OpenCloudOS-Kernel/mm/rmap.c

2407 lines
68 KiB
C

/*
* mm/rmap.c - physical to virtual reverse mappings
*
* Copyright 2001, Rik van Riel <riel@conectiva.com.br>
* Released under the General Public License (GPL).
*
* Simple, low overhead reverse mapping scheme.
* Please try to keep this thing as modular as possible.
*
* Provides methods for unmapping each kind of mapped page:
* the anon methods track anonymous pages, and
* the file methods track pages belonging to an inode.
*
* Original design by Rik van Riel <riel@conectiva.com.br> 2001
* File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
* Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
* Contributions by Hugh Dickins 2003, 2004
*/
/*
* Lock ordering in mm:
*
* inode->i_mutex (while writing or truncating, not reading or faulting)
* mm->mmap_lock
* page->flags PG_locked (lock_page) * (see huegtlbfs below)
* hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
* mapping->i_mmap_rwsem
* hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
* anon_vma->rwsem
* mm->page_table_lock or pte_lock
* swap_lock (in swap_duplicate, swap_info_get)
* mmlist_lock (in mmput, drain_mmlist and others)
* mapping->private_lock (in __set_page_dirty_buffers)
* lock_page_memcg move_lock (in __set_page_dirty_buffers)
* i_pages lock (widely used)
* lruvec->lru_lock (in lock_page_lruvec_irq)
* inode->i_lock (in set_page_dirty's __mark_inode_dirty)
* bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
* sb_lock (within inode_lock in fs/fs-writeback.c)
* i_pages lock (widely used, in set_page_dirty,
* in arch-dependent flush_dcache_mmap_lock,
* within bdi.wb->list_lock in __sync_single_inode)
*
* anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
* ->tasklist_lock
* pte map lock
*
* * hugetlbfs PageHuge() pages take locks in this order:
* mapping->i_mmap_rwsem
* hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
* page->flags PG_locked (lock_page)
*/
#include <linux/mm.h>
#include <linux/sched/mm.h>
#include <linux/sched/task.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/ksm.h>
#include <linux/rmap.h>
#include <linux/rcupdate.h>
#include <linux/export.h>
#include <linux/memcontrol.h>
#include <linux/mmu_notifier.h>
#include <linux/migrate.h>
#include <linux/hugetlb.h>
#include <linux/huge_mm.h>
#include <linux/backing-dev.h>
#include <linux/page_idle.h>
#include <linux/memremap.h>
#include <linux/userfaultfd_k.h>
#include <asm/tlbflush.h>
#include <trace/events/tlb.h>
#include "internal.h"
static struct kmem_cache *anon_vma_cachep;
static struct kmem_cache *anon_vma_chain_cachep;
static inline struct anon_vma *anon_vma_alloc(void)
{
struct anon_vma *anon_vma;
anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
if (anon_vma) {
atomic_set(&anon_vma->refcount, 1);
anon_vma->degree = 1; /* Reference for first vma */
anon_vma->parent = anon_vma;
/*
* Initialise the anon_vma root to point to itself. If called
* from fork, the root will be reset to the parents anon_vma.
*/
anon_vma->root = anon_vma;
}
return anon_vma;
}
static inline void anon_vma_free(struct anon_vma *anon_vma)
{
VM_BUG_ON(atomic_read(&anon_vma->refcount));
/*
* Synchronize against page_lock_anon_vma_read() such that
* we can safely hold the lock without the anon_vma getting
* freed.
*
* Relies on the full mb implied by the atomic_dec_and_test() from
* put_anon_vma() against the acquire barrier implied by
* down_read_trylock() from page_lock_anon_vma_read(). This orders:
*
* page_lock_anon_vma_read() VS put_anon_vma()
* down_read_trylock() atomic_dec_and_test()
* LOCK MB
* atomic_read() rwsem_is_locked()
*
* LOCK should suffice since the actual taking of the lock must
* happen _before_ what follows.
