OpenCloudOS-Kernel/drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c

3468 lines
86 KiB
C

/*
* Copyright 2008 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
* Copyright 2009 Jerome Glisse.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie
* Alex Deucher
* Jerome Glisse
*/
#include <linux/dma-fence-array.h>
#include <linux/interval_tree_generic.h>
#include <linux/idr.h>
#include <drm/drmP.h>
#include <drm/amdgpu_drm.h>
#include "amdgpu.h"
#include "amdgpu_trace.h"
#include "amdgpu_amdkfd.h"
#include "amdgpu_gmc.h"
/**
* DOC: GPUVM
*
* GPUVM is similar to the legacy gart on older asics, however
* rather than there being a single global gart table
* for the entire GPU, there are multiple VM page tables active
* at any given time. The VM page tables can contain a mix
* vram pages and system memory pages and system memory pages
* can be mapped as snooped (cached system pages) or unsnooped
* (uncached system pages).
* Each VM has an ID associated with it and there is a page table
* associated with each VMID. When execting a command buffer,
* the kernel tells the the ring what VMID to use for that command
* buffer. VMIDs are allocated dynamically as commands are submitted.
* The userspace drivers maintain their own address space and the kernel
* sets up their pages tables accordingly when they submit their
* command buffers and a VMID is assigned.
* Cayman/Trinity support up to 8 active VMs at any given time;
* SI supports 16.
*/
#define START(node) ((node)->start)
#define LAST(node) ((node)->last)
INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
START, LAST, static, amdgpu_vm_it)
#undef START
#undef LAST
/**
* struct amdgpu_pte_update_params - Local structure
*
* Encapsulate some VM table update parameters to reduce
* the number of function parameters
*
*/
struct amdgpu_pte_update_params {
/**
* @adev: amdgpu device we do this update for
*/
struct amdgpu_device *adev;
/**
* @vm: optional amdgpu_vm we do this update for
*/
struct amdgpu_vm *vm;
/**
* @src: address where to copy page table entries from
*/
uint64_t src;
/**
* @ib: indirect buffer to fill with commands
*/
struct amdgpu_ib *ib;
/**
* @func: Function which actually does the update
*/
void (*func)(struct amdgpu_pte_update_params *params,
struct amdgpu_bo *bo, uint64_t pe,
uint64_t addr, unsigned count, uint32_t incr,
uint64_t flags);
/**
* @pages_addr:
*
* DMA addresses to use for mapping, used during VM update by CPU
*/
dma_addr_t *pages_addr;
/**
* @kptr:
*
* Kernel pointer of PD/PT BO that needs to be updated,
* used during VM update by CPU
*/
void *kptr;
};
/**
* struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
*/
struct amdgpu_prt_cb {
/**
* @adev: amdgpu device
*/
struct amdgpu_device *adev;
/**
* @cb: callback
*/
struct dma_fence_cb cb;
};
/**
* amdgpu_vm_level_shift - return the addr shift for each level
*
* @adev: amdgpu_device pointer
* @level: VMPT level
*
* Returns:
* The number of bits the pfn needs to be right shifted for a level.
*/
static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
unsigned level)
{
unsigned shift = 0xff;
switch (level) {
case AMDGPU_VM_PDB2:
case AMDGPU_VM_PDB1:
case AMDGPU_VM_PDB0:
shift = 9 * (AMDGPU_VM_PDB0 - level) +
adev->vm_manager.block_size;
break;
case AMDGPU_VM_PTB:
shift = 0;
break;
default:
dev_err(adev->dev, "the level%d isn't supported.\n", level);
}
return shift;
}
/**
* amdgpu_vm_num_entries - return the number of entries in a PD/PT
*
* @adev: amdgpu_device pointer
* @level: VMPT level
*
* Returns:
* The number of entries in a page directory or page table.
*/
static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
unsigned level)
{
unsigned shift = amdgpu_vm_level_shift(adev,
adev->vm_manager.root_level);
if (level == adev->vm_manager.root_level)
/* For the root directory */
return round_up(adev->vm_manager.max_pfn, 1ULL << shift) >> shift;
else if (level != AMDGPU_VM_PTB)
/* Everything in between */
return 512;
else
/* For the page tables on the leaves */
return AMDGPU_VM_PTE_COUNT(adev);
}
/**
* amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
*
* @adev: amdgpu_device pointer
* @level: VMPT level
*
* Returns:
* The mask to extract the entry number of a PD/PT from an address.
*/
static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
unsigned int level)
{
if (level <= adev->vm_manager.root_level)
return 0xffffffff;
else if (level != AMDGPU_VM_PTB)
return 0x1ff;
else
return AMDGPU_VM_PTE_COUNT(adev) - 1;
}
/**
* amdgpu_vm_bo_size - returns the size of the BOs in bytes
*
* @adev: amdgpu_device pointer
* @level: VMPT level
*
* Returns:
* The size of the BO for a page directory or page table in bytes.
*/
static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
{
return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
}
/**
* amdgpu_vm_bo_evicted - vm_bo is evicted
*
* @vm_bo: vm_bo which is evicted
*
* State for PDs/PTs and per VM BOs which are not at the location they should
* be.
*/
static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
{
struct amdgpu_vm *vm = vm_bo->vm;
struct amdgpu_bo *bo = vm_bo->bo;
vm_bo->moved = true;
if (bo->tbo.type == ttm_bo_type_kernel)
list_move(&vm_bo->vm_status, &vm->evicted);
else
list_move_tail(&vm_bo->vm_status, &vm->evicted);
}
/**
* amdgpu_vm_bo_relocated - vm_bo is reloacted
*
* @vm_bo: vm_bo which is relocated
*
* State for PDs/PTs which needs to update their parent PD.
*/
static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
{
list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
}
/**
* amdgpu_vm_bo_moved - vm_bo is moved
*
* @vm_bo: vm_bo which is moved
*
* State for per VM BOs which are moved, but that change is not yet reflected
* in the page tables.
*/
static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
{
list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
}
/**
* amdgpu_vm_bo_idle - vm_bo is idle
*
* @vm_bo: vm_bo which is now idle
*
* State for PDs/PTs and per VM BOs which have gone through the state machine
* and are now idle.
*/
static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
{
list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
vm_bo->moved = false;
}
/**
* amdgpu_vm_bo_invalidated - vm_bo is invalidated
*
* @vm_bo: vm_bo which is now invalidated
*
* State for normal BOs which are invalidated and that change not yet reflected
* in the PTs.
*/
static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
{
spin_lock(&vm_bo->vm->invalidated_lock);
list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
spin_unlock(&vm_bo->vm->invalidated_lock);
}
/**
* amdgpu_vm_bo_done - vm_bo is done
*
* @vm_bo: vm_bo which is now done
*
* State for normal BOs which are invalidated and that change has been updated
* in the PTs.
*/
static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
{
spin_lock(&vm_bo->vm->invalidated_lock);
list_del_init(&vm_bo->vm_status);
spin_unlock(&vm_bo->vm->invalidated_lock);
}
/**
* amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
*
* @base: base structure for tracking BO usage in a VM
* @vm: vm to which bo is to be added
* @bo: amdgpu buffer object
*
* Initialize a bo_va_base structure and add it to the appropriate lists
*
*/
static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
struct amdgpu_vm *vm,
struct amdgpu_bo *bo)
{
base->vm = vm;
base->bo = bo;
base->next = NULL;
INIT_LIST_HEAD(&base->vm_status);
if (!bo)
return;
base->next = bo->vm_bo;
bo->vm_bo = base;
if (bo->tbo.resv != vm->root.base.bo->tbo.resv)
return;
vm->bulk_moveable = false;
if (bo->tbo.type == ttm_bo_type_kernel)
amdgpu_vm_bo_relocated(base);
else
amdgpu_vm_bo_idle(base);
if (bo->preferred_domains &
amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
return;
/*
* we checked all the prerequisites, but it looks like this per vm bo
* is currently evicted. add the bo to the evicted list to make sure it
* is validated on next vm use to avoid fault.
* */
amdgpu_vm_bo_evicted(base);
}
/**
* amdgpu_vm_pt_parent - get the parent page directory
*
* @pt: child page table
*
* Helper to get the parent entry for the child page table. NULL if we are at
* the root page directory.
*/
static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt)
{
struct amdgpu_bo *parent = pt->base.bo->parent;
if (!parent)
return NULL;
return container_of(parent->vm_bo, struct amdgpu_vm_pt, base);
}
/**
* amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
*/
struct amdgpu_vm_pt_cursor {
uint64_t pfn;
struct amdgpu_vm_pt *parent;
struct amdgpu_vm_pt *entry;
unsigned level;
};
/**
* amdgpu_vm_pt_start - start PD/PT walk
*
* @adev: amdgpu_device pointer
* @vm: amdgpu_vm structure
* @start: start address of the walk
* @cursor: state to initialize
*
* Initialize a amdgpu_vm_pt_cursor to start a walk.
*/
static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
struct amdgpu_vm *vm, uint64_t start,
struct amdgpu_vm_pt_cursor *cursor)
{
cursor->pfn = start;
cursor->parent = NULL;
cursor->entry = &vm->root;
cursor->level = adev->vm_manager.root_level;
}
/**
* amdgpu_vm_pt_descendant - go to child node
*
* @adev: amdgpu_device pointer
* @cursor: current state
*
* Walk to the child node of the current node.
* Returns:
* True if the walk was possible, false otherwise.
*/
static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
struct amdgpu_vm_pt_cursor *cursor)
{
unsigned mask, shift, idx;
if (!cursor->entry->entries)
return false;
BUG_ON(!cursor->entry->base.bo);
mask = amdgpu_vm_entries_mask(adev, cursor->level);
shift = amdgpu_vm_level_shift(adev, cursor->level);
++cursor->level;
idx = (cursor->pfn >> shift) & mask;
cursor->parent = cursor->entry;
cursor->entry = &cursor->entry->entries[idx];
return true;
}
/**
* amdgpu_vm_pt_sibling - go to sibling node
*
* @adev: amdgpu_device pointer
* @cursor: current state
*
* Walk to the sibling node of the current node.
* Returns:
* True if the walk was possible, false otherwise.
*/
static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
struct amdgpu_vm_pt_cursor *cursor)
{
unsigned shift, num_entries;
/* Root doesn't have a sibling */
if (!cursor->parent)
return false;
/* Go to our parents and see if we got a sibling */
shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
if (cursor->entry == &cursor->parent->entries[num_entries - 1])
return false;
cursor->pfn += 1ULL << shift;
cursor->pfn &= ~((1ULL << shift) - 1);
++cursor->entry;
return true;
}
/**
* amdgpu_vm_pt_ancestor - go to parent node
*
* @cursor: current state
*
* Walk to the parent node of the current node.
* Returns:
* True if the walk was possible, false otherwise.
*/
static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
{
if (!cursor->parent)
return false;
--cursor->level;
cursor->entry = cursor->parent;
cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
return true;
}
/**
* amdgpu_vm_pt_next - get next PD/PT in hieratchy
*
* @adev: amdgpu_device pointer
* @cursor: current state
*
* Walk the PD/PT tree to the next node.
