471 lines
13 KiB
C
471 lines
13 KiB
C
/*
|
|
* Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
/*
|
|
* GK20A does not have dedicated video memory, and to accurately represent this
|
|
* fact Nouveau will not create a RAM device for it. Therefore its instmem
|
|
* implementation must be done directly on top of system memory, while providing
|
|
* coherent read and write operations.
|
|
*
|
|
* Instmem can be allocated through two means:
|
|
* 1) If an IOMMU mapping has been probed, the IOMMU API is used to make memory
|
|
* pages contiguous to the GPU. This is the preferred way.
|
|
* 2) If no IOMMU mapping is probed, the DMA API is used to allocate physically
|
|
* contiguous memory.
|
|
*
|
|
* In both cases CPU read and writes are performed using PRAMIN (i.e. using the
|
|
* GPU path) to ensure these operations are coherent for the GPU. This allows us
|
|
* to use more "relaxed" allocation parameters when using the DMA API, since we
|
|
* never need a kernel mapping.
|
|
*/
|
|
#define gk20a_instmem(p) container_of((p), struct gk20a_instmem, base)
|
|
#include "priv.h"
|
|
|
|
#include <core/memory.h>
|
|
#include <core/mm.h>
|
|
#include <subdev/fb.h>
|
|
|
|
#ifdef __KERNEL__
|
|
#include <linux/dma-attrs.h>
|
|
#include <linux/iommu.h>
|
|
#include <nouveau_platform.h>
|
|
#endif
|
|
|
|
#define gk20a_instobj(p) container_of((p), struct gk20a_instobj, memory)
|
|
|
|
struct gk20a_instobj {
|
|
struct nvkm_memory memory;
|
|
struct gk20a_instmem *imem;
|
|
struct nvkm_mem mem;
|
|
};
|
|
|
|
/*
|
|
* Used for objects allocated using the DMA API
|
|
*/
|
|
struct gk20a_instobj_dma {
|
|
struct gk20a_instobj base;
|
|
|
|
void *cpuaddr;
|
|
dma_addr_t handle;
|
|
struct nvkm_mm_node r;
|
|
};
|
|
|
|
/*
|
|
* Used for objects flattened using the IOMMU API
|
|
*/
|
|
struct gk20a_instobj_iommu {
|
|
struct gk20a_instobj base;
|
|
|
|
/* array of base.mem->size pages */
|
|
struct page *pages[];
|
|
};
|
|
|
|
struct gk20a_instmem {
|
|
struct nvkm_instmem base;
|
|
unsigned long lock_flags;
|
|
spinlock_t lock;
|
|
u64 addr;
|
|
|
|
/* Only used if IOMMU if present */
|
|
struct mutex *mm_mutex;
|
|
struct nvkm_mm *mm;
|
|
struct iommu_domain *domain;
|
|
unsigned long iommu_pgshift;
|
|
|
|
/* Only used by DMA API */
|
|
struct dma_attrs attrs;
|
|
};
|
|
|
|
static enum nvkm_memory_target
|
|
gk20a_instobj_target(struct nvkm_memory *memory)
|
|
{
|
|
return NVKM_MEM_TARGET_HOST;
|
|
}
|
|
|
|
static u64
|
|
gk20a_instobj_addr(struct nvkm_memory *memory)
|
|
{
|
|
return gk20a_instobj(memory)->mem.offset;
|
|
|
|
}
|
|
|
|
static u64
|
|
gk20a_instobj_size(struct nvkm_memory *memory)
|
|
{
|
|
return (u64)gk20a_instobj(memory)->mem.size << 12;
|
|
}
|
|
|
|
static void __iomem *
|
|
gk20a_instobj_acquire(struct nvkm_memory *memory)
|
|
{
|
|
struct gk20a_instmem *imem = gk20a_instobj(memory)->imem;
|
|
unsigned long flags;
|
|
spin_lock_irqsave(&imem->lock, flags);
|
|
imem->lock_flags = flags;
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
gk20a_instobj_release(struct nvkm_memory *memory)
|
|
{
|
|
struct gk20a_instmem *imem = gk20a_instobj(memory)->imem;
|
|
spin_unlock_irqrestore(&imem->lock, imem->lock_flags);
|
|
}
|
|
|
|
/*
|
|
* Use PRAMIN to read/write data and avoid coherency issues.
|
|
* PRAMIN uses the GPU path and ensures data will always be coherent.
|
|
*
|
|
* A dynamic mapping based solution would be desirable in the future, but
|
|
* the issue remains of how to maintain coherency efficiently. On ARM it is
|
|
* not easy (if possible at all?) to create uncached temporary mappings.
