1442 lines
36 KiB
C
1442 lines
36 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_sb.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_defer.h"
|
|
#include "xfs_da_format.h"
|
|
#include "xfs_da_btree.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_dir2.h"
|
|
#include "xfs_ialloc.h"
|
|
#include "xfs_alloc.h"
|
|
#include "xfs_rtalloc.h"
|
|
#include "xfs_bmap.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_trans_priv.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_quota.h"
|
|
#include "xfs_fsops.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_icache.h"
|
|
#include "xfs_sysfs.h"
|
|
#include "xfs_rmap_btree.h"
|
|
#include "xfs_refcount_btree.h"
|
|
#include "xfs_reflink.h"
|
|
#include "xfs_extent_busy.h"
|
|
|
|
|
|
static DEFINE_MUTEX(xfs_uuid_table_mutex);
|
|
static int xfs_uuid_table_size;
|
|
static uuid_t *xfs_uuid_table;
|
|
|
|
void
|
|
xfs_uuid_table_free(void)
|
|
{
|
|
if (xfs_uuid_table_size == 0)
|
|
return;
|
|
kmem_free(xfs_uuid_table);
|
|
xfs_uuid_table = NULL;
|
|
xfs_uuid_table_size = 0;
|
|
}
|
|
|
|
/*
|
|
* See if the UUID is unique among mounted XFS filesystems.
|
|
* Mount fails if UUID is nil or a FS with the same UUID is already mounted.
|
|
*/
|
|
STATIC int
|
|
xfs_uuid_mount(
|
|
struct xfs_mount *mp)
|
|
{
|
|
uuid_t *uuid = &mp->m_sb.sb_uuid;
|
|
int hole, i;
|
|
|
|
/* Publish UUID in struct super_block */
|
|
uuid_copy(&mp->m_super->s_uuid, uuid);
|
|
|
|
if (mp->m_flags & XFS_MOUNT_NOUUID)
|
|
return 0;
|
|
|
|
if (uuid_is_null(uuid)) {
|
|
xfs_warn(mp, "Filesystem has null UUID - can't mount");
|
|
return -EINVAL;
|
|
}
|
|
|
|
mutex_lock(&xfs_uuid_table_mutex);
|
|
for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
|
|
if (uuid_is_null(&xfs_uuid_table[i])) {
|
|
hole = i;
|
|
continue;
|
|
}
|
|
if (uuid_equal(uuid, &xfs_uuid_table[i]))
|
|
goto out_duplicate;
|
|
}
|
|
|
|
if (hole < 0) {
|
|
xfs_uuid_table = kmem_realloc(xfs_uuid_table,
|
|
(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
|
|
KM_SLEEP);
|
|
hole = xfs_uuid_table_size++;
|
|
}
|
|
xfs_uuid_table[hole] = *uuid;
|
|
mutex_unlock(&xfs_uuid_table_mutex);
|
|
|
|
return 0;
|
|
|
|
out_duplicate:
|
|
mutex_unlock(&xfs_uuid_table_mutex);
|
|
xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
|
|
return -EINVAL;
|
|
}
|
|
|
|
STATIC void
|
|
xfs_uuid_unmount(
|
|
struct xfs_mount *mp)
|
|
{
|
|
uuid_t *uuid = &mp->m_sb.sb_uuid;
|
|
int i;
|
|
|
|
if (mp->m_flags & XFS_MOUNT_NOUUID)
|
|
return;
|
|
|
|
mutex_lock(&xfs_uuid_table_mutex);
|
|
for (i = 0; i < xfs_uuid_table_size; i++) {
|
|
if (uuid_is_null(&xfs_uuid_table[i]))
|
|
continue;
|
|
if (!uuid_equal(uuid, &xfs_uuid_table[i]))
|
|
continue;
|
|
memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
|
|
break;
|
|
}
|
|
ASSERT(i < xfs_uuid_table_size);
|
|
mutex_unlock(&xfs_uuid_table_mutex);
|
|
}
|
|
|
|
|
|
STATIC void
|
|
__xfs_free_perag(
|
|
struct rcu_head *head)
|
|
{
|
|
struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
|
|
|
|
ASSERT(atomic_read(&pag->pag_ref) == 0);
|
|
kmem_free(pag);
|
|
}
|
|
|
|
/*
|
|
* Free up the per-ag resources associated with the mount structure.
|
|
*/
|
|
STATIC void
|
|
xfs_free_perag(
|
|
xfs_mount_t *mp)
|
|
{
|
|
xfs_agnumber_t agno;
|
|
struct xfs_perag *pag;
|
|
|
|
for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
|
|
spin_lock(&mp->m_perag_lock);
|
|
pag = radix_tree_delete(&mp->m_perag_tree, agno);
|
|
spin_unlock(&mp->m_perag_lock);
|
|
ASSERT(pag);
|
|
ASSERT(atomic_read(&pag->pag_ref) == 0);
|
|
xfs_buf_hash_destroy(pag);
|
|
mutex_destroy(&pag->pag_ici_reclaim_lock);
|
|
call_rcu(&pag->rcu_head, __xfs_free_perag);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check size of device based on the (data/realtime) block count.
|
|
* Note: this check is used by the growfs code as well as mount.
|
|
*/
|
|
int
|
|
xfs_sb_validate_fsb_count(
|
|
xfs_sb_t *sbp,
|
|
uint64_t nblocks)
|
|
{
|
|
ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
|
|
ASSERT(sbp->sb_blocklog >= BBSHIFT);
|
|
|
|
/* Limited by ULONG_MAX of page cache index */
|
|
if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
|
|
return -EFBIG;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
xfs_initialize_perag(
|
|
xfs_mount_t *mp,
|
|
xfs_agnumber_t agcount,
|
|
xfs_agnumber_t *maxagi)
|
|
{
|
|
xfs_agnumber_t index;
|
|
xfs_agnumber_t first_initialised = NULLAGNUMBER;
|
|
xfs_perag_t *pag;
|
|
int error = -ENOMEM;
|
|
|
|
/*
|
|
* Walk the current per-ag tree so we don't try to initialise AGs
|
|
* that already exist (growfs case). Allocate and insert all the
|
|
* AGs we don't find ready for initialisation.