*/
static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
struct amdgpu_vm_pt_cursor *cursor)
{
/* First try a newborn child */
if (amdgpu_vm_pt_descendant(adev, cursor))
return;
/* If that didn't worked try to find a sibling */
while (!amdgpu_vm_pt_sibling(adev, cursor)) {
/* No sibling, go to our parents and grandparents */
if (!amdgpu_vm_pt_ancestor(cursor)) {
cursor->pfn = ~0ll;
return;
}
}
}
/**
* amdgpu_vm_pt_first_leaf - get first leaf PD/PT
*
* @adev: amdgpu_device pointer
* @vm: amdgpu_vm structure
* @start: start addr of the walk
* @cursor: state to initialize
*
* Start a walk and go directly to the leaf node.
*/
static void amdgpu_vm_pt_first_leaf(struct amdgpu_device *adev,
struct amdgpu_vm *vm, uint64_t start,
struct amdgpu_vm_pt_cursor *cursor)
{
amdgpu_vm_pt_start(adev, vm, start, cursor);
while (amdgpu_vm_pt_descendant(adev, cursor));
}
/**
* amdgpu_vm_pt_next_leaf - get next leaf PD/PT
*
* @adev: amdgpu_device pointer
* @cursor: current state
*
* Walk the PD/PT tree to the next leaf node.
*/
static void amdgpu_vm_pt_next_leaf(struct amdgpu_device *adev,
struct amdgpu_vm_pt_cursor *cursor)
{
amdgpu_vm_pt_next(adev, cursor);
if (cursor->pfn != ~0ll)
while (amdgpu_vm_pt_descendant(adev, cursor));
}
/**
* for_each_amdgpu_vm_pt_leaf - walk over all leaf PDs/PTs in the hierarchy
*/
#define for_each_amdgpu_vm_pt_leaf(adev, vm, start, end, cursor) \
for (amdgpu_vm_pt_first_leaf((adev), (vm), (start), &(cursor)); \
(cursor).pfn <= end; amdgpu_vm_pt_next_leaf((adev), &(cursor)))
/**
* amdgpu_vm_pt_first_dfs - start a deep first search
*
* @adev: amdgpu_device structure
* @vm: amdgpu_vm structure
* @cursor: state to initialize
*
* Starts a deep first traversal of the PD/PT tree.
*/
static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
struct amdgpu_vm *vm,
struct amdgpu_vm_pt_cursor *cursor)
{
amdgpu_vm_pt_start(adev, vm, 0, cursor);
while (amdgpu_vm_pt_descendant(adev, cursor));
}
/**
* amdgpu_vm_pt_next_dfs - get the next node for a deep first search
*
* @adev: amdgpu_device structure
* @cursor: current state
*
* Move the cursor to the next node in a deep first search.
*/
static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
struct amdgpu_vm_pt_cursor *cursor)
{
if (!cursor->entry)
return;
if (!cursor->parent)
cursor->entry = NULL;
else if (amdgpu_vm_pt_sibling(adev, cursor))
while (amdgpu_vm_pt_descendant(adev, cursor));
else
amdgpu_vm_pt_ancestor(cursor);
}
/**
* for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
*/
#define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) \
for (amdgpu_vm_pt_first_dfs((adev), (vm), &(cursor)), \
(entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
(entry); (entry) = (cursor).entry, \
amdgpu_vm_pt_next_dfs((adev), &(cursor)))
/**
* amdgpu_vm_get_pd_bo - add the VM PD to a validation list
*
* @vm: vm providing the BOs
* @validated: head of validation list
* @entry: entry to add
*
* Add the page directory to the list of BOs to
* validate for command submission.
*/
void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
struct list_head *validated,
struct amdgpu_bo_list_entry *entry)
{
entry->priority = 0;
entry->tv.bo = &vm->root.base.bo->tbo;
/* One for the VM updates, one for TTM and one for the CS job */
entry->tv.num_shared = 3;
entry->user_pages = NULL;
list_add(&entry->tv.head, validated);
}
/**
* amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
*
* @adev: amdgpu device pointer
* @vm: vm providing the BOs
*
* Move all BOs to the end of LRU and remember their positions to put them
* together.
*/
void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
struct amdgpu_vm *vm)
{
struct ttm_bo_global *glob = adev->mman.bdev.glob;
struct amdgpu_vm_bo_base *bo_base;
if (vm->bulk_moveable) {
spin_lock(&glob->lru_lock);
ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
spin_unlock(&glob->lru_lock);
return;
}
memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
spin_lock(&glob->lru_lock);
list_for_each_entry(bo_base, &vm->idle, vm_status) {
struct amdgpu_bo *bo = bo_base->bo;
if (!bo->parent)
continue;
ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move);
if (bo->shadow)
ttm_bo_move_to_lru_tail(&bo->shadow->tbo,
&vm->lru_bulk_move);
}
spin_unlock(&glob->lru_lock);
vm->bulk_moveable = true;
}
/**
* amdgpu_vm_validate_pt_bos - validate the page table BOs
*
* @adev: amdgpu device pointer
* @vm: vm providing the BOs
* @validate: callback to do the validation
* @param: parameter for the validation callback
*
* Validate the page table BOs on command submission if neccessary.
*
* Returns:
* Validation result.
*/
int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
int (*validate)(void *p, struct amdgpu_bo *bo),
void *param)
{
struct amdgpu_vm_bo_base *bo_base, *tmp;
int r = 0;
vm->bulk_moveable &= list_empty(&vm->evicted);
list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
struct amdgpu_bo *bo = bo_base->bo;
r = validate(param, bo);
if (r)
break;
if (bo->tbo.type != ttm_bo_type_kernel) {
amdgpu_vm_bo_moved(bo_base);
} else {
if (vm->use_cpu_for_update)
r = amdgpu_bo_kmap(bo, NULL);
else
r = amdgpu_ttm_alloc_gart(&bo->tbo);
if (r)
break;
if (bo->shadow) {
r = amdgpu_ttm_alloc_gart(&bo->shadow->tbo);
if (r)
break;
}
amdgpu_vm_bo_relocated(bo_base);
}
}
return r;
}
/**
* amdgpu_vm_ready - check VM is ready for updates
*
* @vm: VM to check
*
* Check if all VM PDs/PTs are ready for updates
*
* Returns:
* True if eviction list is empty.
*/
bool amdgpu_vm_ready(struct amdgpu_vm *vm)
{
return list_empty(&vm->evicted);
}
/**
* amdgpu_vm_clear_bo - initially clear the PDs/PTs
*
* @adev: amdgpu_device pointer
* @vm: VM to clear BO from
* @bo: BO to clear
* @level: level this BO is at
* @pte_support_ats: indicate ATS support from PTE
*
* Root PD needs to be reserved when calling this.
*
* Returns:
* 0 on success, errno otherwise.
*/
static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
struct amdgpu_vm *vm, struct amdgpu_bo *bo,
unsigned level, bool pte_support_ats)
{
struct ttm_operation_ctx ctx = { true, false };
struct dma_fence *fence = NULL;
unsigned entries, ats_entries;
struct amdgpu_ring *ring;
struct amdgpu_job *job;
uint64_t addr;
int r;
entries = amdgpu_bo_size(bo) / 8;
if (pte_support_ats) {
if (level == adev->vm_manager.root_level) {
ats_entries = amdgpu_vm_level_shift(adev, level);
ats_entries += AMDGPU_GPU_PAGE_SHIFT;
ats_entries = AMDGPU_GMC_HOLE_START >> ats_entries;
ats_entries = min(ats_entries, entries);
entries -= ats_entries;
} else {
ats_entries = entries;
entries = 0;
}
} else {
ats_entries = 0;
}
ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched);
r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
if (r)
goto error;
r = amdgpu_ttm_alloc_gart(&bo->tbo);
if (r)
return r;
r = amdgpu_job_alloc_with_ib(adev, 64, &job);
if (r)
goto error;
addr = amdgpu_bo_gpu_offset(bo);
if (ats_entries) {
uint64_t ats_value;
ats_value = AMDGPU_PTE_DEFAULT_ATC;
if (level != AMDGPU_VM_PTB)
ats_value |= AMDGPU_PDE_PTE;
amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0,
ats_entries, 0, ats_value);
addr += ats_entries * 8;
}
if (entries)
amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0,
entries, 0, 0);
amdgpu_ring_pad_ib(ring, &job->ibs[0]);
WARN_ON(job->ibs[0].length_dw > 64);
r = amdgpu_sync_resv(adev, &job->sync, bo->tbo.resv,
AMDGPU_FENCE_OWNER_UNDEFINED, false);
if (r)
goto error_free;
r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_UNDEFINED,
&fence);
if (r)
goto error_free;
amdgpu_bo_fence(bo, fence, true);
dma_fence_put(fence);
if (bo->shadow)
return amdgpu_vm_clear_bo(adev, vm, bo->shadow,
level, pte_support_ats);
return 0;
error_free:
amdgpu_job_free(job);
error:
return r;
}
/**
* amdgpu_vm_bo_param - fill in parameters for PD/PT allocation
*
* @adev: amdgpu_device pointer
* @vm: requesting vm
* @bp: resulting BO allocation parameters
*/
static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm,
int level, struct amdgpu_bo_param *bp)
{
memset(bp, 0, sizeof(*bp));
bp->size = amdgpu_vm_bo_size(adev, level);
bp->byte_align = AMDGPU_GPU_PAGE_SIZE;
bp->domain = AMDGPU_GEM_DOMAIN_VRAM;
bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain);
bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
AMDGPU_GEM_CREATE_CPU_GTT_USWC;
if (vm->use_cpu_for_update)
bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
else if (!vm->root.base.bo || vm->root.base.bo->shadow)
bp->flags |= AMDGPU_GEM_CREATE_SHADOW;
bp->type = ttm_bo_type_kernel;
if (vm->root.base.bo)
bp->resv = vm->root.base.bo->tbo.resv;
}
/**
* amdgpu_vm_alloc_pts - Allocate page tables.
*
* @adev: amdgpu_device pointer
* @vm: VM to allocate page tables for
* @saddr: Start address which needs to be allocated
* @size: Size from start address we need.
*
* Make sure the page directories and page tables are allocated
*
* Returns:
* 0 on success, errno otherwise.
