OpenCloudOS-Kernel/drivers/gpu/drm/nouveau/nvkm/subdev/instmem/gk20a.c

471 lines
13 KiB
C

/*
* Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/*
* GK20A does not have dedicated video memory, and to accurately represent this
* fact Nouveau will not create a RAM device for it. Therefore its instmem
* implementation must be done directly on top of system memory, while providing
* coherent read and write operations.
*
* Instmem can be allocated through two means:
* 1) If an IOMMU mapping has been probed, the IOMMU API is used to make memory
* pages contiguous to the GPU. This is the preferred way.
* 2) If no IOMMU mapping is probed, the DMA API is used to allocate physically
* contiguous memory.
*
* In both cases CPU read and writes are performed using PRAMIN (i.e. using the
* GPU path) to ensure these operations are coherent for the GPU. This allows us
* to use more "relaxed" allocation parameters when using the DMA API, since we
* never need a kernel mapping.
*/
#define gk20a_instmem(p) container_of((p), struct gk20a_instmem, base)
#include "priv.h"
#include <core/memory.h>
#include <core/mm.h>
#include <subdev/fb.h>
#ifdef __KERNEL__
#include <linux/dma-attrs.h>
#include <linux/iommu.h>
#include <nouveau_platform.h>
#endif
#define gk20a_instobj(p) container_of((p), struct gk20a_instobj, memory)
struct gk20a_instobj {
struct nvkm_memory memory;
struct gk20a_instmem *imem;
struct nvkm_mem mem;
};
/*
* Used for objects allocated using the DMA API
*/
struct gk20a_instobj_dma {
struct gk20a_instobj base;
void *cpuaddr;
dma_addr_t handle;
struct nvkm_mm_node r;
};
/*
* Used for objects flattened using the IOMMU API
*/
struct gk20a_instobj_iommu {
struct gk20a_instobj base;
/* array of base.mem->size pages */
struct page *pages[];
};
struct gk20a_instmem {
struct nvkm_instmem base;
unsigned long lock_flags;
spinlock_t lock;
u64 addr;
/* Only used if IOMMU if present */
struct mutex *mm_mutex;
struct nvkm_mm *mm;
struct iommu_domain *domain;
unsigned long iommu_pgshift;
/* Only used by DMA API */
struct dma_attrs attrs;
};
static enum nvkm_memory_target
gk20a_instobj_target(struct nvkm_memory *memory)
{
return NVKM_MEM_TARGET_HOST;
}
static u64
gk20a_instobj_addr(struct nvkm_memory *memory)
{
return gk20a_instobj(memory)->mem.offset;
}
static u64
gk20a_instobj_size(struct nvkm_memory *memory)
{
return (u64)gk20a_instobj(memory)->mem.size << 12;
}
static void __iomem *
gk20a_instobj_acquire(struct nvkm_memory *memory)
{
struct gk20a_instmem *imem = gk20a_instobj(memory)->imem;
unsigned long flags;
spin_lock_irqsave(&imem->lock, flags);
imem->lock_flags = flags;
return NULL;
}
static void
gk20a_instobj_release(struct nvkm_memory *memory)
{
struct gk20a_instmem *imem = gk20a_instobj(memory)->imem;
spin_unlock_irqrestore(&imem->lock, imem->lock_flags);
}
/*
* Use PRAMIN to read/write data and avoid coherency issues.
* PRAMIN uses the GPU path and ensures data will always be coherent.
*
* A dynamic mapping based solution would be desirable in the future, but
* the issue remains of how to maintain coherency efficiently. On ARM it is
* not easy (if possible at all?) to create uncached temporary mappings.
