddev);
destroy_workqueue(priv->wq);
return 0;
}
#define KMS_MDP4 4
#define KMS_MDP5 5
#define KMS_DPU 3
static int get_mdp_ver(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
return (int) (unsigned long) of_device_get_match_data(dev);
}
#include <linux/of_address.h>
bool msm_use_mmu(struct drm_device *dev)
{
struct msm_drm_private *priv = dev->dev_private;
/* a2xx comes with its own MMU */
return priv->is_a2xx || iommu_present(&platform_bus_type);
}
static int msm_init_vram(struct drm_device *dev)
{
struct msm_drm_private *priv = dev->dev_private;
struct device_node *node;
unsigned long size = 0;
int ret = 0;
/* In the device-tree world, we could have a 'memory-region'
* phandle, which gives us a link to our "vram". Allocating
* is all nicely abstracted behind the dma api, but we need
* to know the entire size to allocate it all in one go. There
* are two cases:
* 1) device with no IOMMU, in which case we need exclusive
* access to a VRAM carveout big enough for all gpu
* buffers
* 2) device with IOMMU, but where the bootloader puts up
* a splash screen. In this case, the VRAM carveout
* need only be large enough for fbdev fb. But we need
* exclusive access to the buffer to avoid the kernel
* using those pages for other purposes (which appears
* as corruption on screen before we have a chance to
* load and do initial modeset)
*/
node = of_parse_phandle(dev->dev->of_node, "memory-region", 0);
if (node) {
struct resource r;
ret = of_address_to_resource(node, 0, &r);
of_node_put(node);
if (ret)
return ret;
size = r.end - r.start + 1;
DRM_INFO("using VRAM carveout: %lx@%pa\n", size, &r.start);
/* if we have no IOMMU, then we need to use carveout allocator.
* Grab the entire CMA chunk carved out in early startup in
* mach-msm:
*/
} else if (!msm_use_mmu(dev)) {
DRM_INFO("using %s VRAM carveout\n", vram);
size = memparse(vram, NULL);
}
if (size) {
unsigned long attrs = 0;
void *p;
priv->vram.size = size;
drm_mm_init(&priv->vram.mm, 0, (size >> PAGE_SHIFT) - 1);
spin_lock_init(&priv->vram.lock);
attrs |= DMA_ATTR_NO_KERNEL_MAPPING;
attrs |= DMA_ATTR_WRITE_COMBINE;
/* note that for no-kernel-mapping, the vaddr returned
* is bogus, but non-null if allocation succeeded:
*/
p = dma_alloc_attrs(dev->dev, size,
&priv->vram.paddr, GFP_KERNEL, attrs);
if (!p) {
DRM_DEV_ERROR(dev->dev, "failed to allocate VRAM\n");
priv->vram.paddr = 0;
return -ENOMEM;
}
DRM_DEV_INFO(dev->dev, "VRAM: %08x->%08x\n",
(uint32_t)priv->vram.paddr,
(uint32_t)(priv->vram.paddr + size));
}
return ret;
}
static int msm_drm_init(struct device *dev, const struct drm_driver *drv)
{
struct platform_device *pdev = to_platform_device(dev);
struct msm_drm_private *priv = dev_get_drvdata(dev);
struct drm_device *ddev;
struct msm_kms *kms;
int ret, i;
ddev = drm_dev_alloc(drv, dev);
if (IS_ERR(ddev)) {
DRM_DEV_ERROR(dev, "failed to allocate drm_device\n");
return PTR_ERR(ddev);
}
ddev->dev_private = priv;
priv->dev = ddev;
priv->wq = alloc_ordered_workqueue("msm", 0);
priv->hangcheck_period = DRM_MSM_HANGCHECK_DEFAULT_PERIOD;
INIT_LIST_HEAD(&priv->objects);
mutex_init(&priv->obj_lock);
INIT_LIST_HEAD(&priv->inactive_willneed);
INIT_LIST_HEAD(&priv->inactive_dontneed);
INIT_LIST_HEAD(&priv->inactive_unpinned);
mutex_init(&priv->mm_lock);
/* Teach lockdep about lock ordering wrt. shrinker: */
fs_reclaim_acquire(GFP_KERNEL);
