OpenCloudOS-Kernel/virt/kvm/arm/pmu.c

575 lines
14 KiB
C

/*
* Copyright (C) 2015 Linaro Ltd.
* Author: Shannon Zhao <shannon.zhao@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/cpu.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/perf_event.h>
#include <linux/uaccess.h>
#include <asm/kvm_emulate.h>
#include <kvm/arm_pmu.h>
#include <kvm/arm_vgic.h>
/**
* kvm_pmu_get_counter_value - get PMU counter value
* @vcpu: The vcpu pointer
* @select_idx: The counter index
*/
u64 kvm_pmu_get_counter_value(struct kvm_vcpu *vcpu, u64 select_idx)
{
u64 counter, reg, enabled, running;
struct kvm_pmu *pmu = &vcpu->arch.pmu;
struct kvm_pmc *pmc = &pmu->pmc[select_idx];
reg = (select_idx == ARMV8_PMU_CYCLE_IDX)
? PMCCNTR_EL0 : PMEVCNTR0_EL0 + select_idx;
counter = vcpu_sys_reg(vcpu, reg);
/* The real counter value is equal to the value of counter register plus
* the value perf event counts.
*/
if (pmc->perf_event)
counter += perf_event_read_value(pmc->perf_event, &enabled,
&running);
return counter & pmc->bitmask;
}
/**
* kvm_pmu_set_counter_value - set PMU counter value
* @vcpu: The vcpu pointer
* @select_idx: The counter index
* @val: The counter value
*/
void kvm_pmu_set_counter_value(struct kvm_vcpu *vcpu, u64 select_idx, u64 val)
{
u64 reg;
reg = (select_idx == ARMV8_PMU_CYCLE_IDX)
? PMCCNTR_EL0 : PMEVCNTR0_EL0 + select_idx;
vcpu_sys_reg(vcpu, reg) += (s64)val - kvm_pmu_get_counter_value(vcpu, select_idx);
}
/**
* kvm_pmu_stop_counter - stop PMU counter
* @pmc: The PMU counter pointer
*
* If this counter has been configured to monitor some event, release it here.
*/
static void kvm_pmu_stop_counter(struct kvm_vcpu *vcpu, struct kvm_pmc *pmc)
{
u64 counter, reg;
if (pmc->perf_event) {
counter = kvm_pmu_get_counter_value(vcpu, pmc->idx);
reg = (pmc->idx == ARMV8_PMU_CYCLE_IDX)
? PMCCNTR_EL0 : PMEVCNTR0_EL0 + pmc->idx;
vcpu_sys_reg(vcpu, reg) = counter;
perf_event_disable(pmc->perf_event);
perf_event_release_kernel(pmc->perf_event);
pmc->perf_event = NULL;
}
}
/**
* kvm_pmu_vcpu_reset - reset pmu state for cpu
* @vcpu: The vcpu pointer
*
*/
void kvm_pmu_vcpu_reset(struct kvm_vcpu *vcpu)
{
int i;
struct kvm_pmu *pmu = &vcpu->arch.pmu;
for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
kvm_pmu_stop_counter(vcpu, &pmu->pmc[i]);
pmu->pmc[i].idx = i;
pmu->pmc[i].bitmask = 0xffffffffUL;
}
}
/**
* kvm_pmu_vcpu_destroy - free perf event of PMU for cpu
* @vcpu: The vcpu pointer
*
*/
void kvm_pmu_vcpu_destroy(struct kvm_vcpu *vcpu)
{
int i;
struct kvm_pmu *pmu = &vcpu->arch.pmu;
for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
struct kvm_pmc *pmc = &pmu->pmc[i];
if (pmc->perf_event) {
perf_event_disable(pmc->perf_event);
perf_event_release_kernel(pmc->perf_event);
pmc->perf_event = NULL;
}
}
}
u64 kvm_pmu_valid_counter_mask(struct kvm_vcpu *vcpu)
{
u64 val = vcpu_sys_reg(vcpu, PMCR_EL0) >> ARMV8_PMU_PMCR_N_SHIFT;
val &= ARMV8_PMU_PMCR_N_MASK;
if (val == 0)
return BIT(ARMV8_PMU_CYCLE_IDX);
else
return GENMASK(val - 1, 0) | BIT(ARMV8_PMU_CYCLE_IDX);
}
/**
* kvm_pmu_enable_counter - enable selected PMU counter
* @vcpu: The vcpu pointer
* @val: the value guest writes to PMCNTENSET register
*
* Call perf_event_enable to start counting the perf event
*/
void kvm_pmu_enable_counter(struct kvm_vcpu *vcpu, u64 val)
{
int i;
struct kvm_pmu *pmu = &vcpu->arch.pmu;
struct kvm_pmc *pmc;
if (!(vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) || !val)
return;
for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