|
|
*/
|
|
for (index = 0; index < agcount; index++) {
|
|
pag = xfs_perag_get(mp, index);
|
|
if (pag) {
|
|
xfs_perag_put(pag);
|
|
continue;
|
|
}
|
|
|
|
pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
|
|
if (!pag)
|
|
goto out_unwind_new_pags;
|
|
pag->pag_agno = index;
|
|
pag->pag_mount = mp;
|
|
spin_lock_init(&pag->pag_ici_lock);
|
|
mutex_init(&pag->pag_ici_reclaim_lock);
|
|
INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
|
|
if (xfs_buf_hash_init(pag))
|
|
goto out_free_pag;
|
|
init_waitqueue_head(&pag->pagb_wait);
|
|
spin_lock_init(&pag->pagb_lock);
|
|
pag->pagb_count = 0;
|
|
pag->pagb_tree = RB_ROOT;
|
|
|
|
if (radix_tree_preload(GFP_NOFS))
|
|
goto out_hash_destroy;
|
|
|
|
spin_lock(&mp->m_perag_lock);
|
|
if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
|
|
BUG();
|
|
spin_unlock(&mp->m_perag_lock);
|
|
radix_tree_preload_end();
|
|
error = -EEXIST;
|
|
goto out_hash_destroy;
|
|
}
|
|
spin_unlock(&mp->m_perag_lock);
|
|
radix_tree_preload_end();
|
|
/* first new pag is fully initialized */
|
|
if (first_initialised == NULLAGNUMBER)
|
|
first_initialised = index;
|
|
}
|
|
|
|
index = xfs_set_inode_alloc(mp, agcount);
|
|
|
|
if (maxagi)
|
|
*maxagi = index;
|
|
|
|
mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
|
|
return 0;
|
|
|
|
out_hash_destroy:
|
|
xfs_buf_hash_destroy(pag);
|
|
out_free_pag:
|
|
mutex_destroy(&pag->pag_ici_reclaim_lock);
|
|
kmem_free(pag);
|
|
out_unwind_new_pags:
|
|
/* unwind any prior newly initialized pags */
|
|
for (index = first_initialised; index < agcount; index++) {
|
|
pag = radix_tree_delete(&mp->m_perag_tree, index);
|
|
if (!pag)
|
|
break;
|
|
xfs_buf_hash_destroy(pag);
|
|
mutex_destroy(&pag->pag_ici_reclaim_lock);
|
|
kmem_free(pag);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* xfs_readsb
|
|
*
|
|
* Does the initial read of the superblock.
|
|
*/
|
|
int
|
|
xfs_readsb(
|
|
struct xfs_mount *mp,
|
|
int flags)
|
|
{
|
|
unsigned int sector_size;
|
|
struct xfs_buf *bp;
|
|
struct xfs_sb *sbp = &mp->m_sb;
|
|
int error;
|
|
int loud = !(flags & XFS_MFSI_QUIET);
|
|
const struct xfs_buf_ops *buf_ops;
|
|
|
|
ASSERT(mp->m_sb_bp == NULL);
|
|
ASSERT(mp->m_ddev_targp != NULL);
|
|
|
|
/*
|
|
* For the initial read, we must guess at the sector
|
|
* size based on the block device. It's enough to
|
|
* get the sb_sectsize out of the superblock and
|
|
* then reread with the proper length.
|
|
* We don't verify it yet, because it may not be complete.
|
|
*/
|
|
sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
|
|
buf_ops = NULL;
|
|
|
|
/*
|
|
* Allocate a (locked) buffer to hold the superblock. This will be kept
|
|
* around at all times to optimize access to the superblock. Therefore,
|
|
* set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
|
|
* elevated.
|
|
*/
|
|
reread:
|
|
error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
|
|
BTOBB(sector_size), XBF_NO_IOACCT, &bp,
|
|
buf_ops);
|
|
if (error) {
|
|
if (loud)
|
|
xfs_warn(mp, "SB validate failed with error %d.", error);
|
|
/* bad CRC means corrupted metadata */
|
|
if (error == -EFSBADCRC)
|
|
error = -EFSCORRUPTED;
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Initialize the mount structure from the superblock.
|
|
*/
|
|
xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
|
|
|
|
/*
|
|
* If we haven't validated the superblock, do so now before we try
|
|
* to check the sector size and reread the superblock appropriately.
|
|
*/
|
|
if (sbp->sb_magicnum != XFS_SB_MAGIC) {
|
|
if (loud)
|
|
xfs_warn(mp, "Invalid superblock magic number");
|
|
error = -EINVAL;
|
|
goto release_buf;
|
|
}
|
|
|
|
/*
|
|
* We must be able to do sector-sized and sector-aligned IO.
|
|
*/
|
|
if (sector_size > sbp->sb_sectsize) {
|
|
if (loud)
|
|
xfs_warn(mp, "device supports %u byte sectors (not %u)",
|
|
sector_size, sbp->sb_sectsize);
|
|
error = -ENOSYS;
|
|
goto release_buf;
|
|
}
|
|
|
|
if (buf_ops == NULL) {
|
|
/*
|
|
* Re-read the superblock so the buffer is correctly sized,
|
|
* and properly verified.
|
|
*/
|
|
xfs_buf_relse(bp);
|
|
sector_size = sbp->sb_sectsize;
|
|
buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
|
|
goto reread;
|
|
}
|
|
|
|
xfs_reinit_percpu_counters(mp);
|
|
|
|
/* no need to be quiet anymore, so reset the buf ops */
|
|
bp->b_ops = &xfs_sb_buf_ops;
|
|
|
|
mp->m_sb_bp = bp;
|
|
xfs_buf_unlock(bp);
|
|
return 0;
|
|
|
|
release_buf:
|
|
xfs_buf_relse(bp);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Update alignment values based on mount options and sb values
|
|
*/
|
|
STATIC int
|
|
xfs_update_alignment(xfs_mount_t *mp)
|
|
{
|
|
xfs_sb_t *sbp = &(mp->m_sb);
|
|
|
|
if (mp->m_dalign) {
|
|
/*
|
|
* If stripe unit and stripe width are not multiples
|
|
* of the fs blocksize turn off alignment.
|
|
*/
|
|
if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
|
|
(BBTOB(mp->m_swidth) & mp->m_blockmask)) {
|
|
xfs_warn(mp,
|
|
"alignment check failed: sunit/swidth vs. blocksize(%d)",
|
|
sbp->sb_blocksize);
|
|
return -EINVAL;
|
|
} else {
|
|
/*
|
|
* Convert the stripe unit and width to FSBs.