might_lock(&priv->mm_lock);
fs_reclaim_release(GFP_KERNEL);
drm_mode_config_init(ddev);
ret = msm_init_vram(ddev);
if (ret)
return ret;
/* Bind all our sub-components: */
ret = component_bind_all(dev, ddev);
if (ret)
return ret;
dma_set_max_seg_size(dev, UINT_MAX);
msm_gem_shrinker_init(ddev);
switch (get_mdp_ver(pdev)) {
case KMS_MDP4:
kms = mdp4_kms_init(ddev);
priv->kms = kms;
break;
case KMS_MDP5:
kms = mdp5_kms_init(ddev);
break;
case KMS_DPU:
kms = dpu_kms_init(ddev);
priv->kms = kms;
break;
default:
/* valid only for the dummy headless case, where of_node=NULL */
WARN_ON(dev->of_node);
kms = NULL;
break;
}
if (IS_ERR(kms)) {
DRM_DEV_ERROR(dev, "failed to load kms\n");
ret = PTR_ERR(kms);
priv->kms = NULL;
goto err_msm_uninit;
}
/* Enable normalization of plane zpos */
ddev->mode_config.normalize_zpos = true;
if (kms) {
kms->dev = ddev;
ret = kms->funcs->hw_init(kms);
if (ret) {
DRM_DEV_ERROR(dev, "kms hw init failed: %d\n", ret);
goto err_msm_uninit;
}
}
ddev->mode_config.funcs = &mode_config_funcs;
ddev->mode_config.helper_private = &mode_config_helper_funcs;
for (i = 0; i < priv->num_crtcs; i++) {
/* initialize event thread */
priv->event_thread[i].crtc_id = priv->crtcs[i]->base.id;
priv->event_thread[i].dev = ddev;
priv->event_thread[i].worker = kthread_create_worker(0,
"crtc_event:%d", priv->event_thread[i].crtc_id);
if (IS_ERR(priv->event_thread[i].worker)) {
ret = PTR_ERR(priv->event_thread[i].worker);
DRM_DEV_ERROR(dev, "failed to create crtc_event kthread\n");
ret = PTR_ERR(priv->event_thread[i].worker);
goto err_msm_uninit;
}
sched_set_fifo(priv->event_thread[i].worker->task);
}
ret = drm_vblank_init(ddev, priv->num_crtcs);
if (ret < 0) {
DRM_DEV_ERROR(dev, "failed to initialize vblank\n");
goto err_msm_uninit;
}
if (kms) {
pm_runtime_get_sync(dev);
ret = msm_irq_install(ddev, kms->irq);
pm_runtime_put_sync(dev);
if (ret < 0) {
DRM_DEV_ERROR(dev, "failed to install IRQ handler\n");
goto err_msm_uninit;
}
}
ret = drm_dev_register(ddev, 0);
if (ret)
goto err_msm_uninit;
if (kms) {
ret = msm_disp_snapshot_init(ddev);
if (ret)
DRM_DEV_ERROR(dev, "msm_disp_snapshot_init failed ret = %d\n", ret);
}
drm_mode_config_reset(ddev);
#ifdef CONFIG_DRM_FBDEV_EMULATION
if (kms && fbdev)
priv->fbdev = msm_fbdev_init(ddev);
#endif
ret = msm_debugfs_late_init(ddev);
if (ret)
goto err_msm_uninit;
drm_kms_helper_poll_init(ddev);
return 0;
err_msm_uninit:
msm_drm_uninit(dev);
return ret;
}
/*
* DRM operations:
*/
static void load_gpu(struct drm_device *dev)
{
static DEFINE_MUTEX(init_lock);
struct msm_drm_private *priv = dev->dev_private;
mutex_lock(&init_lock);
if (!priv->gpu)
priv->gpu = adreno_load_gpu(dev);
mutex_unlock(&init_lock);
}
static int context_init(struct drm_device *dev, struct drm_file *file)
{
static atomic_t ident = ATOMIC_INIT(0);
struct msm_drm_private *priv = dev->dev_private;
struct msm_file_private *ctx;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
INIT_LIST_HEAD(&ctx->submitqueues);
rwlock_init(&ctx->queuelock);
kref_init(&ctx->ref);
msm_submitqueue_init(dev, ctx);
ctx->aspace = msm_gpu_create_private_address_space(priv->gpu, current);
file->driver_priv = ctx;
ctx->seqno = atomic_inc_return(&ident);
return 0;
}
static int msm_open(struct drm_device *dev, struct drm_file *file)
{
/* For now, load gpu on open.. to avoid the requirement of having
* firmware in the initrd.