if (!(val & BIT(i)))
continue;
pmc = &pmu->pmc[i];
if (pmc->perf_event) {
perf_event_enable(pmc->perf_event);
if (pmc->perf_event->state != PERF_EVENT_STATE_ACTIVE)
kvm_debug("fail to enable perf event\n");
}
}
}
/**
* kvm_pmu_disable_counter - disable selected PMU counter
* @vcpu: The vcpu pointer
* @val: the value guest writes to PMCNTENCLR register
*
* Call perf_event_disable to stop counting the perf event
*/
void kvm_pmu_disable_counter(struct kvm_vcpu *vcpu, u64 val)
{
int i;
struct kvm_pmu *pmu = &vcpu->arch.pmu;
struct kvm_pmc *pmc;
if (!val)
return;
for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
if (!(val & BIT(i)))
continue;
pmc = &pmu->pmc[i];
if (pmc->perf_event)
perf_event_disable(pmc->perf_event);
}
}
static u64 kvm_pmu_overflow_status(struct kvm_vcpu *vcpu)
{
u64 reg = 0;
if ((vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E)) {
reg = vcpu_sys_reg(vcpu, PMOVSSET_EL0);
reg &= vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
reg &= vcpu_sys_reg(vcpu, PMINTENSET_EL1);
reg &= kvm_pmu_valid_counter_mask(vcpu);
}
return reg;
}
/**
* kvm_pmu_overflow_set - set PMU overflow interrupt
* @vcpu: The vcpu pointer
* @val: the value guest writes to PMOVSSET register
*/
void kvm_pmu_overflow_set(struct kvm_vcpu *vcpu, u64 val)
{
u64 reg;
if (val == 0)
return;
vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= val;
reg = kvm_pmu_overflow_status(vcpu);
if (reg != 0)
kvm_vcpu_kick(vcpu);
}
static void kvm_pmu_update_state(struct kvm_vcpu *vcpu)
{
struct kvm_pmu *pmu = &vcpu->arch.pmu;
bool overflow;
if (!kvm_arm_pmu_v3_ready(vcpu))
return;
overflow = !!kvm_pmu_overflow_status(vcpu);
if (pmu->irq_level == overflow)
return;
pmu->irq_level = overflow;
if (likely(irqchip_in_kernel(vcpu->kvm))) {
int ret;
ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
pmu->irq_num, overflow);
WARN_ON(ret);
}
}
bool kvm_pmu_should_notify_user(struct kvm_vcpu *vcpu)
{
struct kvm_pmu *pmu = &vcpu->arch.pmu;
struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
bool run_level = sregs->device_irq_level & KVM_ARM_DEV_PMU;
if (likely(irqchip_in_kernel(vcpu->kvm)))
return false;
return pmu->irq_level != run_level;
}
/*
* Reflect the PMU overflow interrupt output level into the kvm_run structure
*/
void kvm_pmu_update_run(struct kvm_vcpu *vcpu)
{
struct kvm_sync_regs *regs = &vcpu->run->s.regs;
/* Populate the timer bitmap for user space */
regs->device_irq_level &= ~KVM_ARM_DEV_PMU;
if (vcpu->arch.pmu.irq_level)
regs->device_irq_level |= KVM_ARM_DEV_PMU;
}
/**
* kvm_pmu_flush_hwstate - flush pmu state to cpu
* @vcpu: The vcpu pointer
*
* Check if the PMU has overflowed while we were running in the host, and inject
* an interrupt if that was the case.
*/
void kvm_pmu_flush_hwstate(struct kvm_vcpu *vcpu)
{
kvm_pmu_update_state(vcpu);
}
/**
* kvm_pmu_sync_hwstate - sync pmu state from cpu
* @vcpu: The vcpu pointer
*
* Check if the PMU has overflowed while we were running in the guest, and
* inject an interrupt if that was the case.
*/
void kvm_pmu_sync_hwstate(struct kvm_vcpu *vcpu)
{
kvm_pmu_update_state(vcpu);
}
static inline struct kvm_vcpu *kvm_pmc_to_vcpu(struct kvm_pmc *pmc)
{
struct kvm_pmu *pmu;
struct kvm_vcpu_arch *vcpu_arch;
pmc -= pmc->idx;
pmu = container_of(pmc, struct kvm_pmu, pmc[0]);
vcpu_arch = container_of(pmu, struct kvm_vcpu_arch, pmu);
return container_of(vcpu_arch, struct kvm_vcpu, arch);
}
/**
* When perf event overflows, call kvm_pmu_overflow_set to set overflow status.
