OpenCloudOS-Kernel/arch/x86/entry/entry_64.S

1481 lines
41 KiB
ArmAsm

/*
* linux/arch/x86_64/entry.S
*
* Copyright (C) 1991, 1992 Linus Torvalds
* Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
* Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
*
* entry.S contains the system-call and fault low-level handling routines.
*
* Some of this is documented in Documentation/x86/entry_64.txt
*
* A note on terminology:
* - iret frame: Architecture defined interrupt frame from SS to RIP
* at the top of the kernel process stack.
*
* Some macro usage:
* - ENTRY/END: Define functions in the symbol table.
* - TRACE_IRQ_*: Trace hardirq state for lock debugging.
* - idtentry: Define exception entry points.
*/
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
#include "calling.h"
#include <asm/asm-offsets.h>
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
#include <asm/page_types.h>
#include <asm/irqflags.h>
#include <asm/paravirt.h>
#include <asm/percpu.h>
#include <asm/asm.h>
#include <asm/smap.h>
#include <asm/pgtable_types.h>
#include <linux/err.h>
/* Avoid __ASSEMBLER__'ifying <linux/audit.h> just for this. */
#include <linux/elf-em.h>
#define AUDIT_ARCH_X86_64 (EM_X86_64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE)
#define __AUDIT_ARCH_64BIT 0x80000000
#define __AUDIT_ARCH_LE 0x40000000
.code64
.section .entry.text, "ax"
#ifdef CONFIG_PARAVIRT
ENTRY(native_usergs_sysret64)
swapgs
sysretq
ENDPROC(native_usergs_sysret64)
#endif /* CONFIG_PARAVIRT */
.macro TRACE_IRQS_IRETQ
#ifdef CONFIG_TRACE_IRQFLAGS
bt $9, EFLAGS(%rsp) /* interrupts off? */
jnc 1f
TRACE_IRQS_ON
1:
#endif
.endm
/*
* When dynamic function tracer is enabled it will add a breakpoint
* to all locations that it is about to modify, sync CPUs, update
* all the code, sync CPUs, then remove the breakpoints. In this time
* if lockdep is enabled, it might jump back into the debug handler
* outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
*
* We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
* make sure the stack pointer does not get reset back to the top
* of the debug stack, and instead just reuses the current stack.
*/
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
.macro TRACE_IRQS_OFF_DEBUG
call debug_stack_set_zero
TRACE_IRQS_OFF
call debug_stack_reset
.endm
.macro TRACE_IRQS_ON_DEBUG
call debug_stack_set_zero
TRACE_IRQS_ON
call debug_stack_reset
.endm
.macro TRACE_IRQS_IRETQ_DEBUG
bt $9, EFLAGS(%rsp) /* interrupts off? */
jnc 1f
TRACE_IRQS_ON_DEBUG
1:
.endm
#else
# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
#endif
/*
* 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
*
* 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
* then loads new ss, cs, and rip from previously programmed MSRs.
* rflags gets masked by a value from another MSR (so CLD and CLAC
* are not needed). SYSCALL does not save anything on the stack
* and does not change rsp.
*
* Registers on entry:
* rax system call number
* rcx return address
* r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
* rdi arg0
* rsi arg1
* rdx arg2
* r10 arg3 (needs to be moved to rcx to conform to C ABI)
* r8 arg4
* r9 arg5
* (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
*
* Only called from user space.
*
* When user can change pt_regs->foo always force IRET. That is because
* it deals with uncanonical addresses better. SYSRET has trouble
* with them due to bugs in both AMD and Intel CPUs.
*/
ENTRY(entry_SYSCALL_64)
/*
* Interrupts are off on entry.
* We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
* it is too small to ever cause noticeable irq latency.
*/
SWAPGS_UNSAFE_STACK
/*
* A hypervisor implementation might want to use a label
* after the swapgs, so that it can do the swapgs
* for the guest and jump here on syscall.
*/
GLOBAL(entry_SYSCALL_64_after_swapgs)
movq %rsp, PER_CPU_VAR(rsp_scratch)
movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
/* Construct struct pt_regs on stack */
pushq $__USER_DS /* pt_regs->ss */
pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
/*
* Re-enable interrupts.
* We use 'rsp_scratch' as a scratch space, hence irq-off block above
* must execute atomically in the face of possible interrupt-driven
* task preemption. We must enable interrupts only after we're done
* with using rsp_scratch:
*/
ENABLE_INTERRUPTS(CLBR_NONE)
pushq %r11 /* pt_regs->flags */
pushq $__USER_CS /* pt_regs->cs */
pushq %rcx /* pt_regs->ip */
pushq %rax /* pt_regs->orig_ax */
pushq %rdi /* pt_regs->di */
pushq %rsi /* pt_regs->si */
pushq %rdx /* pt_regs->dx */
pushq %rcx /* pt_regs->cx */
pushq $-ENOSYS /* pt_regs->ax */
pushq %r8 /* pt_regs->r8 */
pushq %r9 /* pt_regs->r9 */
pushq %r10 /* pt_regs->r10 */
pushq %r11 /* pt_regs->r11 */
sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
testl $_TIF_WORK_SYSCALL_ENTRY, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
jnz tracesys
entry_SYSCALL_64_fastpath:
#if __SYSCALL_MASK == ~0
cmpq $__NR_syscall_max, %rax
#else
andl $__SYSCALL_MASK, %eax
cmpl $__NR_syscall_max, %eax
#endif
ja 1f /* return -ENOSYS (already in pt_regs->ax) */
movq %r10, %rcx
call *sys_call_table(, %rax, 8)
movq %rax, RAX(%rsp)
1:
/*
* Syscall return path ending with SYSRET (fast path).
