610 lines
17 KiB
C
610 lines
17 KiB
C
/*
|
|
* kaslr.c
|
|
*
|
|
* This contains the routines needed to generate a reasonable level of
|
|
* entropy to choose a randomized kernel base address offset in support
|
|
* of Kernel Address Space Layout Randomization (KASLR). Additionally
|
|
* handles walking the physical memory maps (and tracking memory regions
|
|
* to avoid) in order to select a physical memory location that can
|
|
* contain the entire properly aligned running kernel image.
|
|
*
|
|
*/
|
|
#include "misc.h"
|
|
#include "error.h"
|
|
#include "../boot.h"
|
|
|
|
#include <generated/compile.h>
|
|
#include <linux/module.h>
|
|
#include <linux/uts.h>
|
|
#include <linux/utsname.h>
|
|
#include <generated/utsrelease.h>
|
|
|
|
/* Simplified build-specific string for starting entropy. */
|
|
static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@"
|
|
LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION;
|
|
|
|
static unsigned long rotate_xor(unsigned long hash, const void *area,
|
|
size_t size)
|
|
{
|
|
size_t i;
|
|
unsigned long *ptr = (unsigned long *)area;
|
|
|
|
for (i = 0; i < size / sizeof(hash); i++) {
|
|
/* Rotate by odd number of bits and XOR. */
|
|
hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7);
|
|
hash ^= ptr[i];
|
|
}
|
|
|
|
return hash;
|
|
}
|
|
|
|
/* Attempt to create a simple but unpredictable starting entropy. */
|
|
static unsigned long get_boot_seed(void)
|
|
{
|
|
unsigned long hash = 0;
|
|
|
|
hash = rotate_xor(hash, build_str, sizeof(build_str));
|
|
hash = rotate_xor(hash, boot_params, sizeof(*boot_params));
|
|
|
|
return hash;
|
|
}
|
|
|
|
#define KASLR_COMPRESSED_BOOT
|
|
#include "../../lib/kaslr.c"
|
|
|
|
struct mem_vector {
|
|
unsigned long long start;
|
|
unsigned long long size;
|
|
};
|
|
|
|
/* Only supporting at most 4 unusable memmap regions with kaslr */
|
|
#define MAX_MEMMAP_REGIONS 4
|
|
|
|
static bool memmap_too_large;
|
|
|
|
enum mem_avoid_index {
|
|
MEM_AVOID_ZO_RANGE = 0,
|
|
MEM_AVOID_INITRD,
|
|
MEM_AVOID_CMDLINE,
|
|
MEM_AVOID_BOOTPARAMS,
|
|
MEM_AVOID_MEMMAP_BEGIN,
|
|
MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1,
|
|
MEM_AVOID_MAX,
|
|
};
|
|
|
|
static struct mem_vector mem_avoid[MEM_AVOID_MAX];
|
|
|
|
static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two)
|
|
{
|
|
/* Item one is entirely before item two. */
|
|
if (one->start + one->size <= two->start)
|
|
return false;
|
|
/* Item one is entirely after item two. */
|
|
if (one->start >= two->start + two->size)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* _memparse - Parse a string with mem suffixes into a number
|
|
* @ptr: Where parse begins
|
|
* @retptr: (output) Optional pointer to next char after parse completes
|
|
*
|
|
* Parses a string into a number. The number stored at @ptr is
|
|
* potentially suffixed with K, M, G, T, P, E.