*/
int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
struct amdgpu_vm *vm,
uint64_t saddr, uint64_t size)
{
struct amdgpu_vm_pt_cursor cursor;
struct amdgpu_bo *pt;
bool ats = false;
uint64_t eaddr;
int r;
/* validate the parameters */
if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK)
return -EINVAL;
eaddr = saddr + size - 1;
if (vm->pte_support_ats)
ats = saddr < AMDGPU_GMC_HOLE_START;
saddr /= AMDGPU_GPU_PAGE_SIZE;
eaddr /= AMDGPU_GPU_PAGE_SIZE;
if (eaddr >= adev->vm_manager.max_pfn) {
dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n",
eaddr, adev->vm_manager.max_pfn);
return -EINVAL;
}
for_each_amdgpu_vm_pt_leaf(adev, vm, saddr, eaddr, cursor) {
struct amdgpu_vm_pt *entry = cursor.entry;
struct amdgpu_bo_param bp;
if (cursor.level < AMDGPU_VM_PTB) {
unsigned num_entries;
num_entries = amdgpu_vm_num_entries(adev, cursor.level);
entry->entries = kvmalloc_array(num_entries,
sizeof(*entry->entries),
GFP_KERNEL |
__GFP_ZERO);
if (!entry->entries)
return -ENOMEM;
}
if (entry->base.bo)
continue;
amdgpu_vm_bo_param(adev, vm, cursor.level, &bp);
r = amdgpu_bo_create(adev, &bp, &pt);
if (r)
return r;
r = amdgpu_vm_clear_bo(adev, vm, pt, cursor.level, ats);
if (r)
goto error_free_pt;
if (vm->use_cpu_for_update) {
r = amdgpu_bo_kmap(pt, NULL);
if (r)
goto error_free_pt;
}
/* Keep a reference to the root directory to avoid
* freeing them up in the wrong order.
*/
pt->parent = amdgpu_bo_ref(cursor.parent->base.bo);
amdgpu_vm_bo_base_init(&entry->base, vm, pt);
}
return 0;
error_free_pt:
amdgpu_bo_unref(&pt->shadow);
amdgpu_bo_unref(&pt);
return r;
}
/**
* amdgpu_vm_free_pts - free PD/PT levels
*
* @adev: amdgpu device structure
* @vm: amdgpu vm structure
*
* Free the page directory or page table level and all sub levels.
*/
static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
struct amdgpu_vm *vm)
{
struct amdgpu_vm_pt_cursor cursor;
struct amdgpu_vm_pt *entry;
for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) {
if (entry->base.bo) {
entry->base.bo->vm_bo = NULL;
list_del(&entry->base.vm_status);
amdgpu_bo_unref(&entry->base.bo->shadow);
amdgpu_bo_unref(&entry->base.bo);
}
kvfree(entry->entries);
}
BUG_ON(vm->root.base.bo);
}
/**
* amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
*
* @adev: amdgpu_device pointer
*/
void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
{
const struct amdgpu_ip_block *ip_block;
bool has_compute_vm_bug;
struct amdgpu_ring *ring;
int i;
has_compute_vm_bug = false;
ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
if (ip_block) {
/* Compute has a VM bug for GFX version < 7.
Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
if (ip_block->version->major <= 7)
has_compute_vm_bug = true;
else if (ip_block->version->major == 8)
if (adev->gfx.mec_fw_version < 673)
has_compute_vm_bug = true;
}
for (i = 0; i < adev->num_rings; i++) {
ring = adev->rings[i];
if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
/* only compute rings */
ring->has_compute_vm_bug = has_compute_vm_bug;
else
ring->has_compute_vm_bug = false;
}
}
/**
* amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
*
* @ring: ring on which the job will be submitted
* @job: job to submit
*
* Returns:
* True if sync is needed.
*/
bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
struct amdgpu_job *job)
{
struct amdgpu_device *adev = ring->adev;
unsigned vmhub = ring->funcs->vmhub;
struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
struct amdgpu_vmid *id;
bool gds_switch_needed;
bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
if (job->vmid == 0)
return false;
id = &id_mgr->ids[job->vmid];
gds_switch_needed = ring->funcs->emit_gds_switch && (
id->gds_base != job->gds_base ||
id->gds_size != job->gds_size ||
id->gws_base != job->gws_base ||
id->gws_size != job->gws_size ||
id->oa_base != job->oa_base ||
id->oa_size != job->oa_size);
if (amdgpu_vmid_had_gpu_reset(adev, id))
return true;
return vm_flush_needed || gds_switch_needed;
}
/**
* amdgpu_vm_flush - hardware flush the vm
*
* @ring: ring to use for flush
* @job: related job
* @need_pipe_sync: is pipe sync needed
*
* Emit a VM flush when it is necessary.
*
* Returns:
* 0 on success, errno otherwise.
*/
int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync)
{
struct amdgpu_device *adev = ring->adev;
unsigned vmhub = ring->funcs->vmhub;
struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
bool gds_switch_needed = ring->funcs->emit_gds_switch && (
id->gds_base != job->gds_base ||
id->gds_size != job->gds_size ||
id->gws_base != job->gws_base ||
id->gws_size != job->gws_size ||
id->oa_base != job->oa_base ||
id->oa_size != job->oa_size);
bool vm_flush_needed = job->vm_needs_flush;
bool pasid_mapping_needed = id->pasid != job->pasid ||
!id->pasid_mapping ||
!dma_fence_is_signaled(id->pasid_mapping);
struct dma_fence *fence = NULL;
unsigned patch_offset = 0;
int r;
if (amdgpu_vmid_had_gpu_reset(adev, id)) {
gds_switch_needed = true;
vm_flush_needed = true;
pasid_mapping_needed = true;
}
gds_switch_needed &= !!ring->funcs->emit_gds_switch;
vm_flush_needed &= !!ring->funcs->emit_vm_flush &&
job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
ring->funcs->emit_wreg;
if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
return 0;
if (ring->funcs->init_cond_exec)
patch_offset = amdgpu_ring_init_cond_exec(ring);
if (need_pipe_sync)
amdgpu_ring_emit_pipeline_sync(ring);
if (vm_flush_needed) {
trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
}
if (pasid_mapping_needed)
amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
if (vm_flush_needed || pasid_mapping_needed) {
r = amdgpu_fence_emit(ring, &fence, 0);
if (r)
return r;
}
if (vm_flush_needed) {
mutex_lock(&id_mgr->lock);
dma_fence_put(id->last_flush);
id->last_flush = dma_fence_get(fence);
id->current_gpu_reset_count =
atomic_read(&adev->gpu_reset_counter);
mutex_unlock(&id_mgr->lock);
}
if (pasid_mapping_needed) {
id->pasid = job->pasid;
dma_fence_put(id->pasid_mapping);
id->pasid_mapping = dma_fence_get(fence);
}
dma_fence_put(fence);
if (ring->funcs->emit_gds_switch && gds_switch_needed) {
id->gds_base = job->gds_base;
id->gds_size = job->gds_size;
id->gws_base = job->gws_base;
id->gws_size = job->gws_size;
id->oa_base = job->oa_base;
id->oa_size = job->oa_size;
amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
job->gds_size, job->gws_base,
job->gws_size, job->oa_base,
job->oa_size);
}
if (ring->funcs->patch_cond_exec)
amdgpu_ring_patch_cond_exec(ring, patch_offset);
/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
if (ring->funcs->emit_switch_buffer) {
amdgpu_ring_emit_switch_buffer(ring);
amdgpu_ring_emit_switch_buffer(ring);
}
return 0;
}
/**
* amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
*
* @vm: requested vm
* @bo: requested buffer object
*
* Find @bo inside the requested vm.
* Search inside the @bos vm list for the requested vm
* Returns the found bo_va or NULL if none is found
*
* Object has to be reserved!
*
* Returns:
* Found bo_va or NULL.
*/
struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
struct amdgpu_bo *bo)
{
struct amdgpu_vm_bo_base *base;
for (base = bo->vm_bo; base; base = base->next) {
if (base->vm != vm)
continue;
return container_of(base, struct amdgpu_bo_va, base);
}
return NULL;
}
/**
* amdgpu_vm_do_set_ptes - helper to call the right asic function
*
* @params: see amdgpu_pte_update_params definition
* @bo: PD/PT to update
* @pe: addr of the page entry
* @addr: dst addr to write into pe
* @count: number of page entries to update
* @incr: increase next addr by incr bytes
* @flags: hw access flags
*
* Traces the parameters and calls the right asic functions
* to setup the page table using the DMA.
*/
static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params,
struct amdgpu_bo *bo,
uint64_t pe, uint64_t addr,
unsigned count, uint32_t incr,
uint64_t flags)
{
pe += amdgpu_bo_gpu_offset(bo);
trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
if (count < 3) {
amdgpu_vm_write_pte(params->adev, params->ib, pe,
addr | flags, count, incr);
} else {
amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr,
count, incr, flags);
}
}
/**
* amdgpu_vm_do_copy_ptes - copy the PTEs from the GART
*
* @params: see amdgpu_pte_update_params definition
* @bo: PD/PT to update
* @pe: addr of the page entry
* @addr: dst addr to write into pe
* @count: number of page entries to update
* @incr: increase next addr by incr bytes
* @flags: hw access flags
*
* Traces the parameters and calls the DMA function to copy the PTEs.
*/
static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params,
struct amdgpu_bo *bo,
uint64_t pe, uint64_t addr,
unsigned count, uint32_t incr,
uint64_t flags)
{
uint64_t src = (params->src + (addr >> 12) * 8);
pe += amdgpu_bo_gpu_offset(bo);
trace_amdgpu_vm_copy_ptes(pe, src, count);
amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count);
}
/**
* amdgpu_vm_map_gart - Resolve gart mapping of addr
*
* @pages_addr: optional DMA address to use for lookup
* @addr: the unmapped addr
*
* Look up the physical address of the page that the pte resolves
* to.
*
* Returns:
* The pointer for the page table entry.
*/
static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
{
uint64_t result;
/* page table offset */
result = pages_addr[addr >> PAGE_SHIFT];
/* in case cpu page size != gpu page size*/
result |= addr & (~PAGE_MASK);
result &= 0xFFFFFFFFFFFFF000ULL;
return result;
}
/**
* amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU
*
* @params: see amdgpu_pte_update_params definition
* @bo: PD/PT to update
* @pe: kmap addr of the page entry
* @addr: dst addr to write into pe
* @count: number of page entries to update
* @incr: increase next addr by incr bytes
* @flags: hw access flags
*
* Write count number of PT/PD entries directly.
*/
static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params,
struct amdgpu_bo *bo,
uint64_t pe, uint64_t addr,
unsigned count, uint32_t incr,
uint64_t flags)
{
unsigned int i;
uint64_t value;
pe += (unsigned long)amdgpu_bo_kptr(bo);
trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
for (i = 0; i < count; i++) {
value = params->pages_addr ?
amdgpu_vm_map_gart(params->pages_addr, addr) :
addr;
amdgpu_gmc_set_pte_pde(params->adev, (void *)(uintptr_t)pe,
i, value, flags);
addr += incr;
}
}
/**
* amdgpu_vm_wait_pd - Wait for PT BOs to be free.
*
* @adev: amdgpu_device pointer
* @vm: related vm
* @owner: fence owner
*
* Returns:
* 0 on success, errno otherwise.
*/
static int amdgpu_vm_wait_pd(struct amdgpu_device *adev, struct amdgpu_vm *vm,
void *owner)
{
struct amdgpu_sync sync;
int r;
amdgpu_sync_create(&sync);
amdgpu_sync_resv(adev, &sync, vm->root.base.bo->tbo.resv, owner, false);
r = amdgpu_sync_wait(&sync, true);
amdgpu_sync_free(&sync);
return r;
}
/**
* amdgpu_vm_update_func - helper to call update function
*
* Calls the update function for both the given BO as well as its shadow.