*/
load_gpu(dev);
return context_init(dev, file);
}
static void context_close(struct msm_file_private *ctx)
{
msm_submitqueue_close(ctx);
msm_file_private_put(ctx);
}
static void msm_postclose(struct drm_device *dev, struct drm_file *file)
{
struct msm_file_private *ctx = file->driver_priv;
context_close(ctx);
}
int msm_crtc_enable_vblank(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
unsigned int pipe = crtc->index;
struct msm_drm_private *priv = dev->dev_private;
struct msm_kms *kms = priv->kms;
if (!kms)
return -ENXIO;
drm_dbg_vbl(dev, "crtc=%u", pipe);
return vblank_ctrl_queue_work(priv, pipe, true);
}
void msm_crtc_disable_vblank(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
unsigned int pipe = crtc->index;
struct msm_drm_private *priv = dev->dev_private;
struct msm_kms *kms = priv->kms;
if (!kms)
return;
drm_dbg_vbl(dev, "crtc=%u", pipe);
vblank_ctrl_queue_work(priv, pipe, false);
}
/*
* DRM ioctls:
*/
static int msm_ioctl_get_param(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct msm_drm_private *priv = dev->dev_private;
struct drm_msm_param *args = data;
struct msm_gpu *gpu;
/* for now, we just have 3d pipe.. eventually this would need to
* be more clever to dispatch to appropriate gpu module:
*/
if (args->pipe != MSM_PIPE_3D0)
return -EINVAL;
gpu = priv->gpu;
if (!gpu)
return -ENXIO;
return gpu->funcs->get_param(gpu, args->param, &args->value);
}
static int msm_ioctl_gem_new(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_msm_gem_new *args = data;
if (args->flags & ~MSM_BO_FLAGS) {
DRM_ERROR("invalid flags: %08x\n", args->flags);
return -EINVAL;
}
return msm_gem_new_handle(dev, file, args->size,
args->flags, &args->handle, NULL);
}
static inline ktime_t to_ktime(struct drm_msm_timespec timeout)
{
return ktime_set(timeout.tv_sec, timeout.tv_nsec);
}
static int msm_ioctl_gem_cpu_prep(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_msm_gem_cpu_prep *args = data;
struct drm_gem_object *obj;
ktime_t timeout = to_ktime(args->timeout);
int ret;
if (args->op & ~MSM_PREP_FLAGS) {
DRM_ERROR("invalid op: %08x\n", args->op);
return -EINVAL;
}
obj = drm_gem_object_lookup(file, args->handle);
if (!obj)
return -ENOENT;
ret = msm_gem_cpu_prep(obj, args->op, &timeout);
drm_gem_object_put(obj);
return ret;
}
static int msm_ioctl_gem_cpu_fini(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_msm_gem_cpu_fini *args = data;
struct drm_gem_object *obj;
int ret;
obj = drm_gem_object_lookup(file, args->handle);
if (!obj)
return -ENOENT;
ret = msm_gem_cpu_fini(obj);
drm_gem_object_put(obj);
return ret;
}
static int msm_ioctl_gem_info_iova(struct drm_device *dev,
struct drm_file *file, struct drm_gem_object *obj,
uint64_t *iova)
{
struct msm_drm_private *priv = dev->dev_private;
struct msm_file_private *ctx = file->driver_priv;
if (!priv->gpu)
return -EINVAL;
/*
* Don't pin the memory here - just get an address so that userspace can
* be productive
*/
return msm_gem_get_iova(obj, ctx->aspace, iova);
}
static int msm_ioctl_gem_info(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_msm_gem_info *args = data;
struct drm_gem_object *obj;
struct msm_gem_object *msm_obj;
int i, ret = 0;
if (args->pad)
return -EINVAL;
switch (args->info) {
case MSM_INFO_GET_OFFSET:
case MSM_INFO_GET_IOVA:
/* value returned as immediate, not pointer, so len==0: */
if (args->len)
return -EINVAL;
break;
case MSM_INFO_SET_NAME:
case MSM_INFO_GET_NAME:
break;
default:
return -EINVAL;
}
obj = drm_gem_object_lookup(file, args->handle);