|
|
*/
|
|
static unsigned long long _memparse(const char *ptr, char **retptr)
|
|
{
|
|
char *endptr; /* Local pointer to end of parsed string */
|
|
|
|
unsigned long long ret = simple_strtoull(ptr, &endptr, 0);
|
|
|
|
switch (*endptr) {
|
|
case 'E':
|
|
case 'e':
|
|
ret <<= 10;
|
|
case 'P':
|
|
case 'p':
|
|
ret <<= 10;
|
|
case 'T':
|
|
case 't':
|
|
ret <<= 10;
|
|
case 'G':
|
|
case 'g':
|
|
ret <<= 10;
|
|
case 'M':
|
|
case 'm':
|
|
ret <<= 10;
|
|
case 'K':
|
|
case 'k':
|
|
ret <<= 10;
|
|
endptr++;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (retptr)
|
|
*retptr = endptr;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
parse_memmap(char *p, unsigned long long *start, unsigned long long *size)
|
|
{
|
|
char *oldp;
|
|
|
|
if (!p)
|
|
return -EINVAL;
|
|
|
|
/* We don't care about this option here */
|
|
if (!strncmp(p, "exactmap", 8))
|
|
return -EINVAL;
|
|
|
|
oldp = p;
|
|
*size = _memparse(p, &p);
|
|
if (p == oldp)
|
|
return -EINVAL;
|
|
|
|
switch (*p) {
|
|
case '@':
|
|
/* Skip this region, usable */
|
|
*start = 0;
|
|
*size = 0;
|
|
return 0;
|
|
case '#':
|
|
case '$':
|
|
case '!':
|
|
*start = _memparse(p + 1, &p);
|
|
return 0;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void mem_avoid_memmap(void)
|
|
{
|
|
char arg[128];
|
|
int rc;
|
|
int i;
|
|
char *str;
|
|
|
|
/* See if we have any memmap areas */
|
|
rc = cmdline_find_option("memmap", arg, sizeof(arg));
|
|
if (rc <= 0)
|
|
return;
|
|
|
|
i = 0;
|
|
str = arg;
|
|
while (str && (i < MAX_MEMMAP_REGIONS)) {
|
|
int rc;
|
|
unsigned long long start, size;
|
|
char *k = strchr(str, ',');
|
|
|
|
if (k)
|
|
*k++ = 0;
|
|
|
|
rc = parse_memmap(str, &start, &size);
|
|
if (rc < 0)
|
|
break;
|
|
str = k;
|
|
/* A usable region that should not be skipped */
|
|
if (size == 0)
|
|
continue;
|
|
|
|
mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start;
|
|
mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size;
|
|
i++;
|
|
}
|
|
|
|
/* More than 4 memmaps, fail kaslr */
|
|
if ((i >= MAX_MEMMAP_REGIONS) && str)
|
|
memmap_too_large = true;
|
|
}
|
|
|
|
/*
|
|
* In theory, KASLR can put the kernel anywhere in the range of [16M, 64T).
|
|
* The mem_avoid array is used to store the ranges that need to be avoided
|
|
* when KASLR searches for an appropriate random address. We must avoid any
|
|
* regions that are unsafe to overlap with during decompression, and other
|
|
* things like the initrd, cmdline and boot_params. This comment seeks to
|
|
* explain mem_avoid as clearly as possible since incorrect mem_avoid
|
|
* memory ranges lead to really hard to debug boot failures.
|
|
*
|
|
* The initrd, cmdline, and boot_params are trivial to identify for
|
|
* avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and
|
|
* MEM_AVOID_BOOTPARAMS respectively below.
|
|
*
|
|
* What is not obvious how to avoid is the range of memory that is used
|
|
* during decompression (MEM_AVOID_ZO_RANGE below). This range must cover
|
|
* the compressed kernel (ZO) and its run space, which is used to extract
|
|
* the uncompressed kernel (VO) and relocs.
|
|
*
|
|
* ZO's full run size sits against the end of the decompression buffer, so
|
|
* we can calculate where text, data, bss, etc of ZO are positioned more
|
|
* easily.
|
|
*
|
|
* For additional background, the decompression calculations can be found
|
|
* in header.S, and the memory diagram is based on the one found in misc.c.
|
|
*
|
|
* The following conditions are already enforced by the image layouts and
|
|
* associated code:
|
|
* - input + input_size >= output + output_size
|
|
* - kernel_total_size <= init_size
|
|
* - kernel_total_size <= output_size (see Note below)
|
|
* - output + init_size >= output + output_size
|
|
*
|
|
* (Note that kernel_total_size and output_size have no fundamental
|
|
* relationship, but output_size is passed to choose_random_location
|
|
* as a maximum of the two. The diagram is showing a case where
|
|
* kernel_total_size is larger than output_size, but this case is
|
|
* handled by bumping output_size.)
|
|
*
|
|
* The above conditions can be illustrated by a diagram:
|
|
*
|
|
* 0 output input input+input_size output+init_size
|
|
* | | | | |
|
|
* | | | | |
|
|
* |-----|--------|--------|--------------|-----------|--|-------------|
|
|
* | | |
|
|
* | | |
|
|
* output+init_size-ZO_INIT_SIZE output+output_size output+kernel_total_size
|
|
*
|
|
* [output, output+init_size) is the entire memory range used for
|
|
* extracting the compressed image.
|
|
*
|
|
* [output, output+kernel_total_size) is the range needed for the
|
|
* uncompressed kernel (VO) and its run size (bss, brk, etc).
|
|
*
|
|
* [output, output+output_size) is VO plus relocs (i.e. the entire
|
|
* uncompressed payload contained by ZO). This is the area of the buffer
|
|
* written to during decompression.