*/
might_sleep();
if (rwsem_is_locked(&anon_vma->root->rwsem)) {
anon_vma_lock_write(anon_vma);
anon_vma_unlock_write(anon_vma);
}
kmem_cache_free(anon_vma_cachep, anon_vma);
}
static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
{
return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
}
static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
{
kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
}
static void anon_vma_chain_link(struct vm_area_struct *vma,
struct anon_vma_chain *avc,
struct anon_vma *anon_vma)
{
avc->vma = vma;
avc->anon_vma = anon_vma;
list_add(&avc->same_vma, &vma->anon_vma_chain);
anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
}
/**
* __anon_vma_prepare - attach an anon_vma to a memory region
* @vma: the memory region in question
*
* This makes sure the memory mapping described by 'vma' has
* an 'anon_vma' attached to it, so that we can associate the
* anonymous pages mapped into it with that anon_vma.
*
* The common case will be that we already have one, which
* is handled inline by anon_vma_prepare(). But if
* not we either need to find an adjacent mapping that we
* can re-use the anon_vma from (very common when the only
* reason for splitting a vma has been mprotect()), or we
* allocate a new one.
*
* Anon-vma allocations are very subtle, because we may have
* optimistically looked up an anon_vma in page_lock_anon_vma_read()
* and that may actually touch the rwsem even in the newly
* allocated vma (it depends on RCU to make sure that the
* anon_vma isn't actually destroyed).
*
* As a result, we need to do proper anon_vma locking even
* for the new allocation. At the same time, we do not want
* to do any locking for the common case of already having
* an anon_vma.
*
* This must be called with the mmap_lock held for reading.
*/
int __anon_vma_prepare(struct vm_area_struct *vma)
{
struct mm_struct *mm = vma->vm_mm;
struct anon_vma *anon_vma, *allocated;
struct anon_vma_chain *avc;
might_sleep();
avc = anon_vma_chain_alloc(GFP_KERNEL);
if (!avc)
goto out_enomem;
anon_vma = find_mergeable_anon_vma(vma);
allocated = NULL;
if (!anon_vma) {
anon_vma = anon_vma_alloc();
if (unlikely(!anon_vma))
goto out_enomem_free_avc;
allocated = anon_vma;
}
anon_vma_lock_write(anon_vma);
/* page_table_lock to protect against threads */
spin_lock(&mm->page_table_lock);
if (likely(!vma->anon_vma)) {
vma->anon_vma = anon_vma;
anon_vma_chain_link(vma, avc, anon_vma);
/* vma reference or self-parent link for new root */
anon_vma->degree++;
allocated = NULL;
avc = NULL;
}
spin_unlock(&mm->page_table_lock);
anon_vma_unlock_write(anon_vma);
if (unlikely(allocated))
put_anon_vma(allocated);
if (unlikely(avc))
anon_vma_chain_free(avc);
return 0;
out_enomem_free_avc:
anon_vma_chain_free(avc);
out_enomem:
return -ENOMEM;
}
/*
* This is a useful helper function for locking the anon_vma root as
* we traverse the vma->anon_vma_chain, looping over anon_vma's that
* have the same vma.
*
* Such anon_vma's should have the same root, so you'd expect to see
* just a single mutex_lock for the whole traversal.
*/
static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
{
struct anon_vma *new_root = anon_vma->root;
if (new_root != root) {
if (WARN_ON_ONCE(root))
up_write(&root->rwsem);
root = new_root;
down_write(&root->rwsem);
}
return root;
}
static inline void unlock_anon_vma_root(struct anon_vma *root)
{
if (root)
up_write(&root->rwsem);
}
/*
* Attach the anon_vmas from src to dst.
* Returns 0 on success, -ENOMEM on failure.
*
* anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
* anon_vma_fork(). The first three want an exact copy of src, while the last
* one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
* endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
* we can identify this case by checking (!dst->anon_vma && src->anon_vma).