|
|
*/
|
|
mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
|
|
if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
|
|
xfs_warn(mp,
|
|
"alignment check failed: sunit/swidth vs. agsize(%d)",
|
|
sbp->sb_agblocks);
|
|
return -EINVAL;
|
|
} else if (mp->m_dalign) {
|
|
mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
|
|
} else {
|
|
xfs_warn(mp,
|
|
"alignment check failed: sunit(%d) less than bsize(%d)",
|
|
mp->m_dalign, sbp->sb_blocksize);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update superblock with new values
|
|
* and log changes
|
|
*/
|
|
if (xfs_sb_version_hasdalign(sbp)) {
|
|
if (sbp->sb_unit != mp->m_dalign) {
|
|
sbp->sb_unit = mp->m_dalign;
|
|
mp->m_update_sb = true;
|
|
}
|
|
if (sbp->sb_width != mp->m_swidth) {
|
|
sbp->sb_width = mp->m_swidth;
|
|
mp->m_update_sb = true;
|
|
}
|
|
} else {
|
|
xfs_warn(mp,
|
|
"cannot change alignment: superblock does not support data alignment");
|
|
return -EINVAL;
|
|
}
|
|
} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
|
|
xfs_sb_version_hasdalign(&mp->m_sb)) {
|
|
mp->m_dalign = sbp->sb_unit;
|
|
mp->m_swidth = sbp->sb_width;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set the maximum inode count for this filesystem
|
|
*/
|
|
STATIC void
|
|
xfs_set_maxicount(xfs_mount_t *mp)
|
|
{
|
|
xfs_sb_t *sbp = &(mp->m_sb);
|
|
uint64_t icount;
|
|
|
|
if (sbp->sb_imax_pct) {
|
|
/*
|
|
* Make sure the maximum inode count is a multiple
|
|
* of the units we allocate inodes in.
|
|
*/
|
|
icount = sbp->sb_dblocks * sbp->sb_imax_pct;
|
|
do_div(icount, 100);
|
|
do_div(icount, mp->m_ialloc_blks);
|
|
mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
|
|
sbp->sb_inopblog;
|
|
} else {
|
|
mp->m_maxicount = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set the default minimum read and write sizes unless
|
|
* already specified in a mount option.
|
|
* We use smaller I/O sizes when the file system
|
|
* is being used for NFS service (wsync mount option).
|
|
*/
|
|
STATIC void
|
|
xfs_set_rw_sizes(xfs_mount_t *mp)
|
|
{
|
|
xfs_sb_t *sbp = &(mp->m_sb);
|
|
int readio_log, writeio_log;
|
|
|
|
if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
|
|
if (mp->m_flags & XFS_MOUNT_WSYNC) {
|
|
readio_log = XFS_WSYNC_READIO_LOG;
|
|
writeio_log = XFS_WSYNC_WRITEIO_LOG;
|
|
} else {
|
|
readio_log = XFS_READIO_LOG_LARGE;
|
|
writeio_log = XFS_WRITEIO_LOG_LARGE;
|
|
}
|
|
} else {
|
|
readio_log = mp->m_readio_log;
|
|
writeio_log = mp->m_writeio_log;
|
|
}
|
|
|
|
if (sbp->sb_blocklog > readio_log) {
|
|
mp->m_readio_log = sbp->sb_blocklog;
|
|
} else {
|
|
mp->m_readio_log = readio_log;
|
|
}
|
|
mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
|
|
if (sbp->sb_blocklog > writeio_log) {
|
|
mp->m_writeio_log = sbp->sb_blocklog;
|
|
} else {
|
|
mp->m_writeio_log = writeio_log;
|
|
}
|
|
mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
|
|
}
|
|
|
|
/*
|
|
* precalculate the low space thresholds for dynamic speculative preallocation.
|
|
*/
|
|
void
|
|
xfs_set_low_space_thresholds(
|
|
struct xfs_mount *mp)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < XFS_LOWSP_MAX; i++) {
|
|
uint64_t space = mp->m_sb.sb_dblocks;
|
|
|
|
do_div(space, 100);
|
|
mp->m_low_space[i] = space * (i + 1);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Set whether we're using inode alignment.
|
|
*/
|
|
STATIC void
|
|
xfs_set_inoalignment(xfs_mount_t *mp)
|
|
{
|
|
if (xfs_sb_version_hasalign(&mp->m_sb) &&
|
|
mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
|
|
mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
|
|
else
|
|
mp->m_inoalign_mask = 0;
|
|
/*
|
|
* If we are using stripe alignment, check whether
|
|
* the stripe unit is a multiple of the inode alignment
|
|
*/
|
|
if (mp->m_dalign && mp->m_inoalign_mask &&
|
|
!(mp->m_dalign & mp->m_inoalign_mask))
|
|
mp->m_sinoalign = mp->m_dalign;
|
|
else
|
|
mp->m_sinoalign = 0;
|
|
}
|
|
|
|
/*
|
|
* Check that the data (and log if separate) is an ok size.
|
|
*/
|
|
STATIC int
|
|
xfs_check_sizes(
|
|
struct xfs_mount *mp)
|
|
{
|
|
struct xfs_buf *bp;
|
|
xfs_daddr_t d;
|
|
int error;
|
|
|
|
d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
|
|
if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
|
|
xfs_warn(mp, "filesystem size mismatch detected");
|
|
return -EFBIG;
|
|
}
|
|
error = xfs_buf_read_uncached(mp->m_ddev_targp,
|
|
d - XFS_FSS_TO_BB(mp, 1),
|
|
XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
|
|
if (error) {
|
|
xfs_warn(mp, "last sector read failed");
|
|
return error;
|
|
}
|
|
xfs_buf_relse(bp);
|
|
|
|
if (mp->m_logdev_targp == mp->m_ddev_targp)
|
|
return 0;
|
|
|
|
d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
|
|
if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
|
|
xfs_warn(mp, "log size mismatch detected");
|
|
return -EFBIG;
|
|
}
|
|
error = xfs_buf_read_uncached(mp->m_logdev_targp,
|
|
d - XFS_FSB_TO_BB(mp, 1),
|
|
XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
|
|
if (error) {
|
|
xfs_warn(mp, "log device read failed");
|
|
return error;
|
|
}
|
|
xfs_buf_relse(bp);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Clear the quotaflags in memory and in the superblock.