|
|
*/
|
|
|
|
static u32
|
|
gk20a_instobj_rd32(struct nvkm_memory *memory, u64 offset)
|
|
{
|
|
struct gk20a_instobj *node = gk20a_instobj(memory);
|
|
struct gk20a_instmem *imem = node->imem;
|
|
struct nvkm_device *device = imem->base.subdev.device;
|
|
u64 base = (node->mem.offset + offset) & 0xffffff00000ULL;
|
|
u64 addr = (node->mem.offset + offset) & 0x000000fffffULL;
|
|
u32 data;
|
|
|
|
if (unlikely(imem->addr != base)) {
|
|
nvkm_wr32(device, 0x001700, base >> 16);
|
|
imem->addr = base;
|
|
}
|
|
data = nvkm_rd32(device, 0x700000 + addr);
|
|
return data;
|
|
}
|
|
|
|
static void
|
|
gk20a_instobj_wr32(struct nvkm_memory *memory, u64 offset, u32 data)
|
|
{
|
|
struct gk20a_instobj *node = gk20a_instobj(memory);
|
|
struct gk20a_instmem *imem = node->imem;
|
|
struct nvkm_device *device = imem->base.subdev.device;
|
|
u64 base = (node->mem.offset + offset) & 0xffffff00000ULL;
|
|
u64 addr = (node->mem.offset + offset) & 0x000000fffffULL;
|
|
|
|
if (unlikely(imem->addr != base)) {
|
|
nvkm_wr32(device, 0x001700, base >> 16);
|
|
imem->addr = base;
|
|
}
|
|
nvkm_wr32(device, 0x700000 + addr, data);
|
|
}
|
|
|
|
static void
|
|
gk20a_instobj_map(struct nvkm_memory *memory, struct nvkm_vma *vma, u64 offset)
|
|
{
|
|
struct gk20a_instobj *node = gk20a_instobj(memory);
|
|
nvkm_vm_map_at(vma, offset, &node->mem);
|
|
}
|
|
|
|
static void
|
|
gk20a_instobj_dtor_dma(struct gk20a_instobj *_node)
|
|
{
|
|
struct gk20a_instobj_dma *node = (void *)_node;
|
|
struct gk20a_instmem *imem = _node->imem;
|
|
struct device *dev = nv_device_base(nv_device(imem));
|
|
|
|
if (unlikely(!node->cpuaddr))
|
|
return;
|
|
|
|
dma_free_attrs(dev, _node->mem.size << PAGE_SHIFT, node->cpuaddr,
|
|
node->handle, &imem->attrs);
|
|
}
|
|
|
|
static void
|
|
gk20a_instobj_dtor_iommu(struct gk20a_instobj *_node)
|
|
{
|
|
struct gk20a_instobj_iommu *node = (void *)_node;
|
|
struct gk20a_instmem *imem = _node->imem;
|
|
struct nvkm_mm_node *r;
|
|
int i;
|
|
|
|
if (unlikely(list_empty(&_node->mem.regions)))
|
|
return;
|
|
|
|
r = list_first_entry(&_node->mem.regions, struct nvkm_mm_node,
|
|
rl_entry);
|
|
|
|
/* clear bit 34 to unmap pages */
|
|
r->offset &= ~BIT(34 - imem->iommu_pgshift);
|
|
|
|
/* Unmap pages from GPU address space and free them */
|
|
for (i = 0; i < _node->mem.size; i++) {
|
|
iommu_unmap(imem->domain,
|
|
(r->offset + i) << imem->iommu_pgshift, PAGE_SIZE);
|
|
__free_page(node->pages[i]);
|
|
}
|
|
|
|
/* Release area from GPU address space */
|
|
mutex_lock(imem->mm_mutex);
|
|
nvkm_mm_free(imem->mm, &r);
|
|
mutex_unlock(imem->mm_mutex);
|
|
}
|
|
|
|
static void *
|
|
gk20a_instobj_dtor(struct nvkm_memory *memory)
|
|
{
|
|
struct gk20a_instobj *node = gk20a_instobj(memory);
|
|
struct gk20a_instmem *imem = node->imem;
|
|
|
|
if (imem->domain)
|
|
gk20a_instobj_dtor_iommu(node);
|
|
else
|
|
gk20a_instobj_dtor_dma(node);
|
|
|
|
return node;
|
|
}
|
|
|
|
static const struct nvkm_memory_func
|
|
gk20a_instobj_func = {
|
|
.dtor = gk20a_instobj_dtor,
|
|
.target = gk20a_instobj_target,
|
|
.addr = gk20a_instobj_addr,
|
|
.size = gk20a_instobj_size,
|
|
.acquire = gk20a_instobj_acquire,
|
|