*/
static void amdgpu_vm_update_func(struct amdgpu_pte_update_params *params,
struct amdgpu_bo *bo,
uint64_t pe, uint64_t addr,
unsigned count, uint32_t incr,
uint64_t flags)
{
if (bo->shadow)
params->func(params, bo->shadow, pe, addr, count, incr, flags);
params->func(params, bo, pe, addr, count, incr, flags);
}
/*
* amdgpu_vm_update_pde - update a single level in the hierarchy
*
* @param: parameters for the update
* @vm: requested vm
* @parent: parent directory
* @entry: entry to update
*
* Makes sure the requested entry in parent is up to date.
*/
static void amdgpu_vm_update_pde(struct amdgpu_pte_update_params *params,
struct amdgpu_vm *vm,
struct amdgpu_vm_pt *parent,
struct amdgpu_vm_pt *entry)
{
struct amdgpu_bo *bo = parent->base.bo, *pbo;
uint64_t pde, pt, flags;
unsigned level;
/* Don't update huge pages here */
if (entry->huge)
return;
for (level = 0, pbo = bo->parent; pbo; ++level)
pbo = pbo->parent;
level += params->adev->vm_manager.root_level;
amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags);
pde = (entry - parent->entries) * 8;
amdgpu_vm_update_func(params, bo, pde, pt, 1, 0, flags);
}
/*
* amdgpu_vm_invalidate_pds - mark all PDs as invalid
*
* @adev: amdgpu_device pointer
* @vm: related vm
*
* Mark all PD level as invalid after an error.
*/
static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
struct amdgpu_vm *vm)
{
struct amdgpu_vm_pt_cursor cursor;
struct amdgpu_vm_pt *entry;
for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry)
if (entry->base.bo && !entry->base.moved)
amdgpu_vm_bo_relocated(&entry->base);
}
/*
* amdgpu_vm_update_directories - make sure that all directories are valid
*
* @adev: amdgpu_device pointer
* @vm: requested vm
*
* Makes sure all directories are up to date.
*
* Returns:
* 0 for success, error for failure.
*/
int amdgpu_vm_update_directories(struct amdgpu_device *adev,
struct amdgpu_vm *vm)
{
struct amdgpu_pte_update_params params;
struct amdgpu_job *job;
unsigned ndw = 0;
int r = 0;
if (list_empty(&vm->relocated))
return 0;
restart:
memset(&params, 0, sizeof(params));
params.adev = adev;
if (vm->use_cpu_for_update) {
r = amdgpu_vm_wait_pd(adev, vm, AMDGPU_FENCE_OWNER_VM);
if (unlikely(r))
return r;
params.func = amdgpu_vm_cpu_set_ptes;
} else {
ndw = 512 * 8;
r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
if (r)
return r;
params.ib = &job->ibs[0];
params.func = amdgpu_vm_do_set_ptes;
}
while (!list_empty(&vm->relocated)) {
struct amdgpu_vm_pt *pt, *entry;
entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt,
base.vm_status);
amdgpu_vm_bo_idle(&entry->base);
pt = amdgpu_vm_pt_parent(entry);
if (!pt)
continue;
amdgpu_vm_update_pde(&params, vm, pt, entry);
if (!vm->use_cpu_for_update &&
(ndw - params.ib->length_dw) < 32)
break;
}
if (vm->use_cpu_for_update) {
/* Flush HDP */
mb();
amdgpu_asic_flush_hdp(adev, NULL);
} else if (params.ib->length_dw == 0) {
amdgpu_job_free(job);
} else {
struct amdgpu_bo *root = vm->root.base.bo;
struct amdgpu_ring *ring;
struct dma_fence *fence;
ring = container_of(vm->entity.rq->sched, struct amdgpu_ring,
sched);
amdgpu_ring_pad_ib(ring, params.ib);
amdgpu_sync_resv(adev, &job->sync, root->tbo.resv,
AMDGPU_FENCE_OWNER_VM, false);
WARN_ON(params.ib->length_dw > ndw);
r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM,
&fence);
if (r)
goto error;
amdgpu_bo_fence(root, fence, true);
dma_fence_put(vm->last_update);
vm->last_update = fence;
}
if (!list_empty(&vm->relocated))
goto restart;
return 0;
error:
amdgpu_vm_invalidate_pds(adev, vm);
amdgpu_job_free(job);
return r;
}
/**
* amdgpu_vm_update_huge - figure out parameters for PTE updates
*
* Make sure to set the right flags for the PTEs at the desired level.
*/
static void amdgpu_vm_update_huge(struct amdgpu_pte_update_params *params,
struct amdgpu_bo *bo, unsigned level,
uint64_t pe, uint64_t addr,
unsigned count, uint32_t incr,
uint64_t flags)
{
if (level != AMDGPU_VM_PTB) {
flags |= AMDGPU_PDE_PTE;
amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
}
amdgpu_vm_update_func(params, bo, pe, addr, count, incr, flags);
}
/**
* amdgpu_vm_fragment - get fragment for PTEs
*
* @params: see amdgpu_pte_update_params definition
* @start: first PTE to handle
* @end: last PTE to handle
* @flags: hw mapping flags
* @frag: resulting fragment size
* @frag_end: end of this fragment
*
* Returns the first possible fragment for the start and end address.
*/
static void amdgpu_vm_fragment(struct amdgpu_pte_update_params *params,
uint64_t start, uint64_t end, uint64_t flags,
unsigned int *frag, uint64_t *frag_end)
{
/**
* The MC L1 TLB supports variable sized pages, based on a fragment
* field in the PTE. When this field is set to a non-zero value, page
* granularity is increased from 4KB to (1 << (12 + frag)). The PTE
* flags are considered valid for all PTEs within the fragment range
* and corresponding mappings are assumed to be physically contiguous.
*
* The L1 TLB can store a single PTE for the whole fragment,
* significantly increasing the space available for translation
* caching. This leads to large improvements in throughput when the
* TLB is under pressure.
*
* The L2 TLB distributes small and large fragments into two
* asymmetric partitions. The large fragment cache is significantly
* larger. Thus, we try to use large fragments wherever possible.
* Userspace can support this by aligning virtual base address and
* allocation size to the fragment size.
*
* Starting with Vega10 the fragment size only controls the L1. The L2
* is now directly feed with small/huge/giant pages from the walker.
*/
unsigned max_frag;
if (params->adev->asic_type < CHIP_VEGA10)
max_frag = params->adev->vm_manager.fragment_size;
else
max_frag = 31;
/* system pages are non continuously */
if (params->src) {
*frag = 0;
*frag_end = end;
return;
}
/* This intentionally wraps around if no bit is set */
*frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
if (*frag >= max_frag) {
*frag = max_frag;
*frag_end = end & ~((1ULL << max_frag) - 1);
} else {
*frag_end = start + (1 << *frag);
}
}
/**
* amdgpu_vm_update_ptes - make sure that page tables are valid
*
* @params: see amdgpu_pte_update_params definition
* @start: start of GPU address range
* @end: end of GPU address range
* @dst: destination address to map to, the next dst inside the function
* @flags: mapping flags
*
* Update the page tables in the range @start - @end.
*
* Returns:
* 0 for success, -EINVAL for failure.
*/
static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params,
uint64_t start, uint64_t end,
uint64_t dst, uint64_t flags)
{
struct amdgpu_device *adev = params->adev;
struct amdgpu_vm_pt_cursor cursor;
uint64_t frag_start = start, frag_end;
unsigned int frag;
/* figure out the initial fragment */
amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
/* walk over the address space and update the PTs */
amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
while (cursor.pfn < end) {
struct amdgpu_bo *pt = cursor.entry->base.bo;
unsigned shift, parent_shift, mask;
uint64_t incr, entry_end, pe_start;
if (!pt)
return -ENOENT;
/* The root level can't be a huge page */
if (cursor.level == adev->vm_manager.root_level) {
if (!amdgpu_vm_pt_descendant(adev, &cursor))
return -ENOENT;
continue;
}
/* If it isn't already handled it can't be a huge page */
if (cursor.entry->huge) {
/* Add the entry to the relocated list to update it. */
cursor.entry->huge = false;
amdgpu_vm_bo_relocated(&cursor.entry->base);
}
shift = amdgpu_vm_level_shift(adev, cursor.level);
parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
if (adev->asic_type < CHIP_VEGA10) {
/* No huge page support before GMC v9 */
if (cursor.level != AMDGPU_VM_PTB) {
if (!amdgpu_vm_pt_descendant(adev, &cursor))
return -ENOENT;
continue;
}
} else if (frag < shift) {
/* We can't use this level when the fragment size is
* smaller than the address shift. Go to the next
* child entry and try again.
*/
if (!amdgpu_vm_pt_descendant(adev, &cursor))
return -ENOENT;
continue;
} else if (frag >= parent_shift &&
cursor.level - 1 != adev->vm_manager.root_level) {
/* If the fragment size is even larger than the parent
* shift we should go up one level and check it again
* unless one level up is the root level.
*/
if (!amdgpu_vm_pt_ancestor(&cursor))
return -ENOENT;
continue;
}
/* Looks good so far, calculate parameters for the update */
incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
mask = amdgpu_vm_entries_mask(adev, cursor.level);
pe_start = ((cursor.pfn >> shift) & mask) * 8;
entry_end = (uint64_t)(mask + 1) << shift;
entry_end += cursor.pfn & ~(entry_end - 1);
entry_end = min(entry_end, end);
do {
uint64_t upd_end = min(entry_end, frag_end);
unsigned nptes = (upd_end - frag_start) >> shift;
amdgpu_vm_update_huge(params, pt, cursor.level,
pe_start, dst, nptes, incr,
flags | AMDGPU_PTE_FRAG(frag));
pe_start += nptes * 8;
dst += (uint64_t)nptes * AMDGPU_GPU_PAGE_SIZE << shift;
frag_start = upd_end;
if (frag_start >= frag_end) {
/* figure out the next fragment */
amdgpu_vm_fragment(params, frag_start, end,
flags, &frag, &frag_end);
if (frag < shift)
break;
}
} while (frag_start < entry_end);
if (amdgpu_vm_pt_descendant(adev, &cursor)) {
/* Mark all child entries as huge */
while (cursor.pfn < frag_start) {
cursor.entry->huge = true;
amdgpu_vm_pt_next(adev, &cursor);
}
} else if (frag >= shift) {
/* or just move on to the next on the same level. */
amdgpu_vm_pt_next(adev, &cursor);
}
}
return 0;
}
/**
* amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
*
* @adev: amdgpu_device pointer
* @exclusive: fence we need to sync to
* @pages_addr: DMA addresses to use for mapping
* @vm: requested vm
* @start: start of mapped range
* @last: last mapped entry
* @flags: flags for the entries
* @addr: addr to set the area to
* @fence: optional resulting fence
*
* Fill in the page table entries between @start and @last.
*
* Returns:
* 0 for success, -EINVAL for failure.