* Has incompletely filled pt_regs.
*/
LOCKDEP_SYS_EXIT
/*
* We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
* it is too small to ever cause noticeable irq latency.
*/
DISABLE_INTERRUPTS(CLBR_NONE)
/*
* We must check ti flags with interrupts (or at least preemption)
* off because we must *never* return to userspace without
* processing exit work that is enqueued if we're preempted here.
* In particular, returning to userspace with any of the one-shot
* flags (TIF_NOTIFY_RESUME, TIF_USER_RETURN_NOTIFY, etc) set is
* very bad.
*/
testl $_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
jnz int_ret_from_sys_call_irqs_off /* Go to the slow path */
RESTORE_C_REGS_EXCEPT_RCX_R11
movq RIP(%rsp), %rcx
movq EFLAGS(%rsp), %r11
movq RSP(%rsp), %rsp
/*
* 64-bit SYSRET restores rip from rcx,
* rflags from r11 (but RF and VM bits are forced to 0),
* cs and ss are loaded from MSRs.
* Restoration of rflags re-enables interrupts.
*
* NB: On AMD CPUs with the X86_BUG_SYSRET_SS_ATTRS bug, the ss
* descriptor is not reinitialized. This means that we should
* avoid SYSRET with SS == NULL, which could happen if we schedule,
* exit the kernel, and re-enter using an interrupt vector. (All
* interrupt entries on x86_64 set SS to NULL.) We prevent that
* from happening by reloading SS in __switch_to. (Actually
* detecting the failure in 64-bit userspace is tricky but can be
* done.)
*/
USERGS_SYSRET64
GLOBAL(int_ret_from_sys_call_irqs_off)
TRACE_IRQS_ON
ENABLE_INTERRUPTS(CLBR_NONE)
jmp int_ret_from_sys_call
/* Do syscall entry tracing */
tracesys:
movq %rsp, %rdi
movl $AUDIT_ARCH_X86_64, %esi
call syscall_trace_enter_phase1
test %rax, %rax
jnz tracesys_phase2 /* if needed, run the slow path */
RESTORE_C_REGS_EXCEPT_RAX /* else restore clobbered regs */
movq ORIG_RAX(%rsp), %rax
jmp entry_SYSCALL_64_fastpath /* and return to the fast path */
tracesys_phase2:
SAVE_EXTRA_REGS
movq %rsp, %rdi
movl $AUDIT_ARCH_X86_64, %esi
movq %rax, %rdx
call syscall_trace_enter_phase2
/*
* Reload registers from stack in case ptrace changed them.
* We don't reload %rax because syscall_trace_entry_phase2() returned
* the value it wants us to use in the table lookup.
*/
RESTORE_C_REGS_EXCEPT_RAX
RESTORE_EXTRA_REGS
#if __SYSCALL_MASK == ~0
cmpq $__NR_syscall_max, %rax
#else
andl $__SYSCALL_MASK, %eax
cmpl $__NR_syscall_max, %eax
#endif
ja 1f /* return -ENOSYS (already in pt_regs->ax) */
movq %r10, %rcx /* fixup for C */
call *sys_call_table(, %rax, 8)
movq %rax, RAX(%rsp)
1:
/* Use IRET because user could have changed pt_regs->foo */
/*
* Syscall return path ending with IRET.
* Has correct iret frame.
*/
GLOBAL(int_ret_from_sys_call)
SAVE_EXTRA_REGS
movq %rsp, %rdi
call syscall_return_slowpath /* returns with IRQs disabled */
RESTORE_EXTRA_REGS
TRACE_IRQS_IRETQ /* we're about to change IF */
/*
* Try to use SYSRET instead of IRET if we're returning to
* a completely clean 64-bit userspace context.
*/
movq RCX(%rsp), %rcx
movq RIP(%rsp), %r11
cmpq %rcx, %r11 /* RCX == RIP */
jne opportunistic_sysret_failed
/*
* On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
* in kernel space. This essentially lets the user take over
* the kernel, since userspace controls RSP.
*
* If width of "canonical tail" ever becomes variable, this will need
* to be updated to remain correct on both old and new CPUs.
*/
.ifne __VIRTUAL_MASK_SHIFT - 47
.error "virtual address width changed -- SYSRET checks need update"
.endif
/* Change top 16 bits to be the sign-extension of 47th bit */
shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
/* If this changed %rcx, it was not canonical */
cmpq %rcx, %r11
jne opportunistic_sysret_failed
cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
jne opportunistic_sysret_failed
movq R11(%rsp), %r11
cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
jne opportunistic_sysret_failed
/*
* SYSRET can't restore RF. SYSRET can restore TF, but unlike IRET,
* restoring TF results in a trap from userspace immediately after
* SYSRET. This would cause an infinite loop whenever #DB happens
* with register state that satisfies the opportunistic SYSRET
* conditions. For example, single-stepping this user code:
*
* movq $stuck_here, %rcx
* pushfq
* popq %r11
* stuck_here:
*
* would never get past 'stuck_here'.
*/
testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
jnz opportunistic_sysret_failed
/* nothing to check for RSP */
cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
jne opportunistic_sysret_failed
/*
* We win! This label is here just for ease of understanding
* perf profiles. Nothing jumps here.