|
|
*/
|
|
int
|
|
xfs_mount_reset_sbqflags(
|
|
struct xfs_mount *mp)
|
|
{
|
|
mp->m_qflags = 0;
|
|
|
|
/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
|
|
if (mp->m_sb.sb_qflags == 0)
|
|
return 0;
|
|
spin_lock(&mp->m_sb_lock);
|
|
mp->m_sb.sb_qflags = 0;
|
|
spin_unlock(&mp->m_sb_lock);
|
|
|
|
if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
|
|
return 0;
|
|
|
|
return xfs_sync_sb(mp, false);
|
|
}
|
|
|
|
uint64_t
|
|
xfs_default_resblks(xfs_mount_t *mp)
|
|
{
|
|
uint64_t resblks;
|
|
|
|
/*
|
|
* We default to 5% or 8192 fsbs of space reserved, whichever is
|
|
* smaller. This is intended to cover concurrent allocation
|
|
* transactions when we initially hit enospc. These each require a 4
|
|
* block reservation. Hence by default we cover roughly 2000 concurrent
|
|
* allocation reservations.
|
|
*/
|
|
resblks = mp->m_sb.sb_dblocks;
|
|
do_div(resblks, 20);
|
|
resblks = min_t(uint64_t, resblks, 8192);
|
|
return resblks;
|
|
}
|
|
|
|
/* Ensure the summary counts are correct. */
|
|
STATIC int
|
|
xfs_check_summary_counts(
|
|
struct xfs_mount *mp)
|
|
{
|
|
/*
|
|
* The AG0 superblock verifier rejects in-progress filesystems,
|
|
* so we should never see the flag set this far into mounting.
|
|
*/
|
|
if (mp->m_sb.sb_inprogress) {
|
|
xfs_err(mp, "sb_inprogress set after log recovery??");
|
|
WARN_ON(1);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
/*
|
|
* Now the log is mounted, we know if it was an unclean shutdown or
|
|
* not. If it was, with the first phase of recovery has completed, we
|
|
* have consistent AG blocks on disk. We have not recovered EFIs yet,
|
|
* but they are recovered transactionally in the second recovery phase
|
|
* later.
|
|
*
|
|
* If the log was clean when we mounted, we can check the summary
|
|
* counters. If any of them are obviously incorrect, we can recompute
|
|
* them from the AGF headers in the next step.
|
|
*/
|
|
if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
|
|
(mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
|
|
mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
|
|
mp->m_flags |= XFS_MOUNT_BAD_SUMMARY;
|
|
|
|
/*
|
|
* We can safely re-initialise incore superblock counters from the
|
|
* per-ag data. These may not be correct if the filesystem was not
|
|
* cleanly unmounted, so we waited for recovery to finish before doing
|
|
* this.
|
|
*
|
|
* If the filesystem was cleanly unmounted or the previous check did
|
|
* not flag anything weird, then we can trust the values in the
|
|
* superblock to be correct and we don't need to do anything here.
|
|
* Otherwise, recalculate the summary counters.
|
|
*/
|
|
if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) ||
|
|
XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) &&
|
|
!(mp->m_flags & XFS_MOUNT_BAD_SUMMARY))
|
|
return 0;
|
|
|
|
return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
|
|
}
|
|
|
|
/*
|
|
* This function does the following on an initial mount of a file system:
|
|
* - reads the superblock from disk and init the mount struct
|
|
* - if we're a 32-bit kernel, do a size check on the superblock
|
|
* so we don't mount terabyte filesystems
|
|
* - init mount struct realtime fields
|
|
* - allocate inode hash table for fs
|
|
* - init directory manager
|
|
* - perform recovery and init the log manager
|
|
*/
|
|
int
|
|
xfs_mountfs(
|
|
struct xfs_mount *mp)
|
|
{
|
|
struct xfs_sb *sbp = &(mp->m_sb);
|
|
struct xfs_inode *rip;
|
|
uint64_t resblks;
|
|
uint quotamount = 0;
|
|
uint quotaflags = 0;
|
|
int error = 0;
|
|
|
|
xfs_sb_mount_common(mp, sbp);
|
|
|
|
/*
|
|
* Check for a mismatched features2 values. Older kernels read & wrote
|
|
* into the wrong sb offset for sb_features2 on some platforms due to
|
|
* xfs_sb_t not being 64bit size aligned when sb_features2 was added,
|
|
* which made older superblock reading/writing routines swap it as a
|
|
* 64-bit value.
|
|
*
|
|
* For backwards compatibility, we make both slots equal.
|
|
*
|
|
* If we detect a mismatched field, we OR the set bits into the existing
|
|
* features2 field in case it has already been modified; we don't want
|
|
* to lose any features. We then update the bad location with the ORed
|
|
* value so that older kernels will see any features2 flags. The
|
|
* superblock writeback code ensures the new sb_features2 is copied to
|
|
* sb_bad_features2 before it is logged or written to disk.
|
|
*/
|
|
if (xfs_sb_has_mismatched_features2(sbp)) {
|
|
xfs_warn(mp, "correcting sb_features alignment problem");
|
|
sbp->sb_features2 |= sbp->sb_bad_features2;
|
|
mp->m_update_sb = true;
|
|
|
|
/*
|
|
* Re-check for ATTR2 in case it was found in bad_features2
|
|
* slot.
|
|
*/
|
|
if (xfs_sb_version_hasattr2(&mp->m_sb) &&
|
|
!(mp->m_flags & XFS_MOUNT_NOATTR2))
|
|
mp->m_flags |= XFS_MOUNT_ATTR2;
|
|
}
|
|
|
|
if (xfs_sb_version_hasattr2(&mp->m_sb) &&
|
|
(mp->m_flags & XFS_MOUNT_NOATTR2)) {
|
|
xfs_sb_version_removeattr2(&mp->m_sb);
|
|
mp->m_update_sb = true;
|
|
|
|
/* update sb_versionnum for the clearing of the morebits */
|
|
if (!sbp->sb_features2)
|
|
mp->m_update_sb = true;
|
|
}
|
|
|
|
/* always use v2 inodes by default now */
|
|
if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
|
|
mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
|
|
mp->m_update_sb = true;
|
|
}
|
|
|
|
/*
|
|
* Check if sb_agblocks is aligned at stripe boundary
|
|
* If sb_agblocks is NOT aligned turn off m_dalign since
|
|
* allocator alignment is within an ag, therefore ag has
|
|
* to be aligned at stripe boundary.