*
* If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
* and reuse existing anon_vma which has no vmas and only one child anon_vma.
* This prevents degradation of anon_vma hierarchy to endless linear chain in
* case of constantly forking task. On the other hand, an anon_vma with more
* than one child isn't reused even if there was no alive vma, thus rmap
* walker has a good chance of avoiding scanning the whole hierarchy when it
* searches where page is mapped.
*/
int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
{
struct anon_vma_chain *avc, *pavc;
struct anon_vma *root = NULL;
list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
struct anon_vma *anon_vma;
avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
if (unlikely(!avc)) {
unlock_anon_vma_root(root);
root = NULL;
avc = anon_vma_chain_alloc(GFP_KERNEL);
if (!avc)
goto enomem_failure;
}
anon_vma = pavc->anon_vma;
root = lock_anon_vma_root(root, anon_vma);
anon_vma_chain_link(dst, avc, anon_vma);
/*
* Reuse existing anon_vma if its degree lower than two,
* that means it has no vma and only one anon_vma child.
*
* Do not chose parent anon_vma, otherwise first child
* will always reuse it. Root anon_vma is never reused:
* it has self-parent reference and at least one child.
*/
if (!dst->anon_vma && src->anon_vma &&
anon_vma != src->anon_vma && anon_vma->degree < 2)
dst->anon_vma = anon_vma;
}
if (dst->anon_vma)
dst->anon_vma->degree++;
unlock_anon_vma_root(root);
return 0;
enomem_failure:
/*
* dst->anon_vma is dropped here otherwise its degree can be incorrectly
* decremented in unlink_anon_vmas().
* We can safely do this because callers of anon_vma_clone() don't care
* about dst->anon_vma if anon_vma_clone() failed.
*/
dst->anon_vma = NULL;
unlink_anon_vmas(dst);
return -ENOMEM;
}
/*
* Attach vma to its own anon_vma, as well as to the anon_vmas that
* the corresponding VMA in the parent process is attached to.
* Returns 0 on success, non-zero on failure.
*/
int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
{
struct anon_vma_chain *avc;
struct anon_vma *anon_vma;
int error;
/* Don't bother if the parent process has no anon_vma here. */
if (!pvma->anon_vma)
return 0;
/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
vma->anon_vma = NULL;
/*
* First, attach the new VMA to the parent VMA's anon_vmas,
* so rmap can find non-COWed pages in child processes.
*/
error = anon_vma_clone(vma, pvma);
if (error)
return error;
/* An existing anon_vma has been reused, all done then. */
if (vma->anon_vma)
return 0;
/* Then add our own anon_vma. */
anon_vma = anon_vma_alloc();
if (!anon_vma)
goto out_error;
avc = anon_vma_chain_alloc(GFP_KERNEL);
if (!avc)
goto out_error_free_anon_vma;
/*
* The root anon_vma's rwsem is the lock actually used when we
* lock any of the anon_vmas in this anon_vma tree.
*/
anon_vma->root = pvma->anon_vma->root;
anon_vma->parent = pvma->anon_vma;
/*
* With refcounts, an anon_vma can stay around longer than the
* process it belongs to. The root anon_vma needs to be pinned until
* this anon_vma is freed, because the lock lives in the root.
*/
get_anon_vma(anon_vma->root);
/* Mark this anon_vma as the one where our new (COWed) pages go. */
vma->anon_vma = anon_vma;
anon_vma_lock_write(anon_vma);
anon_vma_chain_link(vma, avc, anon_vma);
anon_vma->parent->degree++;
anon_vma_unlock_write(anon_vma);
return 0;
out_error_free_anon_vma:
put_anon_vma(anon_vma);
out_error:
unlink_anon_vmas(vma);
return -ENOMEM;
}
void unlink_anon_vmas(struct vm_area_struct *vma)
{
struct anon_vma_chain *avc, *next;
struct anon_vma *root = NULL;
/*
* Unlink each anon_vma chained to the VMA. This list is ordered
* from newest to oldest, ensuring the root anon_vma gets freed last.