*/
syscall_return_via_sysret:
/* rcx and r11 are already restored (see code above) */
RESTORE_C_REGS_EXCEPT_RCX_R11
movq RSP(%rsp), %rsp
USERGS_SYSRET64
opportunistic_sysret_failed:
SWAPGS
jmp restore_c_regs_and_iret
END(entry_SYSCALL_64)
.macro FORK_LIKE func
ENTRY(stub_\func)
SAVE_EXTRA_REGS 8
jmp sys_\func
END(stub_\func)
.endm
FORK_LIKE clone
FORK_LIKE fork
FORK_LIKE vfork
ENTRY(stub_execve)
call sys_execve
return_from_execve:
testl %eax, %eax
jz 1f
/* exec failed, can use fast SYSRET code path in this case */
ret
1:
/* must use IRET code path (pt_regs->cs may have changed) */
addq $8, %rsp
ZERO_EXTRA_REGS
movq %rax, RAX(%rsp)
jmp int_ret_from_sys_call
END(stub_execve)
/*
* Remaining execve stubs are only 7 bytes long.
* ENTRY() often aligns to 16 bytes, which in this case has no benefits.
*/
.align 8
GLOBAL(stub_execveat)
call sys_execveat
jmp return_from_execve
END(stub_execveat)
#if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
.align 8
GLOBAL(stub_x32_execve)
GLOBAL(stub32_execve)
call compat_sys_execve
jmp return_from_execve
END(stub32_execve)
END(stub_x32_execve)
.align 8
GLOBAL(stub_x32_execveat)
GLOBAL(stub32_execveat)
call compat_sys_execveat
jmp return_from_execve
END(stub32_execveat)
END(stub_x32_execveat)
#endif
/*
* sigreturn is special because it needs to restore all registers on return.
* This cannot be done with SYSRET, so use the IRET return path instead.
*/
ENTRY(stub_rt_sigreturn)
/*
* SAVE_EXTRA_REGS result is not normally needed:
* sigreturn overwrites all pt_regs->GPREGS.
* But sigreturn can fail (!), and there is no easy way to detect that.
* To make sure RESTORE_EXTRA_REGS doesn't restore garbage on error,
* we SAVE_EXTRA_REGS here.
*/
SAVE_EXTRA_REGS 8
call sys_rt_sigreturn
return_from_stub:
addq $8, %rsp
RESTORE_EXTRA_REGS
movq %rax, RAX(%rsp)
jmp int_ret_from_sys_call
END(stub_rt_sigreturn)
#ifdef CONFIG_X86_X32_ABI
ENTRY(stub_x32_rt_sigreturn)
SAVE_EXTRA_REGS 8
call sys32_x32_rt_sigreturn
jmp return_from_stub
END(stub_x32_rt_sigreturn)
#endif
/*
* A newly forked process directly context switches into this address.
*
* rdi: prev task we switched from
*/
ENTRY(ret_from_fork)
LOCK ; btr $TIF_FORK, TI_flags(%r8)
pushq $0x0002
popfq /* reset kernel eflags */
call schedule_tail /* rdi: 'prev' task parameter */
RESTORE_EXTRA_REGS
testb $3, CS(%rsp) /* from kernel_thread? */
/*
* By the time we get here, we have no idea whether our pt_regs,
* ti flags, and ti status came from the 64-bit SYSCALL fast path,
* the slow path, or one of the 32-bit compat paths.
* Use IRET code path to return, since it can safely handle
* all of the above.
*/
jnz int_ret_from_sys_call
/*
* We came from kernel_thread
* nb: we depend on RESTORE_EXTRA_REGS above
*/
movq %rbp, %rdi
call *%rbx
movl $0, RAX(%rsp)
RESTORE_EXTRA_REGS
jmp int_ret_from_sys_call
END(ret_from_fork)
/*
* Build the entry stubs with some assembler magic.
* We pack 1 stub into every 8-byte block.
*/
.align 8
ENTRY(irq_entries_start)
vector=FIRST_EXTERNAL_VECTOR
.rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
pushq $(~vector+0x80) /* Note: always in signed byte range */
vector=vector+1
jmp common_interrupt
.align 8
.endr
END(irq_entries_start)
/*
* Interrupt entry/exit.
*
* Interrupt entry points save only callee clobbered registers in fast path.
*
* Entry runs with interrupts off.
*/
/* 0(%rsp): ~(interrupt number) */
.macro interrupt func
cld
ALLOC_PT_GPREGS_ON_STACK
SAVE_C_REGS
SAVE_EXTRA_REGS
testb $3, CS(%rsp)
jz 1f
/*
* IRQ from user mode. Switch to kernel gsbase and inform context
* tracking that we're in kernel mode.
*/
SWAPGS
#ifdef CONFIG_CONTEXT_TRACKING
call enter_from_user_mode
#endif
1:
/*
* Save previous stack pointer, optionally switch to interrupt stack.
* irq_count is used to check if a CPU is already on an interrupt stack
* or not. While this is essentially redundant with preempt_count it is
* a little cheaper to use a separate counter in the PDA (short of
* moving irq_enter into assembly, which would be too much work)
*/
movq %rsp, %rdi
incl PER_CPU_VAR(irq_count)
cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
pushq %rdi
/* We entered an interrupt context - irqs are off: */
TRACE_IRQS_OFF
call \func /* rdi points to pt_regs */
.endm
/*
* The interrupt stubs push (~vector+0x80) onto the stack and
* then jump to common_interrupt.