if (!obj)
return -ENOENT;
msm_obj = to_msm_bo(obj);
switch (args->info) {
case MSM_INFO_GET_OFFSET:
args->value = msm_gem_mmap_offset(obj);
break;
case MSM_INFO_GET_IOVA:
ret = msm_ioctl_gem_info_iova(dev, file, obj, &args->value);
break;
case MSM_INFO_SET_NAME:
/* length check should leave room for terminating null: */
if (args->len >= sizeof(msm_obj->name)) {
ret = -EINVAL;
break;
}
if (copy_from_user(msm_obj->name, u64_to_user_ptr(args->value),
args->len)) {
msm_obj->name[0] = '\0';
ret = -EFAULT;
break;
}
msm_obj->name[args->len] = '\0';
for (i = 0; i < args->len; i++) {
if (!isprint(msm_obj->name[i])) {
msm_obj->name[i] = '\0';
break;
}
}
break;
case MSM_INFO_GET_NAME:
if (args->value && (args->len < strlen(msm_obj->name))) {
ret = -EINVAL;
break;
}
args->len = strlen(msm_obj->name);
if (args->value) {
if (copy_to_user(u64_to_user_ptr(args->value),
msm_obj->name, args->len))
ret = -EFAULT;
}
break;
}
drm_gem_object_put(obj);
return ret;
}
static int wait_fence(struct msm_gpu_submitqueue *queue, uint32_t fence_id,
ktime_t timeout)
{
struct dma_fence *fence;
int ret;
if (fence_after(fence_id, queue->last_fence)) {
DRM_ERROR_RATELIMITED("waiting on invalid fence: %u (of %u)\n",
fence_id, queue->last_fence);
return -EINVAL;
}
/*
* Map submitqueue scoped "seqno" (which is actually an idr key)
* back to underlying dma-fence
*
* The fence is removed from the fence_idr when the submit is
* retired, so if the fence is not found it means there is nothing
* to wait for
*/
ret = mutex_lock_interruptible(&queue->lock);
if (ret)
return ret;
fence = idr_find(&queue->fence_idr, fence_id);
if (fence)
fence = dma_fence_get_rcu(fence);
mutex_unlock(&queue->lock);
if (!fence)
return 0;
ret = dma_fence_wait_timeout(fence, true, timeout_to_jiffies(&timeout));
if (ret == 0) {
ret = -ETIMEDOUT;
} else if (ret != -ERESTARTSYS) {
ret = 0;
}
dma_fence_put(fence);
return ret;
}
static int msm_ioctl_wait_fence(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct msm_drm_private *priv = dev->dev_private;
struct drm_msm_wait_fence *args = data;
struct msm_gpu_submitqueue *queue;
int ret;
if (args->pad) {
DRM_ERROR("invalid pad: %08x\n", args->pad);
return -EINVAL;
}
if (!priv->gpu)
return 0;
queue = msm_submitqueue_get(file->driver_priv, args->queueid);
if (!queue)
return -ENOENT;
ret = wait_fence(queue, args->fence, to_ktime(args->timeout));
msm_submitqueue_put(queue);
return ret;
}
static int msm_ioctl_gem_madvise(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_msm_gem_madvise *args = data;
struct drm_gem_object *obj;
int ret;
switch (args->madv) {
case MSM_MADV_DONTNEED:
case MSM_MADV_WILLNEED:
break;
default:
return -EINVAL;
}
obj = drm_gem_object_lookup(file, args->handle);
if (!obj) {
return -ENOENT;
}
ret = msm_gem_madvise(obj, args->madv);
if (ret >= 0) {
args->retained = ret;
ret = 0;
}
drm_gem_object_put(obj);
return ret;
}
static int msm_ioctl_submitqueue_new(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_msm_submitqueue *args = data;
if (args->flags & ~MSM_SUBMITQUEUE_FLAGS)
return -EINVAL;
return msm_submitqueue_create(dev, file->driver_priv, args->prio,
args->flags, &args->id);
}
static int msm_ioctl_submitqueue_query(struct drm_device *dev, void *data,
struct drm_file *file)
{
return msm_submitqueue_query(dev, file->driver_priv, data);
}
static int msm_ioctl_submitqueue_close(struct drm_device *dev, void *data,
struct drm_file *file)
{
u32 id = *(u32 *) data;
return msm_submitqueue_remove(file->driver_priv, id);
}