*/
list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
struct anon_vma *anon_vma = avc->anon_vma;
root = lock_anon_vma_root(root, anon_vma);
anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
/*
* Leave empty anon_vmas on the list - we'll need
* to free them outside the lock.
*/
if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
anon_vma->parent->degree--;
continue;
}
list_del(&avc->same_vma);
anon_vma_chain_free(avc);
}
if (vma->anon_vma) {
vma->anon_vma->degree--;
/*
* vma would still be needed after unlink, and anon_vma will be prepared
* when handle fault.
*/
vma->anon_vma = NULL;
}
unlock_anon_vma_root(root);
/*
* Iterate the list once more, it now only contains empty and unlinked
* anon_vmas, destroy them. Could not do before due to __put_anon_vma()
* needing to write-acquire the anon_vma->root->rwsem.
*/
list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
struct anon_vma *anon_vma = avc->anon_vma;
VM_WARN_ON(anon_vma->degree);
put_anon_vma(anon_vma);
list_del(&avc->same_vma);
anon_vma_chain_free(avc);
}
}
static void anon_vma_ctor(void *data)
{
struct anon_vma *anon_vma = data;
init_rwsem(&anon_vma->rwsem);
atomic_set(&anon_vma->refcount, 0);
anon_vma->rb_root = RB_ROOT_CACHED;
}
void __init anon_vma_init(void)
{
anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
anon_vma_ctor);
anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
SLAB_PANIC|SLAB_ACCOUNT);
}
/*
* Getting a lock on a stable anon_vma from a page off the LRU is tricky!
*
* Since there is no serialization what so ever against page_remove_rmap()
* the best this function can do is return a refcount increased anon_vma
* that might have been relevant to this page.
*
* The page might have been remapped to a different anon_vma or the anon_vma
* returned may already be freed (and even reused).
*
* In case it was remapped to a different anon_vma, the new anon_vma will be a
* child of the old anon_vma, and the anon_vma lifetime rules will therefore
* ensure that any anon_vma obtained from the page will still be valid for as
* long as we observe page_mapped() [ hence all those page_mapped() tests ].
*
* All users of this function must be very careful when walking the anon_vma
* chain and verify that the page in question is indeed mapped in it
* [ something equivalent to page_mapped_in_vma() ].
*
* Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
* page_remove_rmap() that the anon_vma pointer from page->mapping is valid
* if there is a mapcount, we can dereference the anon_vma after observing
* those.
*/
struct anon_vma *page_get_anon_vma(struct page *page)
{
struct anon_vma *anon_vma = NULL;
unsigned long anon_mapping;
rcu_read_lock();
anon_mapping = (unsigned long)READ_ONCE(page->mapping);
if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
goto out;
if (!page_mapped(page))
goto out;
anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
if (!atomic_inc_not_zero(&anon_vma->refcount)) {
anon_vma = NULL;
goto out;
}
/*
* If this page is still mapped, then its anon_vma cannot have been
* freed. But if it has been unmapped, we have no security against the
* anon_vma structure being freed and reused (for another anon_vma:
* SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
* above cannot corrupt).
*/
if (!page_mapped(page)) {
rcu_read_unlock();
put_anon_vma(anon_vma);
return NULL;
}
out:
rcu_read_unlock();
return anon_vma;
}
/*
* Similar to page_get_anon_vma() except it locks the anon_vma.
*
* Its a little more complex as it tries to keep the fast path to a single
* atomic op -- the trylock. If we fail the trylock, we fall back to getting a
* reference like with page_get_anon_vma() and then block on the mutex.