*/
static void kvm_pmu_perf_overflow(struct perf_event *perf_event,
struct perf_sample_data *data,
struct pt_regs *regs)
{
struct kvm_pmc *pmc = perf_event->overflow_handler_context;
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
int idx = pmc->idx;
kvm_pmu_overflow_set(vcpu, BIT(idx));
}
/**
* kvm_pmu_software_increment - do software increment
* @vcpu: The vcpu pointer
* @val: the value guest writes to PMSWINC register
*/
void kvm_pmu_software_increment(struct kvm_vcpu *vcpu, u64 val)
{
int i;
u64 type, enable, reg;
if (val == 0)
return;
enable = vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
for (i = 0; i < ARMV8_PMU_CYCLE_IDX; i++) {
if (!(val & BIT(i)))
continue;
type = vcpu_sys_reg(vcpu, PMEVTYPER0_EL0 + i)
& ARMV8_PMU_EVTYPE_EVENT;
if ((type == ARMV8_PMUV3_PERFCTR_SW_INCR)
&& (enable & BIT(i))) {
reg = vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i) + 1;
reg = lower_32_bits(reg);
vcpu_sys_reg(vcpu, PMEVCNTR0_EL0 + i) = reg;
if (!reg)
kvm_pmu_overflow_set(vcpu, BIT(i));
}
}
}
/**
* kvm_pmu_handle_pmcr - handle PMCR register
* @vcpu: The vcpu pointer
* @val: the value guest writes to PMCR register
*/
void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val)
{
struct kvm_pmu *pmu = &vcpu->arch.pmu;
struct kvm_pmc *pmc;
u64 mask;
int i;
mask = kvm_pmu_valid_counter_mask(vcpu);
if (val & ARMV8_PMU_PMCR_E) {
kvm_pmu_enable_counter(vcpu,
vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask);
} else {
kvm_pmu_disable_counter(vcpu, mask);
}
if (val & ARMV8_PMU_PMCR_C)
kvm_pmu_set_counter_value(vcpu, ARMV8_PMU_CYCLE_IDX, 0);
if (val & ARMV8_PMU_PMCR_P) {
for (i = 0; i < ARMV8_PMU_CYCLE_IDX; i++)
kvm_pmu_set_counter_value(vcpu, i, 0);
}
if (val & ARMV8_PMU_PMCR_LC) {
pmc = &pmu->pmc[ARMV8_PMU_CYCLE_IDX];
pmc->bitmask = 0xffffffffffffffffUL;
}
}
static bool kvm_pmu_counter_is_enabled(struct kvm_vcpu *vcpu, u64 select_idx)
{
return (vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) &&
(vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & BIT(select_idx));
}
/**
* kvm_pmu_set_counter_event_type - set selected counter to monitor some event
* @vcpu: The vcpu pointer
* @data: The data guest writes to PMXEVTYPER_EL0
* @select_idx: The number of selected counter
*
* When OS accesses PMXEVTYPER_EL0, that means it wants to set a PMC to count an
* event with given hardware event number. Here we call perf_event API to
* emulate this action and create a kernel perf event for it.
*/
void kvm_pmu_set_counter_event_type(struct kvm_vcpu *vcpu, u64 data,
u64 select_idx)
{
struct kvm_pmu *pmu = &vcpu->arch.pmu;
struct kvm_pmc *pmc = &pmu->pmc[select_idx];
struct perf_event *event;
struct perf_event_attr attr;
u64 eventsel, counter;
kvm_pmu_stop_counter(vcpu, pmc);
eventsel = data & ARMV8_PMU_EVTYPE_EVENT;
/* Software increment event does't need to be backed by a perf event */
if (eventsel == ARMV8_PMUV3_PERFCTR_SW_INCR &&
select_idx != ARMV8_PMU_CYCLE_IDX)
return;
memset(&attr, 0, sizeof(struct perf_event_attr));
attr.type = PERF_TYPE_RAW;
attr.size = sizeof(attr);
attr.pinned = 1;
attr.disabled = !kvm_pmu_counter_is_enabled(vcpu, select_idx);
attr.exclude_user = data & ARMV8_PMU_EXCLUDE_EL0 ? 1 : 0;
attr.exclude_kernel = data & ARMV8_PMU_EXCLUDE_EL1 ? 1 : 0;
attr.exclude_hv = 1; /* Don't count EL2 events */
attr.exclude_host = 1; /* Don't count host events */
attr.config = (select_idx == ARMV8_PMU_CYCLE_IDX) ?