|
|
*
|
|
* [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case
|
|
* range of the copied ZO and decompression code. (i.e. the range
|
|
* covered backwards of size ZO_INIT_SIZE, starting from output+init_size.)
|
|
*
|
|
* [input, input+input_size) is the original copied compressed image (ZO)
|
|
* (i.e. it does not include its run size). This range must be avoided
|
|
* because it contains the data used for decompression.
|
|
*
|
|
* [input+input_size, output+init_size) is [_text, _end) for ZO. This
|
|
* range includes ZO's heap and stack, and must be avoided since it
|
|
* performs the decompression.
|
|
*
|
|
* Since the above two ranges need to be avoided and they are adjacent,
|
|
* they can be merged, resulting in: [input, output+init_size) which
|
|
* becomes the MEM_AVOID_ZO_RANGE below.
|
|
*/
|
|
static void mem_avoid_init(unsigned long input, unsigned long input_size,
|
|
unsigned long output)
|
|
{
|
|
unsigned long init_size = boot_params->hdr.init_size;
|
|
u64 initrd_start, initrd_size;
|
|
u64 cmd_line, cmd_line_size;
|
|
char *ptr;
|
|
|
|
/*
|
|
* Avoid the region that is unsafe to overlap during
|
|
* decompression.
|
|
*/
|
|
mem_avoid[MEM_AVOID_ZO_RANGE].start = input;
|
|
mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input;
|
|
add_identity_map(mem_avoid[MEM_AVOID_ZO_RANGE].start,
|
|
mem_avoid[MEM_AVOID_ZO_RANGE].size);
|
|
|
|
/* Avoid initrd. */
|
|
initrd_start = (u64)boot_params->ext_ramdisk_image << 32;
|
|
initrd_start |= boot_params->hdr.ramdisk_image;
|
|
initrd_size = (u64)boot_params->ext_ramdisk_size << 32;
|
|
initrd_size |= boot_params->hdr.ramdisk_size;
|
|
mem_avoid[MEM_AVOID_INITRD].start = initrd_start;
|
|
mem_avoid[MEM_AVOID_INITRD].size = initrd_size;
|
|
/* No need to set mapping for initrd, it will be handled in VO. */
|
|
|
|
/* Avoid kernel command line. */
|
|
cmd_line = (u64)boot_params->ext_cmd_line_ptr << 32;
|
|
cmd_line |= boot_params->hdr.cmd_line_ptr;
|
|
/* Calculate size of cmd_line. */
|
|
ptr = (char *)(unsigned long)cmd_line;
|
|
for (cmd_line_size = 0; ptr[cmd_line_size++]; )
|
|
;
|
|
mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line;
|
|
mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size;
|
|
add_identity_map(mem_avoid[MEM_AVOID_CMDLINE].start,
|
|
mem_avoid[MEM_AVOID_CMDLINE].size);
|
|
|
|
/* Avoid boot parameters. */
|
|
mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params;
|
|
mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params);
|
|
add_identity_map(mem_avoid[MEM_AVOID_BOOTPARAMS].start,
|
|
mem_avoid[MEM_AVOID_BOOTPARAMS].size);
|
|
|
|
/* We don't need to set a mapping for setup_data. */
|
|
|
|
/* Mark the memmap regions we need to avoid */
|
|
mem_avoid_memmap();
|
|
|
|
#ifdef CONFIG_X86_VERBOSE_BOOTUP
|
|
/* Make sure video RAM can be used. */
|
|
add_identity_map(0, PMD_SIZE);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Does this memory vector overlap a known avoided area? If so, record the
|
|
* overlap region with the lowest address.