|
|
*/
|
|
error = xfs_update_alignment(mp);
|
|
if (error)
|
|
goto out;
|
|
|
|
xfs_alloc_compute_maxlevels(mp);
|
|
xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
|
|
xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
|
|
xfs_ialloc_compute_maxlevels(mp);
|
|
xfs_rmapbt_compute_maxlevels(mp);
|
|
xfs_refcountbt_compute_maxlevels(mp);
|
|
|
|
xfs_set_maxicount(mp);
|
|
|
|
/* enable fail_at_unmount as default */
|
|
mp->m_fail_unmount = true;
|
|
|
|
error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
|
|
if (error)
|
|
goto out;
|
|
|
|
error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
|
|
&mp->m_kobj, "stats");
|
|
if (error)
|
|
goto out_remove_sysfs;
|
|
|
|
error = xfs_error_sysfs_init(mp);
|
|
if (error)
|
|
goto out_del_stats;
|
|
|
|
error = xfs_errortag_init(mp);
|
|
if (error)
|
|
goto out_remove_error_sysfs;
|
|
|
|
error = xfs_uuid_mount(mp);
|
|
if (error)
|
|
goto out_remove_errortag;
|
|
|
|
/*
|
|
* Set the minimum read and write sizes
|
|
*/
|
|
xfs_set_rw_sizes(mp);
|
|
|
|
/* set the low space thresholds for dynamic preallocation */
|
|
xfs_set_low_space_thresholds(mp);
|
|
|
|
/*
|
|
* Set the inode cluster size.
|
|
* This may still be overridden by the file system
|
|
* block size if it is larger than the chosen cluster size.
|
|
*
|
|
* For v5 filesystems, scale the cluster size with the inode size to
|
|
* keep a constant ratio of inode per cluster buffer, but only if mkfs
|
|
* has set the inode alignment value appropriately for larger cluster
|
|
* sizes.
|
|
*/
|
|
mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
|
|
if (xfs_sb_version_hascrc(&mp->m_sb)) {
|
|
int new_size = mp->m_inode_cluster_size;
|
|
|
|
new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
|
|
if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
|
|
mp->m_inode_cluster_size = new_size;
|
|
}
|
|
|
|
/*
|
|
* If enabled, sparse inode chunk alignment is expected to match the
|
|
* cluster size. Full inode chunk alignment must match the chunk size,
|
|
* but that is checked on sb read verification...
|
|
*/
|
|
if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
|
|
mp->m_sb.sb_spino_align !=
|
|
XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
|
|
xfs_warn(mp,
|
|
"Sparse inode block alignment (%u) must match cluster size (%llu).",
|
|
mp->m_sb.sb_spino_align,
|
|
XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
|
|
error = -EINVAL;
|
|
goto out_remove_uuid;
|
|
}
|
|
|
|
/*
|
|
* Set inode alignment fields
|
|
*/
|
|
xfs_set_inoalignment(mp);
|
|
|
|
/*
|
|
* Check that the data (and log if separate) is an ok size.
|
|
*/
|
|
error = xfs_check_sizes(mp);
|
|
if (error)
|
|
goto out_remove_uuid;
|
|
|
|
/*
|
|
* Initialize realtime fields in the mount structure
|
|
*/
|
|
error = xfs_rtmount_init(mp);
|
|
if (error) {
|
|
xfs_warn(mp, "RT mount failed");
|
|
goto out_remove_uuid;
|
|
}
|
|
|
|
/*
|
|
* Copies the low order bits of the timestamp and the randomly
|
|
* set "sequence" number out of a UUID.
|
|
*/
|
|
mp->m_fixedfsid[0] =
|
|
(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
|
|
get_unaligned_be16(&sbp->sb_uuid.b[4]);
|
|
mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
|
|
|
|
error = xfs_da_mount(mp);
|
|
if (error) {
|
|
xfs_warn(mp, "Failed dir/attr init: %d", error);
|
|
goto out_remove_uuid;
|
|
}
|
|
|
|
/*
|
|
* Initialize the precomputed transaction reservations values.
|
|
*/
|
|
xfs_trans_init(mp);
|
|
|
|
/*
|
|
* Allocate and initialize the per-ag data.
|
|
*/
|
|
error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
|
|
if (error) {
|
|
xfs_warn(mp, "Failed per-ag init: %d", error);
|
|
goto out_free_dir;
|
|
}
|
|
|
|
if (!sbp->sb_logblocks) {
|
|
xfs_warn(mp, "no log defined");
|
|
XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
|
|
error = -EFSCORRUPTED;
|
|
goto out_free_perag;
|
|
}
|
|
|
|
/*
|
|
* Log's mount-time initialization. The first part of recovery can place
|
|
* some items on the AIL, to be handled when recovery is finished or
|
|
* cancelled.
|
|
*/
|
|
error = xfs_log_mount(mp, mp->m_logdev_targp,
|
|
XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
|
|
XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
|
|
if (error) {
|
|
xfs_warn(mp, "log mount failed");
|
|
goto out_fail_wait;
|
|
}
|
|
|
|
/* Make sure the summary counts are ok. */
|
|
error = xfs_check_summary_counts(mp);
|
|
if (error)
|
|
goto out_log_dealloc;
|
|
|
|
/*
|
|
* Get and sanity-check the root inode.
|
|
* Save the pointer to it in the mount structure.
|
|
*/
|
|
error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
|
|
XFS_ILOCK_EXCL, &rip);
|
|
if (error) {
|
|
xfs_warn(mp,
|
|
"Failed to read root inode 0x%llx, error %d",
|
|
sbp->sb_rootino, -error);
|
|
goto out_log_dealloc;
|
|
}
|
|
|
|
ASSERT(rip != NULL);
|
|
|
|
if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
|
|
xfs_warn(mp, "corrupted root inode %llu: not a directory",
|
|
(unsigned long long)rip->i_ino);
|
|
xfs_iunlock(rip, XFS_ILOCK_EXCL);
|
|
XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
|
|
mp);
|
|
error = -EFSCORRUPTED;
|
|
goto out_rele_rip;
|
|
}
|
|
mp->m_rootip = rip; /* save it */
|
|
|
|
xfs_iunlock(rip, XFS_ILOCK_EXCL);
|
|
|
|
/*
|
|
* Initialize realtime inode pointers in the mount structure
|
|
*/
|
|
error = xfs_rtmount_inodes(mp);
|
|
if (error) {
|
|
/*
|
|
* Free up the root inode.