ARMV8_PMUV3_PERFCTR_CPU_CYCLES : eventsel;
counter = kvm_pmu_get_counter_value(vcpu, select_idx);
/* The initial sample period (overflow count) of an event. */
attr.sample_period = (-counter) & pmc->bitmask;
event = perf_event_create_kernel_counter(&attr, -1, current,
kvm_pmu_perf_overflow, pmc);
if (IS_ERR(event)) {
pr_err_once("kvm: pmu event creation failed %ld\n",
PTR_ERR(event));
return;
}
pmc->perf_event = event;
}
bool kvm_arm_support_pmu_v3(void)
{
/*
* Check if HW_PERF_EVENTS are supported by checking the number of
* hardware performance counters. This could ensure the presence of
* a physical PMU and CONFIG_PERF_EVENT is selected.
*/
return (perf_num_counters() > 0);
}
static int kvm_arm_pmu_v3_init(struct kvm_vcpu *vcpu)
{
if (!kvm_arm_support_pmu_v3())
return -ENODEV;
/*
* We currently require an in-kernel VGIC to use the PMU emulation,
* because we do not support forwarding PMU overflow interrupts to
* userspace yet.
*/
if (!irqchip_in_kernel(vcpu->kvm) || !vgic_initialized(vcpu->kvm))
return -ENODEV;
if (!test_bit(KVM_ARM_VCPU_PMU_V3, vcpu->arch.features) ||
!kvm_arm_pmu_irq_initialized(vcpu))
return -ENXIO;
if (kvm_arm_pmu_v3_ready(vcpu))
return -EBUSY;
kvm_pmu_vcpu_reset(vcpu);
vcpu->arch.pmu.ready = true;
return 0;
}
#define irq_is_ppi(irq) ((irq) >= VGIC_NR_SGIS && (irq) < VGIC_NR_PRIVATE_IRQS)
/*
* For one VM the interrupt type must be same for each vcpu.
* As a PPI, the interrupt number is the same for all vcpus,
* while as an SPI it must be a separate number per vcpu.
*/
static bool pmu_irq_is_valid(struct kvm *kvm, int irq)
{
int i;
struct kvm_vcpu *vcpu;
kvm_for_each_vcpu(i, vcpu, kvm) {
if (!kvm_arm_pmu_irq_initialized(vcpu))
continue;
if (irq_is_ppi(irq)) {
if (vcpu->arch.pmu.irq_num != irq)
return false;
} else {
if (vcpu->arch.pmu.irq_num == irq)
return false;
}
}
return true;
}
int kvm_arm_pmu_v3_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
switch (attr->attr) {
case KVM_ARM_VCPU_PMU_V3_IRQ: {
int __user *uaddr = (int __user *)(long)attr->addr;
int irq;
if (!test_bit(KVM_ARM_VCPU_PMU_V3, vcpu->arch.features))
return -ENODEV;
if (get_user(irq, uaddr))
return -EFAULT;
/* The PMU overflow interrupt can be a PPI or a valid SPI. */
if (!(irq_is_ppi(irq) || vgic_valid_spi(vcpu->kvm, irq)))
return -EINVAL;
if (!pmu_irq_is_valid(vcpu->kvm, irq))
return -EINVAL;
if (kvm_arm_pmu_irq_initialized(vcpu))
return -EBUSY;
kvm_debug("Set kvm ARM PMU irq: %d\n", irq);
vcpu->arch.pmu.irq_num = irq;
return 0;
}
case KVM_ARM_VCPU_PMU_V3_INIT:
return kvm_arm_pmu_v3_init(vcpu);
}
return -ENXIO;
}
int kvm_arm_pmu_v3_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
switch (attr->attr) {
case KVM_ARM_VCPU_PMU_V3_IRQ: {
int __user *uaddr = (int __user *)(long)attr->addr;
int irq;
if (!test_bit(KVM_ARM_VCPU_PMU_V3, vcpu->arch.features))
return -ENODEV;
if (!kvm_arm_pmu_irq_initialized(vcpu))
return -ENXIO;
irq = vcpu->arch.pmu.irq_num;
return put_user(irq, uaddr);
}
}
return -ENXIO;
}
int kvm_arm_pmu_v3_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
{
switch (attr->attr) {
case KVM_ARM_VCPU_PMU_V3_IRQ:
case KVM_ARM_VCPU_PMU_V3_INIT:
if (kvm_arm_support_pmu_v3() &&
test_bit(KVM_ARM_VCPU_PMU_V3, vcpu->arch.features))
return 0;
}
return -ENXIO;
}