*/
.p2align CONFIG_X86_L1_CACHE_SHIFT
common_interrupt:
ASM_CLAC
addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
interrupt do_IRQ
/* 0(%rsp): old RSP */
ret_from_intr:
DISABLE_INTERRUPTS(CLBR_NONE)
TRACE_IRQS_OFF
decl PER_CPU_VAR(irq_count)
/* Restore saved previous stack */
popq %rsp
testb $3, CS(%rsp)
jz retint_kernel
/* Interrupt came from user space */
LOCKDEP_SYS_EXIT_IRQ
GLOBAL(retint_user)
mov %rsp,%rdi
call prepare_exit_to_usermode
TRACE_IRQS_IRETQ
SWAPGS
jmp restore_regs_and_iret
/* Returning to kernel space */
retint_kernel:
#ifdef CONFIG_PREEMPT
/* Interrupts are off */
/* Check if we need preemption */
bt $9, EFLAGS(%rsp) /* were interrupts off? */
jnc 1f
0: cmpl $0, PER_CPU_VAR(__preempt_count)
jnz 1f
call preempt_schedule_irq
jmp 0b
1:
#endif
/*
* The iretq could re-enable interrupts:
*/
TRACE_IRQS_IRETQ
/*
* At this label, code paths which return to kernel and to user,
* which come from interrupts/exception and from syscalls, merge.
*/
restore_regs_and_iret:
RESTORE_EXTRA_REGS
restore_c_regs_and_iret:
RESTORE_C_REGS
REMOVE_PT_GPREGS_FROM_STACK 8
INTERRUPT_RETURN
ENTRY(native_iret)
/*
* Are we returning to a stack segment from the LDT? Note: in
* 64-bit mode SS:RSP on the exception stack is always valid.
*/
#ifdef CONFIG_X86_ESPFIX64
testb $4, (SS-RIP)(%rsp)
jnz native_irq_return_ldt
#endif
.global native_irq_return_iret
native_irq_return_iret:
/*
* This may fault. Non-paranoid faults on return to userspace are
* handled by fixup_bad_iret. These include #SS, #GP, and #NP.
* Double-faults due to espfix64 are handled in do_double_fault.
* Other faults here are fatal.
*/
iretq
#ifdef CONFIG_X86_ESPFIX64
native_irq_return_ldt:
pushq %rax
pushq %rdi
SWAPGS
movq PER_CPU_VAR(espfix_waddr), %rdi
movq %rax, (0*8)(%rdi) /* RAX */
movq (2*8)(%rsp), %rax /* RIP */
movq %rax, (1*8)(%rdi)
movq (3*8)(%rsp), %rax /* CS */
movq %rax, (2*8)(%rdi)
movq (4*8)(%rsp), %rax /* RFLAGS */
movq %rax, (3*8)(%rdi)
movq (6*8)(%rsp), %rax /* SS */
movq %rax, (5*8)(%rdi)
movq (5*8)(%rsp), %rax /* RSP */
movq %rax, (4*8)(%rdi)
andl $0xffff0000, %eax
popq %rdi
orq PER_CPU_VAR(espfix_stack), %rax
SWAPGS
movq %rax, %rsp
popq %rax
jmp native_irq_return_iret
#endif
END(common_interrupt)
/*
* APIC interrupts.
*/
.macro apicinterrupt3 num sym do_sym
ENTRY(\sym)
ASM_CLAC
pushq $~(\num)
.Lcommon_\sym:
interrupt \do_sym
jmp ret_from_intr
END(\sym)
.endm
#ifdef CONFIG_TRACING
#define trace(sym) trace_##sym
#define smp_trace(sym) smp_trace_##sym
.macro trace_apicinterrupt num sym
apicinterrupt3 \num trace(\sym) smp_trace(\sym)
.endm
#else
.macro trace_apicinterrupt num sym do_sym
.endm
#endif
.macro apicinterrupt num sym do_sym
apicinterrupt3 \num \sym \do_sym
trace_apicinterrupt \num \sym
.endm
#ifdef CONFIG_SMP
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
#endif
#ifdef CONFIG_X86_UV
apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
#endif
apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
#ifdef CONFIG_HAVE_KVM
apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
#endif
#ifdef CONFIG_X86_MCE_THRESHOLD
apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
#endif
#ifdef CONFIG_X86_MCE_AMD
apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
#endif
#ifdef CONFIG_X86_THERMAL_VECTOR
apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
#endif
#ifdef CONFIG_SMP
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
#endif
apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
#ifdef CONFIG_IRQ_WORK
apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
#endif
/*
* Exception entry points.
*/
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
ENTRY(\sym)
/* Sanity check */
.if \shift_ist != -1 && \paranoid == 0
.error "using shift_ist requires paranoid=1"
.endif
ASM_CLAC
PARAVIRT_ADJUST_EXCEPTION_FRAME
.ifeq \has_error_code
pushq $-1 /* ORIG_RAX: no syscall to restart */
.endif
ALLOC_PT_GPREGS_ON_STACK
.if \paranoid
.if \paranoid == 1
testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
jnz 1f
.endif
call paranoid_entry
.else
call error_entry
.endif
/* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
.if \paranoid
.if \shift_ist != -1
TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
.else
TRACE_IRQS_OFF
.endif
.endif
movq %rsp, %rdi /* pt_regs pointer */
.if \has_error_code
movq ORIG_RAX(%rsp), %rsi /* get error code */
movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
.else
xorl %esi, %esi /* no error code */
.endif
.if \shift_ist != -1
subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
.endif
call \do_sym
.if \shift_ist != -1
addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
.endif
/* these procedures expect "no swapgs" flag in ebx */
.if \paranoid
jmp paranoid_exit
.else
jmp error_exit
.endif
.if \paranoid == 1
/*
* Paranoid entry from userspace. Switch stacks and treat it
* as a normal entry. This means that paranoid handlers
* run in real process context if user_mode(regs).