static const struct drm_ioctl_desc msm_ioctls[] = {
DRM_IOCTL_DEF_DRV(MSM_GET_PARAM, msm_ioctl_get_param, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(MSM_GEM_NEW, msm_ioctl_gem_new, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(MSM_GEM_INFO, msm_ioctl_gem_info, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(MSM_GEM_CPU_PREP, msm_ioctl_gem_cpu_prep, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(MSM_GEM_CPU_FINI, msm_ioctl_gem_cpu_fini, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(MSM_GEM_SUBMIT, msm_ioctl_gem_submit, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(MSM_WAIT_FENCE, msm_ioctl_wait_fence, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(MSM_GEM_MADVISE, msm_ioctl_gem_madvise, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(MSM_SUBMITQUEUE_NEW, msm_ioctl_submitqueue_new, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(MSM_SUBMITQUEUE_CLOSE, msm_ioctl_submitqueue_close, DRM_RENDER_ALLOW),
DRM_IOCTL_DEF_DRV(MSM_SUBMITQUEUE_QUERY, msm_ioctl_submitqueue_query, DRM_RENDER_ALLOW),
};
DEFINE_DRM_GEM_FOPS(fops);
static const struct drm_driver msm_driver = {
.driver_features = DRIVER_GEM |
DRIVER_RENDER |
DRIVER_ATOMIC |
DRIVER_MODESET |
DRIVER_SYNCOBJ,
.open = msm_open,
.postclose = msm_postclose,
.lastclose = drm_fb_helper_lastclose,
.dumb_create = msm_gem_dumb_create,
.dumb_map_offset = msm_gem_dumb_map_offset,
.prime_handle_to_fd = drm_gem_prime_handle_to_fd,
.prime_fd_to_handle = drm_gem_prime_fd_to_handle,
.gem_prime_import_sg_table = msm_gem_prime_import_sg_table,
.gem_prime_mmap = drm_gem_prime_mmap,
#ifdef CONFIG_DEBUG_FS
.debugfs_init = msm_debugfs_init,
#endif
.ioctls = msm_ioctls,
.num_ioctls = ARRAY_SIZE(msm_ioctls),
.fops = &fops,
.name = "msm",
.desc = "MSM Snapdragon DRM",
.date = "20130625",
.major = MSM_VERSION_MAJOR,
.minor = MSM_VERSION_MINOR,
.patchlevel = MSM_VERSION_PATCHLEVEL,
};
static int __maybe_unused msm_runtime_suspend(struct device *dev)
{
struct msm_drm_private *priv = dev_get_drvdata(dev);
struct msm_mdss *mdss = priv->mdss;
DBG("");
if (mdss && mdss->funcs)
return mdss->funcs->disable(mdss);
return 0;
}
static int __maybe_unused msm_runtime_resume(struct device *dev)
{
struct msm_drm_private *priv = dev_get_drvdata(dev);
struct msm_mdss *mdss = priv->mdss;
DBG("");
if (mdss && mdss->funcs)
return mdss->funcs->enable(mdss);
return 0;
}
static int __maybe_unused msm_pm_suspend(struct device *dev)
{
if (pm_runtime_suspended(dev))
return 0;
return msm_runtime_suspend(dev);
}
static int __maybe_unused msm_pm_resume(struct device *dev)
{
if (pm_runtime_suspended(dev))
return 0;
return msm_runtime_resume(dev);
}
static int __maybe_unused msm_pm_prepare(struct device *dev)
{
struct msm_drm_private *priv = dev_get_drvdata(dev);
struct drm_device *ddev = priv ? priv->dev : NULL;
if (!priv || !priv->kms)
return 0;
return drm_mode_config_helper_suspend(ddev);
}
static void __maybe_unused msm_pm_complete(struct device *dev)
{
struct msm_drm_private *priv = dev_get_drvdata(dev);
struct drm_device *ddev = priv ? priv->dev : NULL;
if (!priv || !priv->kms)
return;
drm_mode_config_helper_resume(ddev);
}
static const struct dev_pm_ops msm_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(msm_pm_suspend, msm_pm_resume)
SET_RUNTIME_PM_OPS(msm_runtime_suspend, msm_runtime_resume, NULL)
.prepare = msm_pm_prepare,
.complete = msm_pm_complete,
};
/*
* Componentized driver support:
*/
/*
* NOTE: duplication of the same code as exynos or imx (or probably any other).