*/
static u32
gk20a_instobj_rd32(struct nvkm_memory *memory, u64 offset)
{
struct gk20a_instobj *node = gk20a_instobj(memory);
struct gk20a_instmem *imem = node->imem;
struct nvkm_device *device = imem->base.subdev.device;
u64 base = (node->mem.offset + offset) & 0xffffff00000ULL;
u64 addr = (node->mem.offset + offset) & 0x000000fffffULL;
u32 data;
if (unlikely(imem->addr != base)) {
nvkm_wr32(device, 0x001700, base >> 16);
imem->addr = base;
}
data = nvkm_rd32(device, 0x700000 + addr);
return data;
}
static void
gk20a_instobj_wr32(struct nvkm_memory *memory, u64 offset, u32 data)
{
struct gk20a_instobj *node = gk20a_instobj(memory);
struct gk20a_instmem *imem = node->imem;
struct nvkm_device *device = imem->base.subdev.device;
u64 base = (node->mem.offset + offset) & 0xffffff00000ULL;
u64 addr = (node->mem.offset + offset) & 0x000000fffffULL;
if (unlikely(imem->addr != base)) {
nvkm_wr32(device, 0x001700, base >> 16);
imem->addr = base;
}
nvkm_wr32(device, 0x700000 + addr, data);
}
static void
gk20a_instobj_map(struct nvkm_memory *memory, struct nvkm_vma *vma, u64 offset)
{
struct gk20a_instobj *node = gk20a_instobj(memory);
nvkm_vm_map_at(vma, offset, &node->mem);
}
static void
gk20a_instobj_dtor_dma(struct gk20a_instobj *_node)
{
struct gk20a_instobj_dma *node = (void *)_node;
struct gk20a_instmem *imem = _node->imem;
struct device *dev = nv_device_base(nv_device(imem));
if (unlikely(!node->cpuaddr))
return;
dma_free_attrs(dev, _node->mem.size << PAGE_SHIFT, node->cpuaddr,
node->handle, &imem->attrs);
}
static void
gk20a_instobj_dtor_iommu(struct gk20a_instobj *_node)
{
struct gk20a_instobj_iommu *node = (void *)_node;
struct gk20a_instmem *imem = _node->imem;
struct nvkm_mm_node *r;
int i;
if (unlikely(list_empty(&_node->mem.regions)))
return;
r = list_first_entry(&_node->mem.regions, struct nvkm_mm_node,
rl_entry);
/* clear bit 34 to unmap pages */
r->offset &= ~BIT(34 - imem->iommu_pgshift);
/* Unmap pages from GPU address space and free them */
for (i = 0; i < _node->mem.size; i++) {
iommu_unmap(imem->domain,
(r->offset + i) << imem->iommu_pgshift, PAGE_SIZE);
__free_page(node->pages[i]);
}
/* Release area from GPU address space */
mutex_lock(imem->mm_mutex);
nvkm_mm_free(imem->mm, &r);
mutex_unlock(imem->mm_mutex);
}
static void *
gk20a_instobj_dtor(struct nvkm_memory *memory)
{
struct gk20a_instobj *node = gk20a_instobj(memory);
struct gk20a_instmem *imem = node->imem;
if (imem->domain)
gk20a_instobj_dtor_iommu(node);
else
gk20a_instobj_dtor_dma(node);
return node;
}
static const struct nvkm_memory_func
gk20a_instobj_func = {
.dtor = gk20a_instobj_dtor,
.target = gk20a_instobj_target,
.addr = gk20a_instobj_addr,
.size = gk20a_instobj_size,
.acquire = gk20a_instobj_acquire,
.release = gk20a_instobj_release,
.rd32 = gk20a_instobj_rd32,
.wr32 = gk20a_instobj_wr32,
.map = gk20a_instobj_map,
};
static int
gk20a_instobj_ctor_dma(struct gk20a_instmem *imem, u32 npages, u32 align,
struct gk20a_instobj **_node)
{
struct gk20a_instobj_dma *node;
struct nvkm_subdev *subdev = &imem->base.subdev;
struct device *dev = subdev->device->dev;
if (!(node = kzalloc(sizeof(*node), GFP_KERNEL)))
return -ENOMEM;
*_node = &node->base;
node->cpuaddr = dma_alloc_attrs(dev, npages << PAGE_SHIFT,
&node->handle, GFP_KERNEL,
&imem->attrs);
if (!node->cpuaddr) {
nvkm_error(subdev, "cannot allocate DMA memory\n");
return -ENOMEM;
}
/* alignment check */
if (unlikely(node->handle & (align - 1)))
nvkm_warn(subdev,
"memory not aligned as requested: %pad (0x%x)\n",
&node->handle, align);
/* present memory for being mapped using small pages */
node->r.type = 12;
node->r.offset = node->handle >> 12;
node->r.length = (npages << PAGE_SHIFT) >> 12;
node->base.mem.offset = node->handle;
INIT_LIST_HEAD(&node->base.mem.regions);
list_add_tail(&node->r.rl_entry, &node->base.mem.regions);
return 0;
}
static int
gk20a_instobj_ctor_iommu(struct gk20a_instmem *imem, u32 npages, u32 align,
struct gk20a_instobj **_node)
{
struct gk20a_instobj_iommu *node;
struct nvkm_subdev *subdev = &imem->base.subdev;
struct nvkm_mm_node *r;
int ret;
int i;