*/
1:
call error_entry
movq %rsp, %rdi /* pt_regs pointer */
call sync_regs
movq %rax, %rsp /* switch stack */
movq %rsp, %rdi /* pt_regs pointer */
.if \has_error_code
movq ORIG_RAX(%rsp), %rsi /* get error code */
movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
.else
xorl %esi, %esi /* no error code */
.endif
call \do_sym
jmp error_exit /* %ebx: no swapgs flag */
.endif
END(\sym)
.endm
#ifdef CONFIG_TRACING
.macro trace_idtentry sym do_sym has_error_code:req
idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
idtentry \sym \do_sym has_error_code=\has_error_code
.endm
#else
.macro trace_idtentry sym do_sym has_error_code:req
idtentry \sym \do_sym has_error_code=\has_error_code
.endm
#endif
idtentry divide_error do_divide_error has_error_code=0
idtentry overflow do_overflow has_error_code=0
idtentry bounds do_bounds has_error_code=0
idtentry invalid_op do_invalid_op has_error_code=0
idtentry device_not_available do_device_not_available has_error_code=0
idtentry double_fault do_double_fault has_error_code=1 paranoid=2
idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
idtentry invalid_TSS do_invalid_TSS has_error_code=1
idtentry segment_not_present do_segment_not_present has_error_code=1
idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
idtentry coprocessor_error do_coprocessor_error has_error_code=0
idtentry alignment_check do_alignment_check has_error_code=1
idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
/*
* Reload gs selector with exception handling
* edi: new selector
*/
ENTRY(native_load_gs_index)
pushfq
DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
SWAPGS
gs_change:
movl %edi, %gs
2: mfence /* workaround */
SWAPGS
popfq
ret
END(native_load_gs_index)
_ASM_EXTABLE(gs_change, bad_gs)
.section .fixup, "ax"
/* running with kernelgs */
bad_gs:
SWAPGS /* switch back to user gs */
xorl %eax, %eax
movl %eax, %gs
jmp 2b
.previous
/* Call softirq on interrupt stack. Interrupts are off. */
ENTRY(do_softirq_own_stack)
pushq %rbp
mov %rsp, %rbp
incl PER_CPU_VAR(irq_count)
cmove PER_CPU_VAR(irq_stack_ptr), %rsp
push %rbp /* frame pointer backlink */
call __do_softirq
leaveq
decl PER_CPU_VAR(irq_count)
ret
END(do_softirq_own_stack)
#ifdef CONFIG_XEN
idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
/*
* A note on the "critical region" in our callback handler.
* We want to avoid stacking callback handlers due to events occurring
* during handling of the last event. To do this, we keep events disabled
* until we've done all processing. HOWEVER, we must enable events before
* popping the stack frame (can't be done atomically) and so it would still
* be possible to get enough handler activations to overflow the stack.
* Although unlikely, bugs of that kind are hard to track down, so we'd
* like to avoid the possibility.
* So, on entry to the handler we detect whether we interrupted an
* existing activation in its critical region -- if so, we pop the current
* activation and restart the handler using the previous one.
*/
ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
/*
* Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
* see the correct pointer to the pt_regs
*/
movq %rdi, %rsp /* we don't return, adjust the stack frame */
11: incl PER_CPU_VAR(irq_count)
movq %rsp, %rbp
cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
pushq %rbp /* frame pointer backlink */
call xen_evtchn_do_upcall
popq %rsp
decl PER_CPU_VAR(irq_count)
#ifndef CONFIG_PREEMPT
call xen_maybe_preempt_hcall
#endif
jmp error_exit
END(xen_do_hypervisor_callback)
/*
* Hypervisor uses this for application faults while it executes.
* We get here for two reasons:
* 1. Fault while reloading DS, ES, FS or GS
* 2. Fault while executing IRET
* Category 1 we do not need to fix up as Xen has already reloaded all segment
* registers that could be reloaded and zeroed the others.
* Category 2 we fix up by killing the current process. We cannot use the
* normal Linux return path in this case because if we use the IRET hypercall
* to pop the stack frame we end up in an infinite loop of failsafe callbacks.
* We distinguish between categories by comparing each saved segment register
* with its current contents: any discrepancy means we in category 1.
*/
ENTRY(xen_failsafe_callback)
movl %ds, %ecx
cmpw %cx, 0x10(%rsp)
jne 1f
movl %es, %ecx
cmpw %cx, 0x18(%rsp)
jne 1f
movl %fs, %ecx
cmpw %cx, 0x20(%rsp)
jne 1f
movl %gs, %ecx
cmpw %cx, 0x28(%rsp)
jne 1f
/* All segments match their saved values => Category 2 (Bad IRET). */
movq (%rsp), %rcx
movq 8(%rsp), %r11
addq $0x30, %rsp
pushq $0 /* RIP */
pushq %r11
pushq %rcx
jmp general_protection
1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
movq (%rsp), %rcx
movq 8(%rsp), %r11
addq $0x30, %rsp
pushq $-1 /* orig_ax = -1 => not a system call */
ALLOC_PT_GPREGS_ON_STACK
SAVE_C_REGS
SAVE_EXTRA_REGS
jmp error_exit
END(xen_failsafe_callback)
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
xen_hvm_callback_vector xen_evtchn_do_upcall
#endif /* CONFIG_XEN */
#if IS_ENABLED(CONFIG_HYPERV)
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
hyperv_callback_vector hyperv_vector_handler
#endif /* CONFIG_HYPERV */
idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
idtentry stack_segment do_stack_segment has_error_code=1
#ifdef CONFIG_XEN
idtentry xen_debug do_debug has_error_code=0
idtentry xen_int3 do_int3 has_error_code=0
idtentry xen_stack_segment do_stack_segment has_error_code=1
#endif
idtentry general_protection do_general_protection has_error_code=1
trace_idtentry page_fault do_page_fault has_error_code=1
#ifdef CONFIG_KVM_GUEST
idtentry async_page_fault do_async_page_fault has_error_code=1
#endif
#ifdef CONFIG_X86_MCE
idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
#endif
/*
* Save all registers in pt_regs, and switch gs if needed.