* so probably some room for some helpers
*/
static int compare_of(struct device *dev, void *data)
{
return dev->of_node == data;
}
/*
* Identify what components need to be added by parsing what remote-endpoints
* our MDP output ports are connected to. In the case of LVDS on MDP4, there
* is no external component that we need to add since LVDS is within MDP4
* itself.
*/
static int add_components_mdp(struct device *mdp_dev,
struct component_match **matchptr)
{
struct device_node *np = mdp_dev->of_node;
struct device_node *ep_node;
struct device *master_dev;
/*
* on MDP4 based platforms, the MDP platform device is the component
* master that adds other display interface components to itself.
*
* on MDP5 based platforms, the MDSS platform device is the component
* master that adds MDP5 and other display interface components to
* itself.
*/
if (of_device_is_compatible(np, "qcom,mdp4"))
master_dev = mdp_dev;
else
master_dev = mdp_dev->parent;
for_each_endpoint_of_node(np, ep_node) {
struct device_node *intf;
struct of_endpoint ep;
int ret;
ret = of_graph_parse_endpoint(ep_node, &ep);
if (ret) {
DRM_DEV_ERROR(mdp_dev, "unable to parse port endpoint\n");
of_node_put(ep_node);
return ret;
}
/*
* The LCDC/LVDS port on MDP4 is a speacial case where the
* remote-endpoint isn't a component that we need to add
*/
if (of_device_is_compatible(np, "qcom,mdp4") &&
ep.port == 0)
continue;
/*
* It's okay if some of the ports don't have a remote endpoint
* specified. It just means that the port isn't connected to
* any external interface.
*/
intf = of_graph_get_remote_port_parent(ep_node);
if (!intf)
continue;
if (of_device_is_available(intf))
drm_of_component_match_add(master_dev, matchptr,
compare_of, intf);
of_node_put(intf);
}
return 0;
}
static int find_mdp_node(struct device *dev, void *data)
{
return of_match_node(dpu_dt_match, dev->of_node) ||
of_match_node(mdp5_dt_match, dev->of_node);
}
static int add_display_components(struct platform_device *pdev,
struct component_match **matchptr)
{
struct device *mdp_dev;
struct device *dev = &pdev->dev;
int ret;
/*
* MDP5/DPU based devices don't have a flat hierarchy. There is a top
* level parent: MDSS, and children: MDP5/DPU, DSI, HDMI, eDP etc.
* Populate the children devices, find the MDP5/DPU node, and then add
* the interfaces to our components list.
*/
switch (get_mdp_ver(pdev)) {
case KMS_MDP5:
case KMS_DPU:
ret = of_platform_populate(dev->of_node, NULL, NULL, dev);
if (ret) {
DRM_DEV_ERROR(dev, "failed to populate children devices\n");
return ret;
}
mdp_dev = device_find_child(dev, NULL, find_mdp_node);
if (!mdp_dev) {
DRM_DEV_ERROR(dev, "failed to find MDSS MDP node\n");
of_platform_depopulate(dev);
return -ENODEV;
}
put_device(mdp_dev);
/* add the MDP component itself */
drm_of_component_match_add(dev, matchptr, compare_of,
mdp_dev->of_node);
break;
case KMS_MDP4:
/* MDP4 */
mdp_dev = dev;
break;
}
ret = add_components_mdp(mdp_dev, matchptr);
if (ret)
of_platform_depopulate(dev);
return ret;
}
/*
* We don't know what's the best binding to link the gpu with the drm device.
* Fow now, we just hunt for all the possible gpus that we support, and add them
* as components.