if (!(node = kzalloc(sizeof(*node) +
sizeof( node->pages[0]) * npages, GFP_KERNEL)))
return -ENOMEM;
*_node = &node->base;
/* Allocate backing memory */
for (i = 0; i < npages; i++) {
struct page *p = alloc_page(GFP_KERNEL);
if (p == NULL) {
ret = -ENOMEM;
goto free_pages;
}
node->pages[i] = p;
}
mutex_lock(imem->mm_mutex);
/* Reserve area from GPU address space */
ret = nvkm_mm_head(imem->mm, 0, 1, npages, npages,
align >> imem->iommu_pgshift, &r);
mutex_unlock(imem->mm_mutex);
if (ret) {
nvkm_error(subdev, "virtual space is full!\n");
goto free_pages;
}
/* Map into GPU address space */
for (i = 0; i < npages; i++) {
struct page *p = node->pages[i];
u32 offset = (r->offset + i) << imem->iommu_pgshift;
ret = iommu_map(imem->domain, offset, page_to_phys(p),
PAGE_SIZE, IOMMU_READ | IOMMU_WRITE);
if (ret < 0) {
nvkm_error(subdev, "IOMMU mapping failure: %d\n", ret);
while (i-- > 0) {
offset -= PAGE_SIZE;
iommu_unmap(imem->domain, offset, PAGE_SIZE);
}
goto release_area;
}
}
/* Bit 34 tells that an address is to be resolved through the IOMMU */
r->offset |= BIT(34 - imem->iommu_pgshift);
node->base.mem.offset = ((u64)r->offset) << imem->iommu_pgshift;
INIT_LIST_HEAD(&node->base.mem.regions);
list_add_tail(&r->rl_entry, &node->base.mem.regions);
return 0;
release_area:
mutex_lock(imem->mm_mutex);
nvkm_mm_free(imem->mm, &r);
mutex_unlock(imem->mm_mutex);
free_pages:
for (i = 0; i < npages && node->pages[i] != NULL; i++)
__free_page(node->pages[i]);
return ret;
}
static int
gk20a_instobj_new(struct nvkm_instmem *base, u32 size, u32 align, bool zero,
struct nvkm_memory **pmemory)
{
struct gk20a_instmem *imem = gk20a_instmem(base);
struct gk20a_instobj *node;
struct nvkm_subdev *subdev = &imem->base.subdev;
int ret;
nvkm_debug(subdev, "%s (%s): size: %x align: %x\n", __func__,
imem->domain ? "IOMMU" : "DMA", size, align);
/* Round size and align to page bounds */
size = max(roundup(size, PAGE_SIZE), PAGE_SIZE);
align = max(roundup(align, PAGE_SIZE), PAGE_SIZE);
if (imem->domain)
ret = gk20a_instobj_ctor_iommu(imem, size >> PAGE_SHIFT,
align, &node);
else
ret = gk20a_instobj_ctor_dma(imem, size >> PAGE_SHIFT,
align, &node);
if (ret)
return ret;
*pmemory = &node->memory;
nvkm_memory_ctor(&gk20a_instobj_func, &node->memory);
node->imem = imem;
/* present memory for being mapped using small pages */
node->mem.size = size >> 12;
node->mem.memtype = 0;
node->mem.page_shift = 12;
nvkm_debug(subdev, "alloc size: 0x%x, align: 0x%x, gaddr: 0x%llx\n",
size, align, node->mem.offset);
return 0;
}
static int
gk20a_instmem_fini(struct nvkm_object *object, bool suspend)
{
struct gk20a_instmem *imem = (void *)object;
imem->addr = ~0ULL;
return nvkm_instmem_fini(&imem->base, suspend);
}
static int
gk20a_instmem_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
struct nvkm_oclass *oclass, void *data, u32 size,
struct nvkm_object **pobject)
{
struct nvkm_device *device = (void *)parent;
struct gk20a_instmem *imem;
int ret;
ret = nvkm_instmem_create(parent, engine, oclass, &imem);
*pobject = nv_object(imem);
if (ret)
return ret;
spin_lock_init(&imem->lock);
if (device->gpu->iommu.domain) {
imem->domain = device->gpu->iommu.domain;
imem->mm = device->gpu->iommu.mm;
imem->iommu_pgshift = device->gpu->iommu.pgshift;
imem->mm_mutex = &device->gpu->iommu.mutex;
nvkm_info(&imem->base.subdev, "using IOMMU\n");
} else {
init_dma_attrs(&imem->attrs);
/*
* We will access instmem through PRAMIN and thus do not need a
* consistent CPU pointer or kernel mapping
*/
dma_set_attr(DMA_ATTR_NON_CONSISTENT, &imem->attrs);
dma_set_attr(DMA_ATTR_WEAK_ORDERING, &imem->attrs);
dma_set_attr(DMA_ATTR_WRITE_COMBINE, &imem->attrs);
dma_set_attr(DMA_ATTR_NO_KERNEL_MAPPING, &imem->attrs);
nvkm_info(&imem->base.subdev, "using DMA API\n");
}
return 0;
}
struct nvkm_oclass *
gk20a_instmem_oclass = &(struct nvkm_instmem_impl) {
.base.handle = NV_SUBDEV(INSTMEM, 0xea),
.base.ofuncs = &(struct nvkm_ofuncs) {
.ctor = gk20a_instmem_ctor,
.dtor = _nvkm_instmem_dtor,
.init = _nvkm_instmem_init,
.fini = gk20a_instmem_fini,
},
.memory_new = gk20a_instobj_new,
.persistent = true,
.zero = false,
}.base;