* Use slow, but surefire "are we in kernel?" check.
* Return: ebx=0: need swapgs on exit, ebx=1: otherwise
*/
ENTRY(paranoid_entry)
cld
SAVE_C_REGS 8
SAVE_EXTRA_REGS 8
movl $1, %ebx
movl $MSR_GS_BASE, %ecx
rdmsr
testl %edx, %edx
js 1f /* negative -> in kernel */
SWAPGS
xorl %ebx, %ebx
1: ret
END(paranoid_entry)
/*
* "Paranoid" exit path from exception stack. This is invoked
* only on return from non-NMI IST interrupts that came
* from kernel space.
*
* We may be returning to very strange contexts (e.g. very early
* in syscall entry), so checking for preemption here would
* be complicated. Fortunately, we there's no good reason
* to try to handle preemption here.
*
* On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
*/
ENTRY(paranoid_exit)
DISABLE_INTERRUPTS(CLBR_NONE)
TRACE_IRQS_OFF_DEBUG
testl %ebx, %ebx /* swapgs needed? */
jnz paranoid_exit_no_swapgs
TRACE_IRQS_IRETQ
SWAPGS_UNSAFE_STACK
jmp paranoid_exit_restore
paranoid_exit_no_swapgs:
TRACE_IRQS_IRETQ_DEBUG
paranoid_exit_restore:
RESTORE_EXTRA_REGS
RESTORE_C_REGS
REMOVE_PT_GPREGS_FROM_STACK 8
INTERRUPT_RETURN
END(paranoid_exit)
/*
* Save all registers in pt_regs, and switch gs if needed.
* Return: EBX=0: came from user mode; EBX=1: otherwise
*/
ENTRY(error_entry)
cld
SAVE_C_REGS 8
SAVE_EXTRA_REGS 8
xorl %ebx, %ebx
testb $3, CS+8(%rsp)
jz .Lerror_kernelspace
.Lerror_entry_from_usermode_swapgs:
/*
* We entered from user mode or we're pretending to have entered
* from user mode due to an IRET fault.
*/
SWAPGS
.Lerror_entry_from_usermode_after_swapgs:
#ifdef CONFIG_CONTEXT_TRACKING
call enter_from_user_mode
#endif
.Lerror_entry_done:
TRACE_IRQS_OFF
ret
/*
* There are two places in the kernel that can potentially fault with
* usergs. Handle them here. B stepping K8s sometimes report a
* truncated RIP for IRET exceptions returning to compat mode. Check
* for these here too.
*/
.Lerror_kernelspace:
incl %ebx
leaq native_irq_return_iret(%rip), %rcx
cmpq %rcx, RIP+8(%rsp)
je .Lerror_bad_iret
movl %ecx, %eax /* zero extend */
cmpq %rax, RIP+8(%rsp)
je .Lbstep_iret
cmpq $gs_change, RIP+8(%rsp)
jne .Lerror_entry_done
/*
* hack: gs_change can fail with user gsbase. If this happens, fix up
* gsbase and proceed. We'll fix up the exception and land in
* gs_change's error handler with kernel gsbase.
*/
jmp .Lerror_entry_from_usermode_swapgs
.Lbstep_iret:
/* Fix truncated RIP */
movq %rcx, RIP+8(%rsp)
/* fall through */
.Lerror_bad_iret:
/*
* We came from an IRET to user mode, so we have user gsbase.
* Switch to kernel gsbase:
*/
SWAPGS
/*
* Pretend that the exception came from user mode: set up pt_regs
* as if we faulted immediately after IRET and clear EBX so that
* error_exit knows that we will be returning to user mode.
*/
mov %rsp, %rdi
call fixup_bad_iret
mov %rax, %rsp
decl %ebx
jmp .Lerror_entry_from_usermode_after_swapgs
END(error_entry)
/*
* On entry, EBS is a "return to kernel mode" flag:
* 1: already in kernel mode, don't need SWAPGS
* 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
*/
ENTRY(error_exit)
movl %ebx, %eax
DISABLE_INTERRUPTS(CLBR_NONE)
TRACE_IRQS_OFF
testl %eax, %eax
jnz retint_kernel
jmp retint_user
END(error_exit)
/* Runs on exception stack */
ENTRY(nmi)
/*
* Fix up the exception frame if we're on Xen.
* PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
* one value to the stack on native, so it may clobber the rdx
* scratch slot, but it won't clobber any of the important
* slots past it.
*
* Xen is a different story, because the Xen frame itself overlaps
* the "NMI executing" variable.