*/
static const struct of_device_id msm_gpu_match[] = {
{ .compatible = "qcom,adreno" },
{ .compatible = "qcom,adreno-3xx" },
{ .compatible = "amd,imageon" },
{ .compatible = "qcom,kgsl-3d0" },
{ },
};
static int add_gpu_components(struct device *dev,
struct component_match **matchptr)
{
struct device_node *np;
np = of_find_matching_node(NULL, msm_gpu_match);
if (!np)
return 0;
if (of_device_is_available(np))
drm_of_component_match_add(dev, matchptr, compare_of, np);
of_node_put(np);
return 0;
}
static int msm_drm_bind(struct device *dev)
{
return msm_drm_init(dev, &msm_driver);
}
static void msm_drm_unbind(struct device *dev)
{
msm_drm_uninit(dev);
}
static const struct component_master_ops msm_drm_ops = {
.bind = msm_drm_bind,
.unbind = msm_drm_unbind,
};
/*
* Platform driver:
*/
static int msm_pdev_probe(struct platform_device *pdev)
{
struct component_match *match = NULL;
struct msm_drm_private *priv;
int ret;
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
platform_set_drvdata(pdev, priv);
switch (get_mdp_ver(pdev)) {
case KMS_MDP5:
ret = mdp5_mdss_init(pdev);
break;
case KMS_DPU:
ret = dpu_mdss_init(pdev);
break;
default:
ret = 0;
break;
}
if (ret) {
platform_set_drvdata(pdev, NULL);
return ret;
}
if (get_mdp_ver(pdev)) {
ret = add_display_components(pdev, &match);
if (ret)
goto fail;
}
ret = add_gpu_components(&pdev->dev, &match);
if (ret)
goto fail;
/* on all devices that I am aware of, iommu's which can map
* any address the cpu can see are used:
*/
ret = dma_set_mask_and_coherent(&pdev->dev, ~0);
if (ret)
goto fail;
ret = component_master_add_with_match(&pdev->dev, &msm_drm_ops, match);
if (ret)
goto fail;
return 0;
fail:
of_platform_depopulate(&pdev->dev);
if (priv->mdss && priv->mdss->funcs)
priv->mdss->funcs->destroy(priv->mdss);
return ret;
}
static int msm_pdev_remove(struct platform_device *pdev)
{
struct msm_drm_private *priv = platform_get_drvdata(pdev);
struct msm_mdss *mdss = priv->mdss;
component_master_del(&pdev->dev, &msm_drm_ops);
of_platform_depopulate(&pdev->dev);
if (mdss && mdss->funcs)
mdss->funcs->destroy(mdss);
return 0;
}
static void msm_pdev_shutdown(struct platform_device *pdev)
{
struct msm_drm_private *priv = platform_get_drvdata(pdev);
struct drm_device *drm = priv ? priv->dev : NULL;
if (!priv || !priv->kms)
return;
drm_atomic_helper_shutdown(drm);
}
static const struct of_device_id dt_match[] = {
{ .compatible = "qcom,mdp4", .data = (void *)KMS_MDP4 },
{ .compatible = "qcom,mdss", .data = (void *)KMS_MDP5 },
{ .compatible = "qcom,sdm845-mdss", .data = (void *)KMS_DPU },
{ .compatible = "qcom,sc7180-mdss", .data = (void *)KMS_DPU },
{ .compatible = "qcom,sc7280-mdss", .data = (void *)KMS_DPU },
{ .compatible = "qcom,sm8150-mdss", .data = (void *)KMS_DPU },
{ .compatible = "qcom,sm8250-mdss", .data = (void *)KMS_DPU },
{}
};
MODULE_DEVICE_TABLE(of, dt_match);
static struct platform_driver msm_platform_driver = {
.probe = msm_pdev_probe,
.remove = msm_pdev_remove,
.shutdown = msm_pdev_shutdown,
.driver = {
.name = "msm",
.of_match_table = dt_match,
.pm = &msm_pm_ops,
},
};
static int __init msm_drm_register(void)
{
if (!modeset)
return -EINVAL;
DBG("init");
msm_mdp_register();
msm_dpu_register();
msm_dsi_register();
msm_hdmi_register();
msm_dp_register();
adreno_register();
return platform_driver_register(&msm_platform_driver);
}
static void __exit msm_drm_unregister(void)
{
DBG("fini");
platform_driver_unregister(&msm_platform_driver);
msm_dp_unregister();
msm_hdmi_unregister();
adreno_unregister();
msm_dsi_unregister();
msm_mdp_unregister();
msm_dpu_unregister();
}
module_init(msm_drm_register);
module_exit(msm_drm_unregister);
MODULE_AUTHOR("Rob Clark <robdclark@gmail.com");
MODULE_DESCRIPTION("MSM DRM Driver");
MODULE_LICENSE("GPL");