*/
struct anon_vma *page_lock_anon_vma_read(struct page *page)
{
struct anon_vma *anon_vma = NULL;
struct anon_vma *root_anon_vma;
unsigned long anon_mapping;
rcu_read_lock();
anon_mapping = (unsigned long)READ_ONCE(page->mapping);
if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
goto out;
if (!page_mapped(page))
goto out;
anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
root_anon_vma = READ_ONCE(anon_vma->root);
if (down_read_trylock(&root_anon_vma->rwsem)) {
/*
* If the page is still mapped, then this anon_vma is still
* its anon_vma, and holding the mutex ensures that it will
* not go away, see anon_vma_free().
*/
if (!page_mapped(page)) {
up_read(&root_anon_vma->rwsem);
anon_vma = NULL;
}
goto out;
}
/* trylock failed, we got to sleep */
if (!atomic_inc_not_zero(&anon_vma->refcount)) {
anon_vma = NULL;
goto out;
}
if (!page_mapped(page)) {
rcu_read_unlock();
put_anon_vma(anon_vma);
return NULL;
}
/* we pinned the anon_vma, its safe to sleep */
rcu_read_unlock();
anon_vma_lock_read(anon_vma);
if (atomic_dec_and_test(&anon_vma->refcount)) {
/*
* Oops, we held the last refcount, release the lock
* and bail -- can't simply use put_anon_vma() because
* we'll deadlock on the anon_vma_lock_write() recursion.
*/
anon_vma_unlock_read(anon_vma);
__put_anon_vma(anon_vma);
anon_vma = NULL;
}
return anon_vma;
out:
rcu_read_unlock();
return anon_vma;
}
void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
{
anon_vma_unlock_read(anon_vma);
}
#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
/*
* Flush TLB entries for recently unmapped pages from remote CPUs. It is
* important if a PTE was dirty when it was unmapped that it's flushed
* before any IO is initiated on the page to prevent lost writes. Similarly,
* it must be flushed before freeing to prevent data leakage.
*/
void try_to_unmap_flush(void)
{
struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
if (!tlb_ubc->flush_required)
return;
arch_tlbbatch_flush(&tlb_ubc->arch);
tlb_ubc->flush_required = false;
tlb_ubc->writable = false;
}
/* Flush iff there are potentially writable TLB entries that can race with IO */
void try_to_unmap_flush_dirty(void)
{
struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
if (tlb_ubc->writable)
try_to_unmap_flush();
}
static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
{
struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
tlb_ubc->flush_required = true;
/*
* Ensure compiler does not re-order the setting of tlb_flush_batched
* before the PTE is cleared.
*/
barrier();
mm->tlb_flush_batched = true;
/*
* If the PTE was dirty then it's best to assume it's writable. The
* caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
* before the page is queued for IO.
*/
if (writable)
tlb_ubc->writable = true;
}
/*
* Returns true if the TLB flush should be deferred to the end of a batch of
* unmap operations to reduce IPIs.
*/
static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
{
bool should_defer = false;
if (!(flags & TTU_BATCH_FLUSH))
return false;
/* If remote CPUs need to be flushed then defer batch the flush */
if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
should_defer = true;
put_cpu();
return should_defer;
}
/*
* Reclaim unmaps pages under the PTL but do not flush the TLB prior to
* releasing the PTL if TLB flushes are batched. It's possible for a parallel
* operation such as mprotect or munmap to race between reclaim unmapping
* the page and flushing the page. If this race occurs, it potentially allows
* access to data via a stale TLB entry. Tracking all mm's that have TLB
* batching in flight would be expensive during reclaim so instead track
* whether TLB batching occurred in the past and if so then do a flush here
* if required. This will cost one additional flush per reclaim cycle paid
* by the first operation at risk such as mprotect and mumap.
*
* This must be called under the PTL so that an access to tlb_flush_batched
* that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
* via the PTL.
*/
void flush_tlb_batched_pending(struct mm_struct *mm)
{
if (data_race(mm->tlb_flush_batched)) {
flush_tlb_mm(mm);
/*
* Do not allow the compiler to re-order the clearing of
* tlb_flush_batched before the tlb is flushed.
*/
barrier();
mm->tlb_flush_batched = false;
}
}
#else
static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
{
}
static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
{
return false;
}
#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
/*
* At what user virtual address is page expected in vma?