*/
static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
struct dma_fence *exclusive,
dma_addr_t *pages_addr,
struct amdgpu_vm *vm,
uint64_t start, uint64_t last,
uint64_t flags, uint64_t addr,
struct dma_fence **fence)
{
struct amdgpu_ring *ring;
void *owner = AMDGPU_FENCE_OWNER_VM;
unsigned nptes, ncmds, ndw;
struct amdgpu_job *job;
struct amdgpu_pte_update_params params;
struct dma_fence *f = NULL;
int r;
memset(&params, 0, sizeof(params));
params.adev = adev;
params.vm = vm;
/* sync to everything on unmapping */
if (!(flags & AMDGPU_PTE_VALID))
owner = AMDGPU_FENCE_OWNER_UNDEFINED;
if (vm->use_cpu_for_update) {
/* params.src is used as flag to indicate system Memory */
if (pages_addr)
params.src = ~0;
/* Wait for PT BOs to be free. PTs share the same resv. object
* as the root PD BO
*/
r = amdgpu_vm_wait_pd(adev, vm, owner);
if (unlikely(r))
return r;
params.func = amdgpu_vm_cpu_set_ptes;
params.pages_addr = pages_addr;
return amdgpu_vm_update_ptes(&params, start, last + 1,
addr, flags);
}
ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched);
nptes = last - start + 1;
/*
* reserve space for two commands every (1 << BLOCK_SIZE)
* entries or 2k dwords (whatever is smaller)
*
* The second command is for the shadow pagetables.
*/
if (vm->root.base.bo->shadow)
ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1) * 2;
else
ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1);
/* padding, etc. */
ndw = 64;
if (pages_addr) {
/* copy commands needed */
ndw += ncmds * adev->vm_manager.vm_pte_funcs->copy_pte_num_dw;
/* and also PTEs */
ndw += nptes * 2;
params.func = amdgpu_vm_do_copy_ptes;
} else {
/* set page commands needed */
ndw += ncmds * 10;
/* extra commands for begin/end fragments */
if (vm->root.base.bo->shadow)
ndw += 2 * 10 * adev->vm_manager.fragment_size * 2;
else
ndw += 2 * 10 * adev->vm_manager.fragment_size;
params.func = amdgpu_vm_do_set_ptes;
}
r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
if (r)
return r;
params.ib = &job->ibs[0];
if (pages_addr) {
uint64_t *pte;
unsigned i;
/* Put the PTEs at the end of the IB. */
i = ndw - nptes * 2;
pte= (uint64_t *)&(job->ibs->ptr[i]);
params.src = job->ibs->gpu_addr + i * 4;
for (i = 0; i < nptes; ++i) {
pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i *
AMDGPU_GPU_PAGE_SIZE);
pte[i] |= flags;
}
addr = 0;
}
r = amdgpu_sync_fence(adev, &job->sync, exclusive, false);
if (r)
goto error_free;
r = amdgpu_sync_resv(adev, &job->sync, vm->root.base.bo->tbo.resv,
owner, false);
if (r)
goto error_free;
r = amdgpu_vm_update_ptes(&params, start, last + 1, addr, flags);
if (r)
goto error_free;
amdgpu_ring_pad_ib(ring, params.ib);
WARN_ON(params.ib->length_dw > ndw);
r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM, &f);
if (r)
goto error_free;
amdgpu_bo_fence(vm->root.base.bo, f, true);
dma_fence_put(*fence);
*fence = f;
return 0;
error_free:
amdgpu_job_free(job);
return r;
}
/**
* amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
*
* @adev: amdgpu_device pointer
* @exclusive: fence we need to sync to
* @pages_addr: DMA addresses to use for mapping
* @vm: requested vm
* @mapping: mapped range and flags to use for the update
* @flags: HW flags for the mapping
* @nodes: array of drm_mm_nodes with the MC addresses
* @fence: optional resulting fence
*
* Split the mapping into smaller chunks so that each update fits
* into a SDMA IB.
*
* Returns:
* 0 for success, -EINVAL for failure.
*/
static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
struct dma_fence *exclusive,
dma_addr_t *pages_addr,
struct amdgpu_vm *vm,
struct amdgpu_bo_va_mapping *mapping,
uint64_t flags,
struct drm_mm_node *nodes,
struct dma_fence **fence)
{
unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size;
uint64_t pfn, start = mapping->start;
int r;
/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
* but in case of something, we filter the flags in first place
*/
if (!(mapping->flags & AMDGPU_PTE_READABLE))
flags &= ~AMDGPU_PTE_READABLE;
if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
flags &= ~AMDGPU_PTE_WRITEABLE;
flags &= ~AMDGPU_PTE_EXECUTABLE;
flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE;
flags &= ~AMDGPU_PTE_MTYPE_MASK;
flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK);
if ((mapping->flags & AMDGPU_PTE_PRT) &&
(adev->asic_type >= CHIP_VEGA10)) {
flags |= AMDGPU_PTE_PRT;
flags &= ~AMDGPU_PTE_VALID;
}
trace_amdgpu_vm_bo_update(mapping);
pfn = mapping->offset >> PAGE_SHIFT;
if (nodes) {
while (pfn >= nodes->size) {
pfn -= nodes->size;
++nodes;
}
}
do {
dma_addr_t *dma_addr = NULL;
uint64_t max_entries;
uint64_t addr, last;
if (nodes) {
addr = nodes->start << PAGE_SHIFT;
max_entries = (nodes->size - pfn) *
AMDGPU_GPU_PAGES_IN_CPU_PAGE;
} else {
addr = 0;
max_entries = S64_MAX;
}
if (pages_addr) {
uint64_t count;
max_entries = min(max_entries, 16ull * 1024ull);
for (count = 1;
count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
++count) {
uint64_t idx = pfn + count;
if (pages_addr[idx] !=
(pages_addr[idx - 1] + PAGE_SIZE))
break;
}
if (count < min_linear_pages) {
addr = pfn << PAGE_SHIFT;
dma_addr = pages_addr;
} else {
addr = pages_addr[pfn];
max_entries = count * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
}
} else if (flags & AMDGPU_PTE_VALID) {
addr += adev->vm_manager.vram_base_offset;
addr += pfn << PAGE_SHIFT;
}
last = min((uint64_t)mapping->last, start + max_entries - 1);
r = amdgpu_vm_bo_update_mapping(adev, exclusive, dma_addr, vm,
start, last, flags, addr,
fence);
if (r)
return r;
pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
if (nodes && nodes->size == pfn) {
pfn = 0;
++nodes;
}
start = last + 1;
} while (unlikely(start != mapping->last + 1));
return 0;
}
/**
* amdgpu_vm_bo_update - update all BO mappings in the vm page table
*
* @adev: amdgpu_device pointer
* @bo_va: requested BO and VM object
* @clear: if true clear the entries
*
* Fill in the page table entries for @bo_va.
*
* Returns:
* 0 for success, -EINVAL for failure.
*/
int amdgpu_vm_bo_update(struct amdgpu_device *adev,
struct amdgpu_bo_va *bo_va,
bool clear)
{
struct amdgpu_bo *bo = bo_va->base.bo;
struct amdgpu_vm *vm = bo_va->base.vm;
struct amdgpu_bo_va_mapping *mapping;
dma_addr_t *pages_addr = NULL;
struct ttm_mem_reg *mem;
struct drm_mm_node *nodes;
struct dma_fence *exclusive, **last_update;
uint64_t flags;
int r;
if (clear || !bo) {
mem = NULL;
nodes = NULL;
exclusive = NULL;
} else {
struct ttm_dma_tt *ttm;
mem = &bo->tbo.mem;
nodes = mem->mm_node;
if (mem->mem_type == TTM_PL_TT) {
ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm);
pages_addr = ttm->dma_address;
}
exclusive = reservation_object_get_excl(bo->tbo.resv);
}
if (bo)
flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
else
flags = 0x0;
if (clear || (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv))
last_update = &vm->last_update;
else
last_update = &bo_va->last_pt_update;
if (!clear && bo_va->base.moved) {
bo_va->base.moved = false;
list_splice_init(&bo_va->valids, &bo_va->invalids);
} else if (bo_va->cleared != clear) {
list_splice_init(&bo_va->valids, &bo_va->invalids);
}
list_for_each_entry(mapping, &bo_va->invalids, list) {
r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm,
mapping, flags, nodes,
last_update);
if (r)
return r;
}
if (vm->use_cpu_for_update) {
/* Flush HDP */
mb();
amdgpu_asic_flush_hdp(adev, NULL);
}
/* If the BO is not in its preferred location add it back to
* the evicted list so that it gets validated again on the
* next command submission.
*/
if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv) {
uint32_t mem_type = bo->tbo.mem.mem_type;
if (!(bo->preferred_domains & amdgpu_mem_type_to_domain(mem_type)))
amdgpu_vm_bo_evicted(&bo_va->base);
else
amdgpu_vm_bo_idle(&bo_va->base);
} else {
amdgpu_vm_bo_done(&bo_va->base);
}
list_splice_init(&bo_va->invalids, &bo_va->valids);
bo_va->cleared = clear;
if (trace_amdgpu_vm_bo_mapping_enabled()) {
list_for_each_entry(mapping, &bo_va->valids, list)
trace_amdgpu_vm_bo_mapping(mapping);
}
return 0;
}
/**
* amdgpu_vm_update_prt_state - update the global PRT state
*
* @adev: amdgpu_device pointer
*/
static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
{
unsigned long flags;
bool enable;
spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
enable = !!atomic_read(&adev->vm_manager.num_prt_users);
adev->gmc.gmc_funcs->set_prt(adev, enable);
spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
}
/**
* amdgpu_vm_prt_get - add a PRT user
*
* @adev: amdgpu_device pointer
*/
static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
{
if (!adev->gmc.gmc_funcs->set_prt)
return;
if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
amdgpu_vm_update_prt_state(adev);
}
/**
* amdgpu_vm_prt_put - drop a PRT user
*
* @adev: amdgpu_device pointer
*/
static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
{
if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
amdgpu_vm_update_prt_state(adev);
}
/**
* amdgpu_vm_prt_cb - callback for updating the PRT status
*
* @fence: fence for the callback
* @_cb: the callback function
*/
static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
{
struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
amdgpu_vm_prt_put(cb->adev);
kfree(cb);
}
/**
* amdgpu_vm_add_prt_cb - add callback for updating the PRT status
*
* @adev: amdgpu_device pointer
* @fence: fence for the callback
*/
static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
struct dma_fence *fence)
{
struct amdgpu_prt_cb *cb;
if (!adev->gmc.gmc_funcs->set_prt)
return;
cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
if (!cb) {
/* Last resort when we are OOM */
if (fence)
dma_fence_wait(fence, false);
amdgpu_vm_prt_put(adev);
} else {
cb->adev = adev;
if (!fence || dma_fence_add_callback(fence, &cb->cb,
amdgpu_vm_prt_cb))
amdgpu_vm_prt_cb(fence, &cb->cb);
}
}
/**
* amdgpu_vm_free_mapping - free a mapping
*
* @adev: amdgpu_device pointer
* @vm: requested vm
* @mapping: mapping to be freed
* @fence: fence of the unmap operation
*
* Free a mapping and make sure we decrease the PRT usage count if applicable.