*/
PARAVIRT_ADJUST_EXCEPTION_FRAME
/*
* We allow breakpoints in NMIs. If a breakpoint occurs, then
* the iretq it performs will take us out of NMI context.
* This means that we can have nested NMIs where the next
* NMI is using the top of the stack of the previous NMI. We
* can't let it execute because the nested NMI will corrupt the
* stack of the previous NMI. NMI handlers are not re-entrant
* anyway.
*
* To handle this case we do the following:
* Check the a special location on the stack that contains
* a variable that is set when NMIs are executing.
* The interrupted task's stack is also checked to see if it
* is an NMI stack.
* If the variable is not set and the stack is not the NMI
* stack then:
* o Set the special variable on the stack
* o Copy the interrupt frame into an "outermost" location on the
* stack
* o Copy the interrupt frame into an "iret" location on the stack
* o Continue processing the NMI
* If the variable is set or the previous stack is the NMI stack:
* o Modify the "iret" location to jump to the repeat_nmi
* o return back to the first NMI
*
* Now on exit of the first NMI, we first clear the stack variable
* The NMI stack will tell any nested NMIs at that point that it is
* nested. Then we pop the stack normally with iret, and if there was
* a nested NMI that updated the copy interrupt stack frame, a
* jump will be made to the repeat_nmi code that will handle the second
* NMI.
*
* However, espfix prevents us from directly returning to userspace
* with a single IRET instruction. Similarly, IRET to user mode
* can fault. We therefore handle NMIs from user space like
* other IST entries.
*/
/* Use %rdx as our temp variable throughout */
pushq %rdx
testb $3, CS-RIP+8(%rsp)
jz .Lnmi_from_kernel
/*
* NMI from user mode. We need to run on the thread stack, but we
* can't go through the normal entry paths: NMIs are masked, and
* we don't want to enable interrupts, because then we'll end
* up in an awkward situation in which IRQs are on but NMIs
* are off.
*
* We also must not push anything to the stack before switching
* stacks lest we corrupt the "NMI executing" variable.
*/
SWAPGS_UNSAFE_STACK
cld
movq %rsp, %rdx
movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
pushq 5*8(%rdx) /* pt_regs->ss */
pushq 4*8(%rdx) /* pt_regs->rsp */
pushq 3*8(%rdx) /* pt_regs->flags */
pushq 2*8(%rdx) /* pt_regs->cs */
pushq 1*8(%rdx) /* pt_regs->rip */
pushq $-1 /* pt_regs->orig_ax */
pushq %rdi /* pt_regs->di */
pushq %rsi /* pt_regs->si */
pushq (%rdx) /* pt_regs->dx */
pushq %rcx /* pt_regs->cx */
pushq %rax /* pt_regs->ax */
pushq %r8 /* pt_regs->r8 */
pushq %r9 /* pt_regs->r9 */
pushq %r10 /* pt_regs->r10 */
pushq %r11 /* pt_regs->r11 */
pushq %rbx /* pt_regs->rbx */
pushq %rbp /* pt_regs->rbp */
pushq %r12 /* pt_regs->r12 */
pushq %r13 /* pt_regs->r13 */
pushq %r14 /* pt_regs->r14 */
pushq %r15 /* pt_regs->r15 */
/*
* At this point we no longer need to worry about stack damage
* due to nesting -- we're on the normal thread stack and we're
* done with the NMI stack.
*/
movq %rsp, %rdi
movq $-1, %rsi
call do_nmi
/*
* Return back to user mode. We must *not* do the normal exit
* work, because we don't want to enable interrupts. Fortunately,
* do_nmi doesn't modify pt_regs.
*/
SWAPGS
jmp restore_c_regs_and_iret
.Lnmi_from_kernel:
/*
* Here's what our stack frame will look like:
* +---------------------------------------------------------+
* | original SS |
* | original Return RSP |
* | original RFLAGS |
* | original CS |
* | original RIP |
* +---------------------------------------------------------+
* | temp storage for rdx |
* +---------------------------------------------------------+
* | "NMI executing" variable |
* +---------------------------------------------------------+
* | iret SS } Copied from "outermost" frame |
* | iret Return RSP } on each loop iteration; overwritten |
* | iret RFLAGS } by a nested NMI to force another |
* | iret CS } iteration if needed. |
* | iret RIP } |
* +---------------------------------------------------------+
* | outermost SS } initialized in first_nmi; |
* | outermost Return RSP } will not be changed before |
* | outermost RFLAGS } NMI processing is done. |
* | outermost CS } Copied to "iret" frame on each |
* | outermost RIP } iteration. |
* +---------------------------------------------------------+
* | pt_regs |
* +---------------------------------------------------------+
*
* The "original" frame is used by hardware. Before re-enabling
* NMIs, we need to be done with it, and we need to leave enough
* space for the asm code here.
*
* We return by executing IRET while RSP points to the "iret" frame.
* That will either return for real or it will loop back into NMI
* processing.
*
* The "outermost" frame is copied to the "iret" frame on each
* iteration of the loop, so each iteration starts with the "iret"
* frame pointing to the final return target.
*/
/*
* Determine whether we're a nested NMI.
*
* If we interrupted kernel code between repeat_nmi and
* end_repeat_nmi, then we are a nested NMI. We must not
* modify the "iret" frame because it's being written by
* the outer NMI. That's okay; the outer NMI handler is
* about to about to call do_nmi anyway, so we can just
* resume the outer NMI.