* Caller should check the page is actually part of the vma.
*/
unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
{
if (PageAnon(page)) {
struct anon_vma *page__anon_vma = page_anon_vma(page);
/*
* Note: swapoff's unuse_vma() is more efficient with this
* check, and needs it to match anon_vma when KSM is active.
*/
if (!vma->anon_vma || !page__anon_vma ||
vma->anon_vma->root != page__anon_vma->root)
return -EFAULT;
} else if (!vma->vm_file) {
return -EFAULT;
} else if (vma->vm_file->f_mapping != compound_head(page)->mapping) {
return -EFAULT;
}
return vma_address(page, vma);
}
pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
{
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd = NULL;
pmd_t pmde;
pgd = pgd_offset(mm, address);
if (!pgd_present(*pgd))
goto out;
p4d = p4d_offset(pgd, address);
if (!p4d_present(*p4d))
goto out;
pud = pud_offset(p4d, address);
if (!pud_present(*pud))
goto out;
pmd = pmd_offset(pud, address);
/*
* Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
* without holding anon_vma lock for write. So when looking for a
* genuine pmde (in which to find pte), test present and !THP together.
*/
pmde = *pmd;
barrier();
if (!pmd_present(pmde) || pmd_trans_huge(pmde))
pmd = NULL;
out:
return pmd;
}
struct page_referenced_arg {
int mapcount;
int referenced;
unsigned long vm_flags;
struct mem_cgroup *memcg;
};
/*
* arg: page_referenced_arg will be passed
*/
static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
unsigned long address, void *arg)
{
struct page_referenced_arg *pra = arg;
struct page_vma_mapped_walk pvmw = {
.page = page,
.vma = vma,
.address = address,
};
int referenced = 0;
while (page_vma_mapped_walk(&pvmw)) {
address = pvmw.address;
if (vma->vm_flags & VM_LOCKED) {
page_vma_mapped_walk_done(&pvmw);
pra->vm_flags |= VM_LOCKED;
return false; /* To break the loop */
}
if (pvmw.pte) {
if (ptep_clear_flush_young_notify(vma, address,
pvmw.pte)) {
/*
* Don't treat a reference through
* a sequentially read mapping as such.
* If the page has been used in another mapping,
* we will catch it; if this other mapping is
* already gone, the unmap path will have set
* PG_referenced or activated the page.
*/
if (likely(!(vma->vm_flags & VM_SEQ_READ)))
referenced++;
}
} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
if (pmdp_clear_flush_young_notify(vma, address,
pvmw.pmd))
referenced++;
} else {
/* unexpected pmd-mapped page? */
WARN_ON_ONCE(1);
}
pra->mapcount--;
}
if (referenced)
clear_page_idle(page);
if (test_and_clear_page_young(page))
referenced++;
if (referenced) {
pra->referenced++;
pra->vm_flags |= vma->vm_flags;
}
if (!pra->mapcount)
return false; /* To break the loop */
return true;
}
static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
{
struct page_referenced_arg *pra = arg;
struct mem_cgroup *memcg = pra->memcg;
if (!mm_match_cgroup(vma->vm_mm, memcg))
return true;
return false;
}
/**
* page_referenced - test if the page was referenced
* @page: the page to test
* @is_locked: caller holds lock on the page
* @memcg: target memory cgroup
* @vm_flags: collect encountered vma->vm_flags who actually referenced the page
*
* Quick test_and_clear_referenced for all mappings to a page,
* returns the number of ptes which referenced the page.