*/
static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
struct amdgpu_vm *vm,
struct amdgpu_bo_va_mapping *mapping,
struct dma_fence *fence)
{
if (mapping->flags & AMDGPU_PTE_PRT)
amdgpu_vm_add_prt_cb(adev, fence);
kfree(mapping);
}
/**
* amdgpu_vm_prt_fini - finish all prt mappings
*
* @adev: amdgpu_device pointer
* @vm: requested vm
*
* Register a cleanup callback to disable PRT support after VM dies.
*/
static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
{
struct reservation_object *resv = vm->root.base.bo->tbo.resv;
struct dma_fence *excl, **shared;
unsigned i, shared_count;
int r;
r = reservation_object_get_fences_rcu(resv, &excl,
&shared_count, &shared);
if (r) {
/* Not enough memory to grab the fence list, as last resort
* block for all the fences to complete.
*/
reservation_object_wait_timeout_rcu(resv, true, false,
MAX_SCHEDULE_TIMEOUT);
return;
}
/* Add a callback for each fence in the reservation object */
amdgpu_vm_prt_get(adev);
amdgpu_vm_add_prt_cb(adev, excl);
for (i = 0; i < shared_count; ++i) {
amdgpu_vm_prt_get(adev);
amdgpu_vm_add_prt_cb(adev, shared[i]);
}
kfree(shared);
}
/**
* amdgpu_vm_clear_freed - clear freed BOs in the PT
*
* @adev: amdgpu_device pointer
* @vm: requested vm
* @fence: optional resulting fence (unchanged if no work needed to be done
* or if an error occurred)
*
* Make sure all freed BOs are cleared in the PT.
* PTs have to be reserved and mutex must be locked!
*
* Returns:
* 0 for success.
*
*/
int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
struct amdgpu_vm *vm,
struct dma_fence **fence)
{
struct amdgpu_bo_va_mapping *mapping;
uint64_t init_pte_value = 0;
struct dma_fence *f = NULL;
int r;
while (!list_empty(&vm->freed)) {
mapping = list_first_entry(&vm->freed,
struct amdgpu_bo_va_mapping, list);
list_del(&mapping->list);
if (vm->pte_support_ats &&
mapping->start < AMDGPU_GMC_HOLE_START)
init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm,
mapping->start, mapping->last,
init_pte_value, 0, &f);
amdgpu_vm_free_mapping(adev, vm, mapping, f);
if (r) {
dma_fence_put(f);
return r;
}
}
if (fence && f) {
dma_fence_put(*fence);
*fence = f;
} else {
dma_fence_put(f);
}
return 0;
}
/**
* amdgpu_vm_handle_moved - handle moved BOs in the PT
*
* @adev: amdgpu_device pointer
* @vm: requested vm
*
* Make sure all BOs which are moved are updated in the PTs.
*
* Returns:
* 0 for success.
*
* PTs have to be reserved!
*/
int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
struct amdgpu_vm *vm)
{
struct amdgpu_bo_va *bo_va, *tmp;
struct reservation_object *resv;
bool clear;
int r;
list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
/* Per VM BOs never need to bo cleared in the page tables */
r = amdgpu_vm_bo_update(adev, bo_va, false);
if (r)
return r;
}
spin_lock(&vm->invalidated_lock);
while (!list_empty(&vm->invalidated)) {
bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
base.vm_status);
resv = bo_va->base.bo->tbo.resv;
spin_unlock(&vm->invalidated_lock);
/* Try to reserve the BO to avoid clearing its ptes */
if (!amdgpu_vm_debug && reservation_object_trylock(resv))
clear = false;
/* Somebody else is using the BO right now */
else
clear = true;
r = amdgpu_vm_bo_update(adev, bo_va, clear);
if (r)
return r;
if (!clear)
reservation_object_unlock(resv);
spin_lock(&vm->invalidated_lock);
}
spin_unlock(&vm->invalidated_lock);
return 0;
}
/**
* amdgpu_vm_bo_add - add a bo to a specific vm
*
* @adev: amdgpu_device pointer
* @vm: requested vm
* @bo: amdgpu buffer object
*
* Add @bo into the requested vm.
* Add @bo to the list of bos associated with the vm
*
* Returns:
* Newly added bo_va or NULL for failure
*
* Object has to be reserved!
*/
struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
struct amdgpu_vm *vm,
struct amdgpu_bo *bo)
{
struct amdgpu_bo_va *bo_va;
bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
if (bo_va == NULL) {
return NULL;
}
amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
bo_va->ref_count = 1;
INIT_LIST_HEAD(&bo_va->valids);
INIT_LIST_HEAD(&bo_va->invalids);
return bo_va;
}
/**
* amdgpu_vm_bo_insert_mapping - insert a new mapping
*
* @adev: amdgpu_device pointer
* @bo_va: bo_va to store the address
* @mapping: the mapping to insert
*
* Insert a new mapping into all structures.
*/
static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
struct amdgpu_bo_va *bo_va,
struct amdgpu_bo_va_mapping *mapping)
{
struct amdgpu_vm *vm = bo_va->base.vm;
struct amdgpu_bo *bo = bo_va->base.bo;
mapping->bo_va = bo_va;
list_add(&mapping->list, &bo_va->invalids);
amdgpu_vm_it_insert(mapping, &vm->va);
if (mapping->flags & AMDGPU_PTE_PRT)
amdgpu_vm_prt_get(adev);
if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv &&
!bo_va->base.moved) {
list_move(&bo_va->base.vm_status, &vm->moved);
}
trace_amdgpu_vm_bo_map(bo_va, mapping);
}
/**
* amdgpu_vm_bo_map - map bo inside a vm
*
* @adev: amdgpu_device pointer
* @bo_va: bo_va to store the address
* @saddr: where to map the BO
* @offset: requested offset in the BO
* @size: BO size in bytes
* @flags: attributes of pages (read/write/valid/etc.)
*
* Add a mapping of the BO at the specefied addr into the VM.
*
* Returns:
* 0 for success, error for failure.
*
* Object has to be reserved and unreserved outside!
*/
int amdgpu_vm_bo_map(struct amdgpu_device *adev,
struct amdgpu_bo_va *bo_va,
uint64_t saddr, uint64_t offset,
uint64_t size, uint64_t flags)
{
struct amdgpu_bo_va_mapping *mapping, *tmp;
struct amdgpu_bo *bo = bo_va->base.bo;
struct amdgpu_vm *vm = bo_va->base.vm;
uint64_t eaddr;
/* validate the parameters */
if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
size == 0 || size & AMDGPU_GPU_PAGE_MASK)
return -EINVAL;
/* make sure object fit at this offset */
eaddr = saddr + size - 1;
if (saddr >= eaddr ||
(bo && offset + size > amdgpu_bo_size(bo)))
return -EINVAL;
saddr /= AMDGPU_GPU_PAGE_SIZE;
eaddr /= AMDGPU_GPU_PAGE_SIZE;
tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
if (tmp) {
/* bo and tmp overlap, invalid addr */
dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
tmp->start, tmp->last + 1);
return -EINVAL;
}
mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
if (!mapping)
return -ENOMEM;
mapping->start = saddr;
mapping->last = eaddr;
mapping->offset = offset;
mapping->flags = flags;
amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
return 0;
}
/**
* amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
*
* @adev: amdgpu_device pointer
* @bo_va: bo_va to store the address
* @saddr: where to map the BO
* @offset: requested offset in the BO
* @size: BO size in bytes
* @flags: attributes of pages (read/write/valid/etc.)
*
* Add a mapping of the BO at the specefied addr into the VM. Replace existing
* mappings as we do so.
*
* Returns:
* 0 for success, error for failure.
*
* Object has to be reserved and unreserved outside!
*/
int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
struct amdgpu_bo_va *bo_va,
uint64_t saddr, uint64_t offset,
uint64_t size, uint64_t flags)
{
struct amdgpu_bo_va_mapping *mapping;
struct amdgpu_bo *bo = bo_va->base.bo;
uint64_t eaddr;
int r;
/* validate the parameters */
if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
size == 0 || size & AMDGPU_GPU_PAGE_MASK)
return -EINVAL;
/* make sure object fit at this offset */
eaddr = saddr + size - 1;
if (saddr >= eaddr ||
(bo && offset + size > amdgpu_bo_size(bo)))
return -EINVAL;
/* Allocate all the needed memory */
mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
if (!mapping)
return -ENOMEM;
r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
if (r) {
kfree(mapping);
return r;
}
saddr /= AMDGPU_GPU_PAGE_SIZE;
eaddr /= AMDGPU_GPU_PAGE_SIZE;
mapping->start = saddr;
mapping->last = eaddr;
mapping->offset = offset;
mapping->flags = flags;
amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
return 0;
}
/**
* amdgpu_vm_bo_unmap - remove bo mapping from vm
*
* @adev: amdgpu_device pointer
* @bo_va: bo_va to remove the address from
* @saddr: where to the BO is mapped
*
* Remove a mapping of the BO at the specefied addr from the VM.
*
* Returns:
* 0 for success, error for failure.
*
* Object has to be reserved and unreserved outside!
*/
int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
struct amdgpu_bo_va *bo_va,
uint64_t saddr)
{
struct amdgpu_bo_va_mapping *mapping;
struct amdgpu_vm *vm = bo_va->base.vm;
bool valid = true;
saddr /= AMDGPU_GPU_PAGE_SIZE;
list_for_each_entry(mapping, &bo_va->valids, list) {
if (mapping->start == saddr)
break;
}
if (&mapping->list == &bo_va->valids) {
valid = false;
list_for_each_entry(mapping, &bo_va->invalids, list) {
if (mapping->start == saddr)
break;
}
if (&mapping->list == &bo_va->invalids)
return -ENOENT;
}
list_del(&mapping->list);
amdgpu_vm_it_remove(mapping, &vm->va);
mapping->bo_va = NULL;
trace_amdgpu_vm_bo_unmap(bo_va, mapping);
if (valid)
list_add(&mapping->list, &vm->freed);
else
amdgpu_vm_free_mapping(adev, vm, mapping,
bo_va->last_pt_update);
return 0;
}
/**
* amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
*
* @adev: amdgpu_device pointer
* @vm: VM structure to use
* @saddr: start of the range
* @size: size of the range
*
* Remove all mappings in a range, split them as appropriate.
*
* Returns:
* 0 for success, error for failure.