|
|
*/
|
|
static bool mem_avoid_overlap(struct mem_vector *img,
|
|
struct mem_vector *overlap)
|
|
{
|
|
int i;
|
|
struct setup_data *ptr;
|
|
unsigned long earliest = img->start + img->size;
|
|
bool is_overlapping = false;
|
|
|
|
for (i = 0; i < MEM_AVOID_MAX; i++) {
|
|
if (mem_overlaps(img, &mem_avoid[i]) &&
|
|
mem_avoid[i].start < earliest) {
|
|
*overlap = mem_avoid[i];
|
|
earliest = overlap->start;
|
|
is_overlapping = true;
|
|
}
|
|
}
|
|
|
|
/* Avoid all entries in the setup_data linked list. */
|
|
ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
|
|
while (ptr) {
|
|
struct mem_vector avoid;
|
|
|
|
avoid.start = (unsigned long)ptr;
|
|
avoid.size = sizeof(*ptr) + ptr->len;
|
|
|
|
if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
|
|
*overlap = avoid;
|
|
earliest = overlap->start;
|
|
is_overlapping = true;
|
|
}
|
|
|
|
ptr = (struct setup_data *)(unsigned long)ptr->next;
|
|
}
|
|
|
|
return is_overlapping;
|
|
}
|
|
|
|
struct slot_area {
|
|
unsigned long addr;
|
|
int num;
|
|
};
|
|
|
|
#define MAX_SLOT_AREA 100
|
|
|
|
static struct slot_area slot_areas[MAX_SLOT_AREA];
|
|
|
|
static unsigned long slot_max;
|
|
|
|
static unsigned long slot_area_index;
|
|
|
|
static void store_slot_info(struct mem_vector *region, unsigned long image_size)
|
|
{
|
|
struct slot_area slot_area;
|
|
|
|
if (slot_area_index == MAX_SLOT_AREA)
|
|
return;
|
|
|
|
slot_area.addr = region->start;
|
|
slot_area.num = (region->size - image_size) /
|
|
CONFIG_PHYSICAL_ALIGN + 1;
|
|
|
|
if (slot_area.num > 0) {
|
|
slot_areas[slot_area_index++] = slot_area;
|
|
slot_max += slot_area.num;
|
|
}
|
|
}
|
|
|
|
static unsigned long slots_fetch_random(void)
|
|
{
|
|
unsigned long slot;
|
|
int i;
|
|
|
|
/* Handle case of no slots stored. */
|
|
if (slot_max == 0)
|
|
return 0;
|
|
|
|
slot = kaslr_get_random_long("Physical") % slot_max;
|
|
|
|
for (i = 0; i < slot_area_index; i++) {
|
|
if (slot >= slot_areas[i].num) {
|
|
slot -= slot_areas[i].num;
|
|
continue;
|
|
}
|
|
return slot_areas[i].addr + slot * CONFIG_PHYSICAL_ALIGN;
|
|
}
|
|
|
|
if (i == slot_area_index)
|
|
debug_putstr("slots_fetch_random() failed!?\n");
|
|
return 0;
|
|
}
|
|
|
|
static void process_e820_entry(struct e820_entry *entry,
|
|
unsigned long minimum,
|
|
unsigned long image_size)
|
|
{
|
|
struct mem_vector region, overlap;
|
|
struct slot_area slot_area;
|
|
unsigned long start_orig;
|
|
|
|
/* Skip non-RAM entries. */
|
|
if (entry->type != E820_RAM)
|
|
return;
|
|
|
|
/* On 32-bit, ignore entries entirely above our maximum. */
|
|
if (IS_ENABLED(CONFIG_X86_32) && entry->addr >= KERNEL_IMAGE_SIZE)
|
|
return;
|
|
|
|
/* Ignore entries entirely below our minimum. */
|
|
if (entry->addr + entry->size < minimum)
|
|
return;
|
|
|
|
region.start = entry->addr;
|
|
region.size = entry->size;
|
|
|
|
/* Give up if slot area array is full. */
|
|
while (slot_area_index < MAX_SLOT_AREA) {
|
|
start_orig = region.start;
|
|
|
|
/* Potentially raise address to minimum location. */
|
|
if (region.start < minimum)
|
|
region.start = minimum;
|
|
|
|
/* Potentially raise address to meet alignment needs. */
|
|
region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN);
|
|
|
|
/* Did we raise the address above this e820 region? */
|
|
if (region.start > entry->addr + entry->size)
|
|
return;
|
|
|
|
/* Reduce size by any delta from the original address. */
|
|
region.size -= region.start - start_orig;
|
|
|
|
/* On 32-bit, reduce region size to fit within max size. */
|
|
if (IS_ENABLED(CONFIG_X86_32) &&
|
|
region.start + region.size > KERNEL_IMAGE_SIZE)
|
|
region.size = KERNEL_IMAGE_SIZE - region.start;
|
|
|
|
/* Return if region can't contain decompressed kernel */
|
|
if (region.size < image_size)
|
|
return;
|
|
|
|
/* If nothing overlaps, store the region and return. */
|
|
if (!mem_avoid_overlap(®ion, &overlap)) {
|
|
store_slot_info(®ion, image_size);