|
|
*/
|
|
xfs_warn(mp, "failed to read RT inodes");
|
|
goto out_rele_rip;
|
|
}
|
|
|
|
/*
|
|
* If this is a read-only mount defer the superblock updates until
|
|
* the next remount into writeable mode. Otherwise we would never
|
|
* perform the update e.g. for the root filesystem.
|
|
*/
|
|
if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
|
|
error = xfs_sync_sb(mp, false);
|
|
if (error) {
|
|
xfs_warn(mp, "failed to write sb changes");
|
|
goto out_rtunmount;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialise the XFS quota management subsystem for this mount
|
|
*/
|
|
if (XFS_IS_QUOTA_RUNNING(mp)) {
|
|
error = xfs_qm_newmount(mp, "amount, "aflags);
|
|
if (error)
|
|
goto out_rtunmount;
|
|
} else {
|
|
ASSERT(!XFS_IS_QUOTA_ON(mp));
|
|
|
|
/*
|
|
* If a file system had quotas running earlier, but decided to
|
|
* mount without -o uquota/pquota/gquota options, revoke the
|
|
* quotachecked license.
|
|
*/
|
|
if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
|
|
xfs_notice(mp, "resetting quota flags");
|
|
error = xfs_mount_reset_sbqflags(mp);
|
|
if (error)
|
|
goto out_rtunmount;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Finish recovering the file system. This part needed to be delayed
|
|
* until after the root and real-time bitmap inodes were consistently
|
|
* read in.
|
|
*/
|
|
error = xfs_log_mount_finish(mp);
|
|
if (error) {
|
|
xfs_warn(mp, "log mount finish failed");
|
|
goto out_rtunmount;
|
|
}
|
|
|
|
/*
|
|
* Now the log is fully replayed, we can transition to full read-only
|
|
* mode for read-only mounts. This will sync all the metadata and clean
|
|
* the log so that the recovery we just performed does not have to be
|
|
* replayed again on the next mount.
|
|
*
|
|
* We use the same quiesce mechanism as the rw->ro remount, as they are
|
|
* semantically identical operations.
|
|
*/
|
|
if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
|
|
XFS_MOUNT_RDONLY) {
|
|
xfs_quiesce_attr(mp);
|
|
}
|
|
|
|
/*
|
|
* Complete the quota initialisation, post-log-replay component.
|
|
*/
|
|
if (quotamount) {
|
|
ASSERT(mp->m_qflags == 0);
|
|
mp->m_qflags = quotaflags;
|
|
|
|
xfs_qm_mount_quotas(mp);
|
|
}
|
|
|
|
/*
|
|
* Now we are mounted, reserve a small amount of unused space for
|
|
* privileged transactions. This is needed so that transaction
|
|
* space required for critical operations can dip into this pool
|
|
* when at ENOSPC. This is needed for operations like create with
|
|
* attr, unwritten extent conversion at ENOSPC, etc. Data allocations
|
|
* are not allowed to use this reserved space.
|
|
*
|
|
* This may drive us straight to ENOSPC on mount, but that implies
|
|
* we were already there on the last unmount. Warn if this occurs.
|
|
*/
|
|
if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
|
|
resblks = xfs_default_resblks(mp);
|
|
error = xfs_reserve_blocks(mp, &resblks, NULL);
|
|
if (error)
|
|
xfs_warn(mp,
|
|
"Unable to allocate reserve blocks. Continuing without reserve pool.");
|
|
|
|
/* Recover any CoW blocks that never got remapped. */
|
|
error = xfs_reflink_recover_cow(mp);
|
|
if (error) {
|
|
xfs_err(mp,
|
|
"Error %d recovering leftover CoW allocations.", error);
|
|
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
|
|
goto out_quota;
|
|
}
|
|
|
|
/* Reserve AG blocks for future btree expansion. */
|
|
error = xfs_fs_reserve_ag_blocks(mp);
|
|
if (error && error != -ENOSPC)
|
|
goto out_agresv;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_agresv:
|
|
xfs_fs_unreserve_ag_blocks(mp);
|
|
out_quota:
|
|
xfs_qm_unmount_quotas(mp);
|
|
out_rtunmount:
|
|
xfs_rtunmount_inodes(mp);
|
|
out_rele_rip:
|
|
xfs_irele(rip);
|
|
/* Clean out dquots that might be in memory after quotacheck. */
|
|
xfs_qm_unmount(mp);
|
|
/*
|
|
* Cancel all delayed reclaim work and reclaim the inodes directly.
|
|
* We have to do this /after/ rtunmount and qm_unmount because those
|
|
* two will have scheduled delayed reclaim for the rt/quota inodes.
|
|
*
|
|
* This is slightly different from the unmountfs call sequence
|
|
* because we could be tearing down a partially set up mount. In
|
|
* particular, if log_mount_finish fails we bail out without calling
|
|
* qm_unmount_quotas and therefore rely on qm_unmount to release the
|
|
* quota inodes.
|
|
*/
|
|
cancel_delayed_work_sync(&mp->m_reclaim_work);
|
|
xfs_reclaim_inodes(mp, SYNC_WAIT);
|
|
out_log_dealloc:
|
|
mp->m_flags |= XFS_MOUNT_UNMOUNTING;
|
|
xfs_log_mount_cancel(mp);
|
|
out_fail_wait:
|
|
if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
|
|
xfs_wait_buftarg(mp->m_logdev_targp);
|
|
xfs_wait_buftarg(mp->m_ddev_targp);
|
|
out_free_perag:
|
|
xfs_free_perag(mp);
|
|
out_free_dir:
|
|
xfs_da_unmount(mp);
|
|
out_remove_uuid:
|
|
xfs_uuid_unmount(mp);
|
|
out_remove_errortag:
|
|
xfs_errortag_del(mp);
|
|
out_remove_error_sysfs:
|
|
xfs_error_sysfs_del(mp);
|
|
out_del_stats:
|
|
xfs_sysfs_del(&mp->m_stats.xs_kobj);
|
|
out_remove_sysfs:
|
|
xfs_sysfs_del(&mp->m_kobj);
|
|
out:
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* This flushes out the inodes,dquots and the superblock, unmounts the
|
|
* log and makes sure that incore structures are freed.