*/
int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
struct amdgpu_vm *vm,
uint64_t saddr, uint64_t size)
{
struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
LIST_HEAD(removed);
uint64_t eaddr;
eaddr = saddr + size - 1;
saddr /= AMDGPU_GPU_PAGE_SIZE;
eaddr /= AMDGPU_GPU_PAGE_SIZE;
/* Allocate all the needed memory */
before = kzalloc(sizeof(*before), GFP_KERNEL);
if (!before)
return -ENOMEM;
INIT_LIST_HEAD(&before->list);
after = kzalloc(sizeof(*after), GFP_KERNEL);
if (!after) {
kfree(before);
return -ENOMEM;
}
INIT_LIST_HEAD(&after->list);
/* Now gather all removed mappings */
tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
while (tmp) {
/* Remember mapping split at the start */
if (tmp->start < saddr) {
before->start = tmp->start;
before->last = saddr - 1;
before->offset = tmp->offset;
before->flags = tmp->flags;
before->bo_va = tmp->bo_va;
list_add(&before->list, &tmp->bo_va->invalids);
}
/* Remember mapping split at the end */
if (tmp->last > eaddr) {
after->start = eaddr + 1;
after->last = tmp->last;
after->offset = tmp->offset;
after->offset += after->start - tmp->start;
after->flags = tmp->flags;
after->bo_va = tmp->bo_va;
list_add(&after->list, &tmp->bo_va->invalids);
}
list_del(&tmp->list);
list_add(&tmp->list, &removed);
tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
}
/* And free them up */
list_for_each_entry_safe(tmp, next, &removed, list) {
amdgpu_vm_it_remove(tmp, &vm->va);
list_del(&tmp->list);
if (tmp->start < saddr)
tmp->start = saddr;
if (tmp->last > eaddr)
tmp->last = eaddr;
tmp->bo_va = NULL;
list_add(&tmp->list, &vm->freed);
trace_amdgpu_vm_bo_unmap(NULL, tmp);
}
/* Insert partial mapping before the range */
if (!list_empty(&before->list)) {
amdgpu_vm_it_insert(before, &vm->va);
if (before->flags & AMDGPU_PTE_PRT)
amdgpu_vm_prt_get(adev);
} else {
kfree(before);
}
/* Insert partial mapping after the range */
if (!list_empty(&after->list)) {
amdgpu_vm_it_insert(after, &vm->va);
if (after->flags & AMDGPU_PTE_PRT)
amdgpu_vm_prt_get(adev);
} else {
kfree(after);
}
return 0;
}
/**
* amdgpu_vm_bo_lookup_mapping - find mapping by address
*
* @vm: the requested VM
* @addr: the address
*
* Find a mapping by it's address.
*
* Returns:
* The amdgpu_bo_va_mapping matching for addr or NULL
*
*/
struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
uint64_t addr)
{
return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
}
/**
* amdgpu_vm_bo_trace_cs - trace all reserved mappings
*
* @vm: the requested vm
* @ticket: CS ticket
*
* Trace all mappings of BOs reserved during a command submission.
*/
void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
{
struct amdgpu_bo_va_mapping *mapping;
if (!trace_amdgpu_vm_bo_cs_enabled())
return;
for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
if (mapping->bo_va && mapping->bo_va->base.bo) {
struct amdgpu_bo *bo;
bo = mapping->bo_va->base.bo;
if (READ_ONCE(bo->tbo.resv->lock.ctx) != ticket)
continue;
}
trace_amdgpu_vm_bo_cs(mapping);
}
}
/**
* amdgpu_vm_bo_rmv - remove a bo to a specific vm
*
* @adev: amdgpu_device pointer
* @bo_va: requested bo_va
*
* Remove @bo_va->bo from the requested vm.
*
* Object have to be reserved!
*/
void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
struct amdgpu_bo_va *bo_va)
{
struct amdgpu_bo_va_mapping *mapping, *next;
struct amdgpu_bo *bo = bo_va->base.bo;
struct amdgpu_vm *vm = bo_va->base.vm;
struct amdgpu_vm_bo_base **base;
if (bo) {
if (bo->tbo.resv == vm->root.base.bo->tbo.resv)
vm->bulk_moveable = false;
for (base = &bo_va->base.bo->vm_bo; *base;
base = &(*base)->next) {
if (*base != &bo_va->base)
continue;
*base = bo_va->base.next;
break;
}
}
spin_lock(&vm->invalidated_lock);
list_del(&bo_va->base.vm_status);
spin_unlock(&vm->invalidated_lock);
list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
list_del(&mapping->list);
amdgpu_vm_it_remove(mapping, &vm->va);
mapping->bo_va = NULL;
trace_amdgpu_vm_bo_unmap(bo_va, mapping);
list_add(&mapping->list, &vm->freed);
}
list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
list_del(&mapping->list);
amdgpu_vm_it_remove(mapping, &vm->va);
amdgpu_vm_free_mapping(adev, vm, mapping,
bo_va->last_pt_update);
}
dma_fence_put(bo_va->last_pt_update);
kfree(bo_va);
}
/**
* amdgpu_vm_bo_invalidate - mark the bo as invalid
*
* @adev: amdgpu_device pointer
* @bo: amdgpu buffer object
* @evicted: is the BO evicted
*
* Mark @bo as invalid.
*/
void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
struct amdgpu_bo *bo, bool evicted)
{
struct amdgpu_vm_bo_base *bo_base;
/* shadow bo doesn't have bo base, its validation needs its parent */
if (bo->parent && bo->parent->shadow == bo)
bo = bo->parent;
for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
struct amdgpu_vm *vm = bo_base->vm;
if (evicted && bo->tbo.resv == vm->root.base.bo->tbo.resv) {
amdgpu_vm_bo_evicted(bo_base);
continue;
}
if (bo_base->moved)
continue;
bo_base->moved = true;
if (bo->tbo.type == ttm_bo_type_kernel)
amdgpu_vm_bo_relocated(bo_base);
else if (bo->tbo.resv == vm->root.base.bo->tbo.resv)
amdgpu_vm_bo_moved(bo_base);
else
amdgpu_vm_bo_invalidated(bo_base);
}
}
/**
* amdgpu_vm_get_block_size - calculate VM page table size as power of two
*
* @vm_size: VM size
*
* Returns:
* VM page table as power of two
*/
static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
{
/* Total bits covered by PD + PTs */
unsigned bits = ilog2(vm_size) + 18;
/* Make sure the PD is 4K in size up to 8GB address space.
Above that split equal between PD and PTs */
if (vm_size <= 8)
return (bits - 9);
else
return ((bits + 3) / 2);
}
/**
* amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
*
* @adev: amdgpu_device pointer
* @min_vm_size: the minimum vm size in GB if it's set auto
* @fragment_size_default: Default PTE fragment size
* @max_level: max VMPT level
* @max_bits: max address space size in bits
*
*/
void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
uint32_t fragment_size_default, unsigned max_level,
unsigned max_bits)
{
unsigned int max_size = 1 << (max_bits - 30);
unsigned int vm_size;
uint64_t tmp;
/* adjust vm size first */
if (amdgpu_vm_size != -1) {
vm_size = amdgpu_vm_size;
if (vm_size > max_size) {
dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
amdgpu_vm_size, max_size);
vm_size = max_size;
}
} else {
struct sysinfo si;
unsigned int phys_ram_gb;
/* Optimal VM size depends on the amount of physical
* RAM available. Underlying requirements and
* assumptions:
*
* - Need to map system memory and VRAM from all GPUs
* - VRAM from other GPUs not known here
* - Assume VRAM <= system memory
* - On GFX8 and older, VM space can be segmented for
* different MTYPEs
* - Need to allow room for fragmentation, guard pages etc.
*
* This adds up to a rough guess of system memory x3.
* Round up to power of two to maximize the available
* VM size with the given page table size.
*/
si_meminfo(&si);
phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
(1 << 30) - 1) >> 30;
vm_size = roundup_pow_of_two(
min(max(phys_ram_gb * 3, min_vm_size), max_size));
}
adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
if (amdgpu_vm_block_size != -1)
tmp >>= amdgpu_vm_block_size - 9;
tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
switch (adev->vm_manager.num_level) {
case 3:
adev->vm_manager.root_level = AMDGPU_VM_PDB2;
break;
case 2:
adev->vm_manager.root_level = AMDGPU_VM_PDB1;
break;
case 1:
adev->vm_manager.root_level = AMDGPU_VM_PDB0;
break;
default:
dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
}
/* block size depends on vm size and hw setup*/
if (amdgpu_vm_block_size != -1)
adev->vm_manager.block_size =
min((unsigned)amdgpu_vm_block_size, max_bits
- AMDGPU_GPU_PAGE_SHIFT
- 9 * adev->vm_manager.num_level);
else if (adev->vm_manager.num_level > 1)
adev->vm_manager.block_size = 9;
else
adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
if (amdgpu_vm_fragment_size == -1)
adev->vm_manager.fragment_size = fragment_size_default;
else
adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
vm_size, adev->vm_manager.num_level + 1,
adev->vm_manager.block_size,
adev->vm_manager.fragment_size);
}
static struct amdgpu_retryfault_hashtable *init_fault_hash(void)
{
struct amdgpu_retryfault_hashtable *fault_hash;
fault_hash = kmalloc(sizeof(*fault_hash), GFP_KERNEL);
if (!fault_hash)
return fault_hash;
INIT_CHASH_TABLE(fault_hash->hash,
AMDGPU_PAGEFAULT_HASH_BITS, 8, 0);
spin_lock_init(&fault_hash->lock);
fault_hash->count = 0;
return fault_hash;
}
/**
* amdgpu_vm_init - initialize a vm instance
*
* @adev: amdgpu_device pointer
* @vm: requested vm
* @vm_context: Indicates if it GFX or Compute context
* @pasid: Process address space identifier
*
* Init @vm fields.
*
* Returns:
* 0 for success, error for failure.
*/
int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
int vm_context, unsigned int pasid)
{
struct amdgpu_bo_param bp;
struct amdgpu_bo *root;
int r, i;
vm->va = RB_ROOT_CACHED;
for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
vm->reserved_vmid[i] = NULL;
INIT_LIST_HEAD(&vm->evicted);
INIT_LIST_HEAD(&vm->relocated);
INIT_LIST_HEAD(&vm->moved);
INIT_LIST_HEAD(&vm->idle);
INIT_LIST_HEAD(&vm->invalidated);
spin_lock_init(&vm->invalidated_lock);
INIT_LIST_HEAD(&vm->freed);
/* create scheduler entity for page table updates */
r = drm_sched_entity_init(&vm->entity, adev->vm_manager.vm_pte_rqs,
adev->vm_manager.vm_pte_num_rqs, NULL);
if (r)
return r;
vm->pte_support_ats = false;
if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
AMDGPU_VM_USE_CPU_FOR_COMPUTE);
if (adev->asic_type == CHIP_RAVEN)
vm->pte_support_ats = true;
} else {
vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
AMDGPU_VM_USE_CPU_FOR_GFX);
}
DRM_DEBUG_DRIVER("VM update mode is %s\n",
vm->use_cpu_for_update ? "CPU" : "SDMA");
WARN_ONCE((vm->use_cpu_for_update && !amdgpu_gmc_vram_full_visible(&adev->gmc)),
"CPU update of VM recommended only for large BAR system\n");
vm->last_update = NULL;
amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, &bp);
if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE)
bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW;
r = amdgpu_bo_create(adev, &bp, &root);
if (r)
goto error_free_sched_entity;
r = amdgpu_bo_reserve(root, true);
if (r)
goto error_free_root;
r = reservation_object_reserve_shared(root->tbo.resv, 1);
if (r)
goto error_unreserve;
r = amdgpu_vm_clear_bo(adev, vm, root,
adev->vm_manager.root_level,
vm->pte_support_ats);
if (r)
goto error_unreserve;
amdgpu_vm_bo_base_init(&vm->root.base, vm, root);
amdgpu_bo_unreserve(vm->root.base.bo);
if (pasid) {
unsigned long flags;
spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
GFP_ATOMIC);
spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
if (r < 0)
goto error_free_root;
vm->pasid = pasid;
}
vm->fault_hash = init_fault_hash();
if (!vm->fault_hash) {
r = -ENOMEM;
goto error_free_root;
}
INIT_KFIFO(vm->faults);
return 0;
error_unreserve:
amdgpu_bo_unreserve(vm->root.base.bo);
error_free_root:
amdgpu_bo_unref(&vm->root.base.bo->shadow);
amdgpu_bo_unref(&vm->root.base.bo);
vm->root.base.bo = NULL;
error_free_sched_entity:
drm_sched_entity_destroy(&vm->entity);
return r;
}
/**
* amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
*
* @adev: amdgpu_device pointer
* @vm: requested vm
*
* This only works on GFX VMs that don't have any BOs added and no
* page tables allocated yet.