|
|
return;
|
|
}
|
|
|
|
/* Store beginning of region if holds at least image_size. */
|
|
if (overlap.start > region.start + image_size) {
|
|
struct mem_vector beginning;
|
|
|
|
beginning.start = region.start;
|
|
beginning.size = overlap.start - region.start;
|
|
store_slot_info(&beginning, image_size);
|
|
}
|
|
|
|
/* Return if overlap extends to or past end of region. */
|
|
if (overlap.start + overlap.size >= region.start + region.size)
|
|
return;
|
|
|
|
/* Clip off the overlapping region and start over. */
|
|
region.size -= overlap.start - region.start + overlap.size;
|
|
region.start = overlap.start + overlap.size;
|
|
}
|
|
}
|
|
|
|
static unsigned long find_random_phys_addr(unsigned long minimum,
|
|
unsigned long image_size)
|
|
{
|
|
int i;
|
|
unsigned long addr;
|
|
|
|
/* Check if we had too many memmaps. */
|
|
if (memmap_too_large) {
|
|
debug_putstr("Aborted e820 scan (more than 4 memmap= args)!\n");
|
|
return 0;
|
|
}
|
|
|
|
/* Make sure minimum is aligned. */
|
|
minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
|
|
|
|
/* Verify potential e820 positions, appending to slots list. */
|
|
for (i = 0; i < boot_params->e820_entries; i++) {
|
|
process_e820_entry(&boot_params->e820_array[i], minimum,
|
|
image_size);
|
|
if (slot_area_index == MAX_SLOT_AREA) {
|
|
debug_putstr("Aborted e820 scan (slot_areas full)!\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
return slots_fetch_random();
|
|
}
|
|
|
|
static unsigned long find_random_virt_addr(unsigned long minimum,
|
|
unsigned long image_size)
|
|
{
|
|
unsigned long slots, random_addr;
|
|
|
|
/* Make sure minimum is aligned. */
|
|
minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
|
|
/* Align image_size for easy slot calculations. */
|
|
image_size = ALIGN(image_size, CONFIG_PHYSICAL_ALIGN);
|
|
|
|
/*
|
|
* There are how many CONFIG_PHYSICAL_ALIGN-sized slots
|
|
* that can hold image_size within the range of minimum to
|
|
* KERNEL_IMAGE_SIZE?
|
|
*/
|
|
slots = (KERNEL_IMAGE_SIZE - minimum - image_size) /
|
|
CONFIG_PHYSICAL_ALIGN + 1;
|
|
|
|
random_addr = kaslr_get_random_long("Virtual") % slots;
|
|
|
|
return random_addr * CONFIG_PHYSICAL_ALIGN + minimum;
|
|
}
|
|
|
|
/*
|
|
* Since this function examines addresses much more numerically,
|
|
* it takes the input and output pointers as 'unsigned long'.
|
|
*/
|
|
void choose_random_location(unsigned long input,
|
|
unsigned long input_size,
|
|
unsigned long *output,
|
|
unsigned long output_size,
|
|
unsigned long *virt_addr)
|
|
{
|
|
unsigned long random_addr, min_addr;
|
|
|
|
/* By default, keep output position unchanged. */
|
|
*virt_addr = *output;
|
|
|
|
if (cmdline_find_option_bool("nokaslr")) {
|
|
warn("KASLR disabled: 'nokaslr' on cmdline.");
|
|
return;
|
|
}
|
|
|
|
boot_params->hdr.loadflags |= KASLR_FLAG;
|
|
|
|
/* Prepare to add new identity pagetables on demand. */
|
|
initialize_identity_maps();
|
|
|
|
/* Record the various known unsafe memory ranges. */
|
|
mem_avoid_init(input, input_size, *output);
|
|
|
|
/*
|
|
* Low end of the randomization range should be the
|
|
* smaller of 512M or the initial kernel image
|
|
* location:
|
|
*/
|
|
min_addr = min(*output, 512UL << 20);
|
|
|
|
/* Walk e820 and find a random address. */
|
|
random_addr = find_random_phys_addr(min_addr, output_size);
|
|
if (!random_addr) {
|
|
warn("Physical KASLR disabled: no suitable memory region!");
|
|
} else {
|
|
/* Update the new physical address location. */
|
|
if (*output != random_addr) {
|
|
add_identity_map(random_addr, output_size);
|
|
*output = random_addr;
|
|
}
|
|
}
|
|
|
|
/* This actually loads the identity pagetable on x86_64. */
|
|
finalize_identity_maps();
|
|
|
|
/* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */
|
|
if (IS_ENABLED(CONFIG_X86_64))
|
|
random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size);
|
|
*virt_addr = random_addr;
|
|
}
|