|
|
*/
|
|
void
|
|
xfs_unmountfs(
|
|
struct xfs_mount *mp)
|
|
{
|
|
uint64_t resblks;
|
|
int error;
|
|
|
|
xfs_icache_disable_reclaim(mp);
|
|
xfs_fs_unreserve_ag_blocks(mp);
|
|
xfs_qm_unmount_quotas(mp);
|
|
xfs_rtunmount_inodes(mp);
|
|
xfs_irele(mp->m_rootip);
|
|
|
|
/*
|
|
* We can potentially deadlock here if we have an inode cluster
|
|
* that has been freed has its buffer still pinned in memory because
|
|
* the transaction is still sitting in a iclog. The stale inodes
|
|
* on that buffer will have their flush locks held until the
|
|
* transaction hits the disk and the callbacks run. the inode
|
|
* flush takes the flush lock unconditionally and with nothing to
|
|
* push out the iclog we will never get that unlocked. hence we
|
|
* need to force the log first.
|
|
*/
|
|
xfs_log_force(mp, XFS_LOG_SYNC);
|
|
|
|
/*
|
|
* Wait for all busy extents to be freed, including completion of
|
|
* any discard operation.
|
|
*/
|
|
xfs_extent_busy_wait_all(mp);
|
|
flush_workqueue(xfs_discard_wq);
|
|
|
|
/*
|
|
* We now need to tell the world we are unmounting. This will allow
|
|
* us to detect that the filesystem is going away and we should error
|
|
* out anything that we have been retrying in the background. This will
|
|
* prevent neverending retries in AIL pushing from hanging the unmount.
|
|
*/
|
|
mp->m_flags |= XFS_MOUNT_UNMOUNTING;
|
|
|
|
/*
|
|
* Flush all pending changes from the AIL.
|
|
*/
|
|
xfs_ail_push_all_sync(mp->m_ail);
|
|
|
|
/*
|
|
* And reclaim all inodes. At this point there should be no dirty
|
|
* inodes and none should be pinned or locked, but use synchronous
|
|
* reclaim just to be sure. We can stop background inode reclaim
|
|
* here as well if it is still running.
|
|
*/
|
|
cancel_delayed_work_sync(&mp->m_reclaim_work);
|
|
xfs_reclaim_inodes(mp, SYNC_WAIT);
|
|
|
|
xfs_qm_unmount(mp);
|
|
|
|
/*
|
|
* Unreserve any blocks we have so that when we unmount we don't account
|
|
* the reserved free space as used. This is really only necessary for
|
|
* lazy superblock counting because it trusts the incore superblock
|
|
* counters to be absolutely correct on clean unmount.
|
|
*
|
|
* We don't bother correcting this elsewhere for lazy superblock
|
|
* counting because on mount of an unclean filesystem we reconstruct the
|
|
* correct counter value and this is irrelevant.
|
|
*
|
|
* For non-lazy counter filesystems, this doesn't matter at all because
|
|
* we only every apply deltas to the superblock and hence the incore
|
|
* value does not matter....
|
|
*/
|
|
resblks = 0;
|
|
error = xfs_reserve_blocks(mp, &resblks, NULL);
|
|
if (error)
|
|
xfs_warn(mp, "Unable to free reserved block pool. "
|
|
"Freespace may not be correct on next mount.");
|
|
|
|
error = xfs_log_sbcount(mp);
|
|
if (error)
|
|
xfs_warn(mp, "Unable to update superblock counters. "
|
|
"Freespace may not be correct on next mount.");
|
|
|
|
|
|
xfs_log_unmount(mp);
|
|
xfs_da_unmount(mp);
|
|
xfs_uuid_unmount(mp);
|
|
|
|
#if defined(DEBUG)
|
|
xfs_errortag_clearall(mp);
|
|
#endif
|
|
xfs_free_perag(mp);
|
|
|
|
xfs_errortag_del(mp);
|
|
xfs_error_sysfs_del(mp);
|
|
xfs_sysfs_del(&mp->m_stats.xs_kobj);
|
|
xfs_sysfs_del(&mp->m_kobj);
|
|
}
|
|
|
|
/*
|
|
* Determine whether modifications can proceed. The caller specifies the minimum
|
|
* freeze level for which modifications should not be allowed. This allows
|
|
* certain operations to proceed while the freeze sequence is in progress, if
|
|
* necessary.
|
|
*/
|
|
bool
|
|
xfs_fs_writable(
|
|
struct xfs_mount *mp,
|
|
int level)
|
|
{
|
|
ASSERT(level > SB_UNFROZEN);
|
|
if ((mp->m_super->s_writers.frozen >= level) ||
|
|
XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* xfs_log_sbcount
|
|
*
|
|
* Sync the superblock counters to disk.
|
|
*
|
|
* Note this code can be called during the process of freezing, so we use the
|
|
* transaction allocator that does not block when the transaction subsystem is
|
|
* in its frozen state.
|
|
*/
|
|
int
|
|
xfs_log_sbcount(xfs_mount_t *mp)
|
|
{
|
|
/* allow this to proceed during the freeze sequence... */
|
|
if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
|
|
return 0;
|
|
|
|
/*
|
|
* we don't need to do this if we are updating the superblock
|
|
* counters on every modification.
|
|
*/
|
|
if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
|
|
return 0;
|
|
|
|
return xfs_sync_sb(mp, true);
|
|
}
|
|
|
|
/*
|
|
* Deltas for the inode count are +/-64, hence we use a large batch size
|
|
* of 128 so we don't need to take the counter lock on every update.