*
* Changes the following VM parameters:
* - use_cpu_for_update
* - pte_supports_ats
* - pasid (old PASID is released, because compute manages its own PASIDs)
*
* Reinitializes the page directory to reflect the changed ATS
* setting.
*
* Returns:
* 0 for success, -errno for errors.
*/
int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm, unsigned int pasid)
{
bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
int r;
r = amdgpu_bo_reserve(vm->root.base.bo, true);
if (r)
return r;
/* Sanity checks */
if (!RB_EMPTY_ROOT(&vm->va.rb_root) || vm->root.entries) {
r = -EINVAL;
goto unreserve_bo;
}
if (pasid) {
unsigned long flags;
spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
GFP_ATOMIC);
spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
if (r == -ENOSPC)
goto unreserve_bo;
r = 0;
}
/* Check if PD needs to be reinitialized and do it before
* changing any other state, in case it fails.
*/
if (pte_support_ats != vm->pte_support_ats) {
r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo,
adev->vm_manager.root_level,
pte_support_ats);
if (r)
goto free_idr;
}
/* Update VM state */
vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
AMDGPU_VM_USE_CPU_FOR_COMPUTE);
vm->pte_support_ats = pte_support_ats;
DRM_DEBUG_DRIVER("VM update mode is %s\n",
vm->use_cpu_for_update ? "CPU" : "SDMA");
WARN_ONCE((vm->use_cpu_for_update && !amdgpu_gmc_vram_full_visible(&adev->gmc)),
"CPU update of VM recommended only for large BAR system\n");
if (vm->pasid) {
unsigned long flags;
spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
/* Free the original amdgpu allocated pasid
* Will be replaced with kfd allocated pasid
*/
amdgpu_pasid_free(vm->pasid);
vm->pasid = 0;
}
/* Free the shadow bo for compute VM */
amdgpu_bo_unref(&vm->root.base.bo->shadow);
if (pasid)
vm->pasid = pasid;
goto unreserve_bo;
free_idr:
if (pasid) {
unsigned long flags;
spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
idr_remove(&adev->vm_manager.pasid_idr, pasid);
spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
}
unreserve_bo:
amdgpu_bo_unreserve(vm->root.base.bo);
return r;
}
/**
* amdgpu_vm_release_compute - release a compute vm
* @adev: amdgpu_device pointer
* @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
*
* This is a correspondant of amdgpu_vm_make_compute. It decouples compute
* pasid from vm. Compute should stop use of vm after this call.
*/
void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
{
if (vm->pasid) {
unsigned long flags;
spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
}
vm->pasid = 0;
}
/**
* amdgpu_vm_fini - tear down a vm instance
*
* @adev: amdgpu_device pointer
* @vm: requested vm
*
* Tear down @vm.
* Unbind the VM and remove all bos from the vm bo list
*/
void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
{
struct amdgpu_bo_va_mapping *mapping, *tmp;
bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
struct amdgpu_bo *root;
u64 fault;
int i, r;
amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
/* Clear pending page faults from IH when the VM is destroyed */
while (kfifo_get(&vm->faults, &fault))
amdgpu_vm_clear_fault(vm->fault_hash, fault);
if (vm->pasid) {
unsigned long flags;
spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
}
kfree(vm->fault_hash);
vm->fault_hash = NULL;
drm_sched_entity_destroy(&vm->entity);
if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
dev_err(adev->dev, "still active bo inside vm\n");
}
rbtree_postorder_for_each_entry_safe(mapping, tmp,
&vm->va.rb_root, rb) {
/* Don't remove the mapping here, we don't want to trigger a
* rebalance and the tree is about to be destroyed anyway.
*/
list_del(&mapping->list);
kfree(mapping);
}
list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
amdgpu_vm_prt_fini(adev, vm);
prt_fini_needed = false;
}
list_del(&mapping->list);
amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
}
root = amdgpu_bo_ref(vm->root.base.bo);
r = amdgpu_bo_reserve(root, true);
if (r) {
dev_err(adev->dev, "Leaking page tables because BO reservation failed\n");
} else {
amdgpu_vm_free_pts(adev, vm);
amdgpu_bo_unreserve(root);
}
amdgpu_bo_unref(&root);
dma_fence_put(vm->last_update);
for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
amdgpu_vmid_free_reserved(adev, vm, i);
}
/**
* amdgpu_vm_manager_init - init the VM manager
*
* @adev: amdgpu_device pointer
*
* Initialize the VM manager structures
*/
void amdgpu_vm_manager_init(struct amdgpu_device *adev)
{
unsigned i;
amdgpu_vmid_mgr_init(adev);
adev->vm_manager.fence_context =
dma_fence_context_alloc(AMDGPU_MAX_RINGS);
for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
adev->vm_manager.seqno[i] = 0;
spin_lock_init(&adev->vm_manager.prt_lock);
atomic_set(&adev->vm_manager.num_prt_users, 0);
/* If not overridden by the user, by default, only in large BAR systems
* Compute VM tables will be updated by CPU
*/
#ifdef CONFIG_X86_64
if (amdgpu_vm_update_mode == -1) {
if (amdgpu_gmc_vram_full_visible(&adev->gmc))
adev->vm_manager.vm_update_mode =
AMDGPU_VM_USE_CPU_FOR_COMPUTE;
else
adev->vm_manager.vm_update_mode = 0;
} else
adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
#else
adev->vm_manager.vm_update_mode = 0;
#endif
idr_init(&adev->vm_manager.pasid_idr);
spin_lock_init(&adev->vm_manager.pasid_lock);
}
/**
* amdgpu_vm_manager_fini - cleanup VM manager
*
* @adev: amdgpu_device pointer
*
* Cleanup the VM manager and free resources.
*/
void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
{
WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
idr_destroy(&adev->vm_manager.pasid_idr);
amdgpu_vmid_mgr_fini(adev);
}
/**
* amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
*
* @dev: drm device pointer
* @data: drm_amdgpu_vm
* @filp: drm file pointer
*
* Returns:
* 0 for success, -errno for errors.
*/
int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
{
union drm_amdgpu_vm *args = data;
struct amdgpu_device *adev = dev->dev_private;
struct amdgpu_fpriv *fpriv = filp->driver_priv;
int r;
switch (args->in.op) {
case AMDGPU_VM_OP_RESERVE_VMID:
/* current, we only have requirement to reserve vmid from gfxhub */
r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB);
if (r)
return r;
break;
case AMDGPU_VM_OP_UNRESERVE_VMID:
amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB);
break;
default:
return -EINVAL;
}
return 0;
}
/**
* amdgpu_vm_get_task_info - Extracts task info for a PASID.
*
* @adev: drm device pointer
* @pasid: PASID identifier for VM
* @task_info: task_info to fill.
*/
void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid,
struct amdgpu_task_info *task_info)
{
struct amdgpu_vm *vm;
spin_lock(&adev->vm_manager.pasid_lock);
vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
if (vm)
*task_info = vm->task_info;
spin_unlock(&adev->vm_manager.pasid_lock);
}
/**
* amdgpu_vm_set_task_info - Sets VMs task info.
*
* @vm: vm for which to set the info
*/
void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
{
if (!vm->task_info.pid) {
vm->task_info.pid = current->pid;
get_task_comm(vm->task_info.task_name, current);
if (current->group_leader->mm == current->mm) {
vm->task_info.tgid = current->group_leader->pid;
get_task_comm(vm->task_info.process_name, current->group_leader);
}
}
}
/**
* amdgpu_vm_add_fault - Add a page fault record to fault hash table
*
* @fault_hash: fault hash table
* @key: 64-bit encoding of PASID and address
*
* This should be called when a retry page fault interrupt is
* received. If this is a new page fault, it will be added to a hash
* table. The return value indicates whether this is a new fault, or
* a fault that was already known and is already being handled.
*
* If there are too many pending page faults, this will fail. Retry
* interrupts should be ignored in this case until there is enough
* free space.
*
* Returns 0 if the fault was added, 1 if the fault was already known,
* -ENOSPC if there are too many pending faults.
*/
int amdgpu_vm_add_fault(struct amdgpu_retryfault_hashtable *fault_hash, u64 key)
{
unsigned long flags;
int r = -ENOSPC;
if (WARN_ON_ONCE(!fault_hash))
/* Should be allocated in amdgpu_vm_init
*/
return r;
spin_lock_irqsave(&fault_hash->lock, flags);
/* Only let the hash table fill up to 50% for best performance */
if (fault_hash->count >= (1 << (AMDGPU_PAGEFAULT_HASH_BITS-1)))
goto unlock_out;
r = chash_table_copy_in(&fault_hash->hash, key, NULL);
if (!r)
fault_hash->count++;
/* chash_table_copy_in should never fail unless we're losing count */
WARN_ON_ONCE(r < 0);
unlock_out:
spin_unlock_irqrestore(&fault_hash->lock, flags);
return r;
}
/**
* amdgpu_vm_clear_fault - Remove a page fault record
*
* @fault_hash: fault hash table
* @key: 64-bit encoding of PASID and address
*
* This should be called when a page fault has been handled. Any
* future interrupt with this key will be processed as a new
* page fault.
*/
void amdgpu_vm_clear_fault(struct amdgpu_retryfault_hashtable *fault_hash, u64 key)
{
unsigned long flags;
int r;
if (!fault_hash)
return;
spin_lock_irqsave(&fault_hash->lock, flags);
r = chash_table_remove(&fault_hash->hash, key, NULL);
if (!WARN_ON_ONCE(r < 0)) {
fault_hash->count--;
WARN_ON_ONCE(fault_hash->count < 0);
}
spin_unlock_irqrestore(&fault_hash->lock, flags);
}