*/
movq $repeat_nmi, %rdx
cmpq 8(%rsp), %rdx
ja 1f
movq $end_repeat_nmi, %rdx
cmpq 8(%rsp), %rdx
ja nested_nmi_out
1:
/*
* Now check "NMI executing". If it's set, then we're nested.
* This will not detect if we interrupted an outer NMI just
* before IRET.
*/
cmpl $1, -8(%rsp)
je nested_nmi
/*
* Now test if the previous stack was an NMI stack. This covers
* the case where we interrupt an outer NMI after it clears
* "NMI executing" but before IRET. We need to be careful, though:
* there is one case in which RSP could point to the NMI stack
* despite there being no NMI active: naughty userspace controls
* RSP at the very beginning of the SYSCALL targets. We can
* pull a fast one on naughty userspace, though: we program
* SYSCALL to mask DF, so userspace cannot cause DF to be set
* if it controls the kernel's RSP. We set DF before we clear
* "NMI executing".
*/
lea 6*8(%rsp), %rdx
/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
cmpq %rdx, 4*8(%rsp)
/* If the stack pointer is above the NMI stack, this is a normal NMI */
ja first_nmi
subq $EXCEPTION_STKSZ, %rdx
cmpq %rdx, 4*8(%rsp)
/* If it is below the NMI stack, it is a normal NMI */
jb first_nmi
/* Ah, it is within the NMI stack. */
testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
jz first_nmi /* RSP was user controlled. */
/* This is a nested NMI. */
nested_nmi:
/*
* Modify the "iret" frame to point to repeat_nmi, forcing another
* iteration of NMI handling.
*/
subq $8, %rsp
leaq -10*8(%rsp), %rdx
pushq $__KERNEL_DS
pushq %rdx
pushfq
pushq $__KERNEL_CS
pushq $repeat_nmi
/* Put stack back */
addq $(6*8), %rsp
nested_nmi_out:
popq %rdx
/* We are returning to kernel mode, so this cannot result in a fault. */
INTERRUPT_RETURN
first_nmi:
/* Restore rdx. */
movq (%rsp), %rdx
/* Make room for "NMI executing". */
pushq $0
/* Leave room for the "iret" frame */
subq $(5*8), %rsp
/* Copy the "original" frame to the "outermost" frame */
.rept 5
pushq 11*8(%rsp)
.endr
/* Everything up to here is safe from nested NMIs */
#ifdef CONFIG_DEBUG_ENTRY
/*
* For ease of testing, unmask NMIs right away. Disabled by
* default because IRET is very expensive.
*/
pushq $0 /* SS */
pushq %rsp /* RSP (minus 8 because of the previous push) */
addq $8, (%rsp) /* Fix up RSP */
pushfq /* RFLAGS */
pushq $__KERNEL_CS /* CS */
pushq $1f /* RIP */
INTERRUPT_RETURN /* continues at repeat_nmi below */
1:
#endif
repeat_nmi:
/*
* If there was a nested NMI, the first NMI's iret will return
* here. But NMIs are still enabled and we can take another
* nested NMI. The nested NMI checks the interrupted RIP to see
* if it is between repeat_nmi and end_repeat_nmi, and if so
* it will just return, as we are about to repeat an NMI anyway.
* This makes it safe to copy to the stack frame that a nested
* NMI will update.
*
* RSP is pointing to "outermost RIP". gsbase is unknown, but, if
* we're repeating an NMI, gsbase has the same value that it had on
* the first iteration. paranoid_entry will load the kernel
* gsbase if needed before we call do_nmi. "NMI executing"
* is zero.
*/
movq $1, 10*8(%rsp) /* Set "NMI executing". */
/*
* Copy the "outermost" frame to the "iret" frame. NMIs that nest
* here must not modify the "iret" frame while we're writing to
* it or it will end up containing garbage.
*/
addq $(10*8), %rsp
.rept 5
pushq -6*8(%rsp)
.endr
subq $(5*8), %rsp
end_repeat_nmi:
/*
* Everything below this point can be preempted by a nested NMI.
* If this happens, then the inner NMI will change the "iret"
* frame to point back to repeat_nmi.
*/
pushq $-1 /* ORIG_RAX: no syscall to restart */
ALLOC_PT_GPREGS_ON_STACK
/*
* Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
* as we should not be calling schedule in NMI context.
* Even with normal interrupts enabled. An NMI should not be
* setting NEED_RESCHED or anything that normal interrupts and
* exceptions might do.
*/
call paranoid_entry
/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
movq %rsp, %rdi
movq $-1, %rsi
call do_nmi
testl %ebx, %ebx /* swapgs needed? */
jnz nmi_restore
nmi_swapgs:
SWAPGS_UNSAFE_STACK
nmi_restore:
RESTORE_EXTRA_REGS
RESTORE_C_REGS
/* Point RSP at the "iret" frame. */
REMOVE_PT_GPREGS_FROM_STACK 6*8
/*
* Clear "NMI executing". Set DF first so that we can easily
* distinguish the remaining code between here and IRET from
* the SYSCALL entry and exit paths. On a native kernel, we
* could just inspect RIP, but, on paravirt kernels,
* INTERRUPT_RETURN can translate into a jump into a
* hypercall page.
*/
std
movq $0, 5*8(%rsp) /* clear "NMI executing" */
/*
* INTERRUPT_RETURN reads the "iret" frame and exits the NMI
* stack in a single instruction. We are returning to kernel
* mode, so this cannot result in a fault.
*/
INTERRUPT_RETURN
END(nmi)
ENTRY(ignore_sysret)
mov $-ENOSYS, %eax
sysret
END(ignore_sysret)