|
|
*/
|
|
#define XFS_ICOUNT_BATCH 128
|
|
int
|
|
xfs_mod_icount(
|
|
struct xfs_mount *mp,
|
|
int64_t delta)
|
|
{
|
|
percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
|
|
if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
|
|
ASSERT(0);
|
|
percpu_counter_add(&mp->m_icount, -delta);
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
xfs_mod_ifree(
|
|
struct xfs_mount *mp,
|
|
int64_t delta)
|
|
{
|
|
percpu_counter_add(&mp->m_ifree, delta);
|
|
if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
|
|
ASSERT(0);
|
|
percpu_counter_add(&mp->m_ifree, -delta);
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Deltas for the block count can vary from 1 to very large, but lock contention
|
|
* only occurs on frequent small block count updates such as in the delayed
|
|
* allocation path for buffered writes (page a time updates). Hence we set
|
|
* a large batch count (1024) to minimise global counter updates except when
|
|
* we get near to ENOSPC and we have to be very accurate with our updates.
|
|
*/
|
|
#define XFS_FDBLOCKS_BATCH 1024
|
|
int
|
|
xfs_mod_fdblocks(
|
|
struct xfs_mount *mp,
|
|
int64_t delta,
|
|
bool rsvd)
|
|
{
|
|
int64_t lcounter;
|
|
long long res_used;
|
|
s32 batch;
|
|
|
|
if (delta > 0) {
|
|
/*
|
|
* If the reserve pool is depleted, put blocks back into it
|
|
* first. Most of the time the pool is full.
|
|
*/
|
|
if (likely(mp->m_resblks == mp->m_resblks_avail)) {
|
|
percpu_counter_add(&mp->m_fdblocks, delta);
|
|
return 0;
|
|
}
|
|
|
|
spin_lock(&mp->m_sb_lock);
|
|
res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
|
|
|
|
if (res_used > delta) {
|
|
mp->m_resblks_avail += delta;
|
|
} else {
|
|
delta -= res_used;
|
|
mp->m_resblks_avail = mp->m_resblks;
|
|
percpu_counter_add(&mp->m_fdblocks, delta);
|
|
}
|
|
spin_unlock(&mp->m_sb_lock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Taking blocks away, need to be more accurate the closer we
|
|
* are to zero.
|
|
*
|
|
* If the counter has a value of less than 2 * max batch size,
|
|
* then make everything serialise as we are real close to
|
|
* ENOSPC.
|
|
*/
|
|
if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
|
|
XFS_FDBLOCKS_BATCH) < 0)
|
|
batch = 1;
|
|
else
|
|
batch = XFS_FDBLOCKS_BATCH;
|
|
|
|
percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
|
|
if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
|
|
XFS_FDBLOCKS_BATCH) >= 0) {
|
|
/* we had space! */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* lock up the sb for dipping into reserves before releasing the space
|
|
* that took us to ENOSPC.
|
|
*/
|
|
spin_lock(&mp->m_sb_lock);
|
|
percpu_counter_add(&mp->m_fdblocks, -delta);
|
|
if (!rsvd)
|
|
goto fdblocks_enospc;
|
|
|
|
lcounter = (long long)mp->m_resblks_avail + delta;
|
|
if (lcounter >= 0) {
|
|
mp->m_resblks_avail = lcounter;
|
|
spin_unlock(&mp->m_sb_lock);
|
|
return 0;
|
|
}
|
|
printk_once(KERN_WARNING
|
|
"Filesystem \"%s\": reserve blocks depleted! "
|
|
"Consider increasing reserve pool size.",
|
|
mp->m_fsname);
|
|
fdblocks_enospc:
|
|
spin_unlock(&mp->m_sb_lock);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
int
|
|
xfs_mod_frextents(
|
|
struct xfs_mount *mp,
|
|
int64_t delta)
|
|
{
|
|
int64_t lcounter;
|
|
int ret = 0;
|
|
|
|
spin_lock(&mp->m_sb_lock);
|
|
lcounter = mp->m_sb.sb_frextents + delta;
|
|
if (lcounter < 0)
|
|
ret = -ENOSPC;
|
|
else
|
|
mp->m_sb.sb_frextents = lcounter;
|
|
spin_unlock(&mp->m_sb_lock);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* xfs_getsb() is called to obtain the buffer for the superblock.
|
|
* The buffer is returned locked and read in from disk.
|
|
* The buffer should be released with a call to xfs_brelse().
|
|
*
|
|
* If the flags parameter is BUF_TRYLOCK, then we'll only return
|
|
* the superblock buffer if it can be locked without sleeping.
|
|
* If it can't then we'll return NULL.
|
|
*/
|
|
struct xfs_buf *
|
|
xfs_getsb(
|
|
struct xfs_mount *mp,
|
|
int flags)
|
|
{
|
|
struct xfs_buf *bp = mp->m_sb_bp;
|
|
|
|
if (!xfs_buf_trylock(bp)) {
|
|
if (flags & XBF_TRYLOCK)
|
|
return NULL;
|
|
xfs_buf_lock(bp);
|
|
}
|
|
|
|
xfs_buf_hold(bp);
|
|
ASSERT(bp->b_flags & XBF_DONE);
|
|
return bp;
|
|
}
|
|
|
|
/*
|
|
* Used to free the superblock along various error paths.
|
|
*/
|
|
void
|
|
xfs_freesb(
|
|
struct xfs_mount *mp)
|
|
{
|
|
struct xfs_buf *bp = mp->m_sb_bp;
|
|
|
|
xfs_buf_lock(bp);
|
|
mp->m_sb_bp = NULL;
|
|
xfs_buf_relse(bp);
|
|
}
|
|
|
|
/*
|
|
* If the underlying (data/log/rt) device is readonly, there are some
|
|
* operations that cannot proceed.
|
|
*/
|
|
int
|
|
xfs_dev_is_read_only(
|
|
struct xfs_mount *mp,
|
|
char *message)
|
|
{
|
|
if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
|
|
xfs_readonly_buftarg(mp->m_logdev_targp) ||
|
|
(mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
|
|
xfs_notice(mp, "%s required on read-only device.", message);
|
|
xfs_notice(mp, "write access unavailable, cannot proceed.");
|
|
return -EROFS;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Force the summary counters to be recalculated at next mount. */
|
|
void
|
|
xfs_force_summary_recalc(
|
|
struct xfs_mount *mp)
|
|
{
|
|
if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
|
|
return;
|
|
|
|
spin_lock(&mp->m_sb_lock);
|
|
mp->m_flags |= XFS_MOUNT_BAD_SUMMARY;
|
|
spin_unlock(&mp->m_sb_lock);
|
|
}
|