.release = gk20a_instobj_release,
|
|
.rd32 = gk20a_instobj_rd32,
|
|
.wr32 = gk20a_instobj_wr32,
|
|
.map = gk20a_instobj_map,
|
|
};
|
|
|
|
static int
|
|
gk20a_instobj_ctor_dma(struct gk20a_instmem *imem, u32 npages, u32 align,
|
|
struct gk20a_instobj **_node)
|
|
{
|
|
struct gk20a_instobj_dma *node;
|
|
struct nvkm_subdev *subdev = &imem->base.subdev;
|
|
struct device *dev = subdev->device->dev;
|
|
|
|
if (!(node = kzalloc(sizeof(*node), GFP_KERNEL)))
|
|
return -ENOMEM;
|
|
*_node = &node->base;
|
|
|
|
node->cpuaddr = dma_alloc_attrs(dev, npages << PAGE_SHIFT,
|
|
&node->handle, GFP_KERNEL,
|
|
&imem->attrs);
|
|
if (!node->cpuaddr) {
|
|
nvkm_error(subdev, "cannot allocate DMA memory\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* alignment check */
|
|
if (unlikely(node->handle & (align - 1)))
|
|
nvkm_warn(subdev,
|
|
"memory not aligned as requested: %pad (0x%x)\n",
|
|
&node->handle, align);
|
|
|
|
/* present memory for being mapped using small pages */
|
|
node->r.type = 12;
|
|
node->r.offset = node->handle >> 12;
|
|
node->r.length = (npages << PAGE_SHIFT) >> 12;
|
|
|
|
node->base.mem.offset = node->handle;
|
|
|
|
INIT_LIST_HEAD(&node->base.mem.regions);
|
|
list_add_tail(&node->r.rl_entry, &node->base.mem.regions);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
gk20a_instobj_ctor_iommu(struct gk20a_instmem *imem, u32 npages, u32 align,
|
|
struct gk20a_instobj **_node)
|
|
{
|
|
struct gk20a_instobj_iommu *node;
|
|
struct nvkm_subdev *subdev = &imem->base.subdev;
|
|
struct nvkm_mm_node *r;
|
|
int ret;
|
|
int i;
|
|
|
|
if (!(node = kzalloc(sizeof(*node) +
|
|
sizeof( node->pages[0]) * npages, GFP_KERNEL)))
|
|
return -ENOMEM;
|
|
*_node = &node->base;
|
|
|
|
/* Allocate backing memory */
|
|
for (i = 0; i < npages; i++) {
|
|
struct page *p = alloc_page(GFP_KERNEL);
|
|
|
|
if (p == NULL) {
|
|
ret = -ENOMEM;
|
|
goto free_pages;
|
|
}
|
|
node->pages[i] = p;
|
|
}
|
|
|
|
mutex_lock(imem->mm_mutex);
|
|
/* Reserve area from GPU address space */
|
|
ret = nvkm_mm_head(imem->mm, 0, 1, npages, npages,
|
|
align >> imem->iommu_pgshift, &r);
|
|
mutex_unlock(imem->mm_mutex);
|
|
if (ret) {
|
|
nvkm_error(subdev, "virtual space is full!\n");
|
|
goto free_pages;
|
|
}
|
|
|
|
/* Map into GPU address space */
|
|
for (i = 0; i < npages; i++) {
|
|
struct page *p = node->pages[i];
|
|
u32 offset = (r->offset + i) << imem->iommu_pgshift;
|
|
|
|
ret = iommu_map(imem->domain, offset, page_to_phys(p),
|
|
PAGE_SIZE, IOMMU_READ | IOMMU_WRITE);
|
|
if (ret < 0) {
|
|
nvkm_error(subdev, "IOMMU mapping failure: %d\n", ret);
|
|
|
|
while (i-- > 0) {
|
|
offset -= PAGE_SIZE;
|
|
iommu_unmap(imem->domain, offset, PAGE_SIZE);
|
|
}
|
|
goto release_area;
|
|
}
|
|
}
|
|
|
|
/* Bit 34 tells that an address is to be resolved through the IOMMU */
|
|
r->offset |= BIT(34 - imem->iommu_pgshift);
|
|
|
|
node->base.mem.offset = ((u64)r->offset) << imem->iommu_pgshift;
|
|
|
|
INIT_LIST_HEAD(&node->base.mem.regions);
|
|
list_add_tail(&r->rl_entry, &node->base.mem.regions);
|
|
|
|
return 0;
|
|
|
|
release_area:
|
|
mutex_lock(imem->mm_mutex);
|
|
nvkm_mm_free(imem->mm, &r);
|
|
mutex_unlock(imem->mm_mutex);
|
|
|
|
free_pages:
|
|
for (i = 0; i < npages && node->pages[i] != NULL; i++)
|
|
__free_page(node->pages[i]);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
gk20a_instobj_new(struct nvkm_instmem *base, u32 size, u32 align, bool zero,
|
|
struct nvkm_memory **pmemory)
|
|
{
|
|
struct gk20a_instmem *imem = gk20a_instmem(base);
|
|
struct gk20a_instobj *node;
|
|
struct nvkm_subdev *subdev = &imem->base.subdev;
|
|
int ret;
|
|
|
|
nvkm_debug(subdev, "%s (%s): size: %x align: %x\n", __func__,
|
|
imem->domain ? "IOMMU" : "DMA", size, align);
|
|
|
|
/* Round size and align to page bounds */
|
|
size = max(roundup(size, PAGE_SIZE), PAGE_SIZE);
|
|
align = max(roundup(align, PAGE_SIZE), PAGE_SIZE);
|
|
|
|
if (imem->domain)
|
|
ret = gk20a_instobj_ctor_iommu(imem, size >> PAGE_SHIFT,
|
|
align, &node);
|
|
else
|
|
ret = gk20a_instobj_ctor_dma(imem, size >> PAGE_SHIFT,
|
|
align, &node);
|
|
if (ret)
|
|
return ret;
|
|
*pmemory = &node->memory;
|
|
|
|
nvkm_memory_ctor(&gk20a_instobj_func, &node->memory);
|
|
node->imem = imem;
|
|
|
|
/* present memory for being mapped using small pages */
|
|
node->mem.size = size >> 12;
|
|
node->mem.memtype = 0;
|
|
node->mem.page_shift = 12;
|
|
|
|
nvkm_debug(subdev, "alloc size: 0x%x, align: 0x%x, gaddr: 0x%llx\n",
|
|
size, align, node->mem.offset);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
gk20a_instmem_fini(struct nvkm_object *object, bool suspend)
|
|
{
|
|
struct gk20a_instmem *imem = (void *)object;
|
|
imem->addr = ~0ULL;
|
|
return nvkm_instmem_fini(&imem->base, suspend);
|
|
}
|
|
|
|
static int
|
|
gk20a_instmem_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
|
|
struct nvkm_oclass *oclass, void *data, u32 size,
|
|
struct nvkm_object **pobject)
|
|
{
|
|
struct nvkm_device *device = (void *)parent;
|
|
struct gk20a_instmem *imem;
|
|
int ret;
|
|
|
|
ret = nvkm_instmem_create(parent, engine, oclass, &imem);
|
|
*pobject = nv_object(imem);
|
|
if (ret)
|
|
return ret;
|
|
|
|
spin_lock_init(&imem->lock);
|
|
|
|
if (device->gpu->iommu.domain) {
|
|
imem->domain = device->gpu->iommu.domain;
|
|
imem->mm = device->gpu->iommu.mm;
|
|
imem->iommu_pgshift = device->gpu->iommu.pgshift;
|
|
imem->mm_mutex = &device->gpu->iommu.mutex;
|
|
|
|
nvkm_info(&imem->base.subdev, "using IOMMU\n");
|
|
} else {
|
|
init_dma_attrs(&imem->attrs);
|
|
/*
|
|
* We will access instmem through PRAMIN and thus do not need a
|
|
* consistent CPU pointer or kernel mapping
|
|
*/
|
|
dma_set_attr(DMA_ATTR_NON_CONSISTENT, &imem->attrs);
|
|
dma_set_attr(DMA_ATTR_WEAK_ORDERING, &imem->attrs);
|
|
dma_set_attr(DMA_ATTR_WRITE_COMBINE, &imem->attrs);
|
|
dma_set_attr(DMA_ATTR_NO_KERNEL_MAPPING, &imem->attrs);
|
|
|
|
nvkm_info(&imem->base.subdev, "using DMA API\n");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct nvkm_oclass *
|
|
gk20a_instmem_oclass = &(struct nvkm_instmem_impl) {
|
|
.base.handle = NV_SUBDEV(INSTMEM, 0xea),
|
|
.base.ofuncs = &(struct nvkm_ofuncs) {
|
|
.ctor = gk20a_instmem_ctor,
|
|
.dtor = _nvkm_instmem_dtor,
|
|
.init = _nvkm_instmem_init,
|
|
.fini = gk20a_instmem_fini,
|
|
},
|
|
.memory_new = gk20a_instobj_new,
|
|
.persistent = true,
|
|
.zero = false,
|
|
}.base;
|