*/
int page_referenced(struct page *page,
int is_locked,
struct mem_cgroup *memcg,
unsigned long *vm_flags)
{
int we_locked = 0;
struct page_referenced_arg pra = {
.mapcount = total_mapcount(page),
.memcg = memcg,
};
struct rmap_walk_control rwc = {
.rmap_one = page_referenced_one,
.arg = (void *)&pra,
.anon_lock = page_lock_anon_vma_read,
};
*vm_flags = 0;
if (!pra.mapcount)
return 0;
if (!page_rmapping(page))
return 0;
if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
we_locked = trylock_page(page);
if (!we_locked)
return 1;
}
/*
* If we are reclaiming on behalf of a cgroup, skip
* counting on behalf of references from different
* cgroups
*/
if (memcg) {
rwc.invalid_vma = invalid_page_referenced_vma;
}
rmap_walk(page, &rwc);
*vm_flags = pra.vm_flags;
if (we_locked)
unlock_page(page);
return pra.referenced;
}
static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
unsigned long address, void *arg)
{
struct page_vma_mapped_walk pvmw = {
.page = page,
.vma = vma,
.address = address,
.flags = PVMW_SYNC,
};
struct mmu_notifier_range range;
int *cleaned = arg;
/*
* We have to assume the worse case ie pmd for invalidation. Note that
* the page can not be free from this function.
*/
mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
0, vma, vma->vm_mm, address,
vma_address_end(page, vma));
mmu_notifier_invalidate_range_start(&range);
while (page_vma_mapped_walk(&pvmw)) {
int ret = 0;
address = pvmw.address;
if (pvmw.pte) {
pte_t entry;
pte_t *pte = pvmw.pte;
if (!pte_dirty(*pte) && !pte_write(*pte))
continue;
flush_cache_page(vma, address, pte_pfn(*pte));
entry = ptep_clear_flush(vma, address, pte);
entry = pte_wrprotect(entry);
entry = pte_mkclean(entry);
set_pte_at(vma->vm_mm, address, pte, entry);
ret = 1;
} else {
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_t *pmd = pvmw.pmd;
pmd_t entry;
if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
continue;
flush_cache_page(vma, address, page_to_pfn(page));
entry = pmdp_invalidate(vma, address, pmd);
entry = pmd_wrprotect(entry);
entry = pmd_mkclean(entry);
set_pmd_at(vma->vm_mm, address, pmd, entry);
ret = 1;
#else
/* unexpected pmd-mapped page? */
WARN_ON_ONCE(1);
#endif
}
/*
* No need to call mmu_notifier_invalidate_range() as we are
* downgrading page table protection not changing it to point
* to a new page.
*
* See Documentation/vm/mmu_notifier.rst
*/
if (ret)
(*cleaned)++;
}
mmu_notifier_invalidate_range_end(&range);
return true;
}
static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
{
if (vma->vm_flags & VM_SHARED)
return false;
return true;
}
int page_mkclean(struct page *page)
{
int cleaned = 0;
struct address_space *mapping;
struct rmap_walk_control rwc = {
.arg = (void *)&cleaned,
.rmap_one = page_mkclean_one,
.invalid_vma = invalid_mkclean_vma,
};
BUG_ON(!PageLocked(page));
if (!page_mapped(page))
return 0;
mapping = page_mapping(page);
if (!mapping)
return 0;
rmap_walk(page, &rwc);
return cleaned;
}
EXPORT_SYMBOL_GPL(page_mkclean);
/**
* page_move_anon_rmap - move a page to our anon_vma
* @page: the page to move to our anon_vma
* @vma: the vma the page belongs to
*
* When a page belongs exclusively to one process after a COW event,
* that page can be moved into the anon_vma that belongs to just that
* process, so the rmap code will not search the parent or sibling
* processes.
*/
void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
{
struct anon_vma *anon_vma = vma->anon_vma;
page = compound_head(page);
VM_BUG_ON_PAGE(!PageLocked(page), page);
VM_BUG_ON_VMA(!anon_vma, vma);
anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
/*
* Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
* simultaneously, so a concurrent reader (eg page_referenced()'s
* PageAnon()) will not see one without the other.
*/
WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
}
/**
* __page_set_anon_rmap - set up new anonymous rmap
* @page: Page or Hugepage to add to rmap
* @vma: VM area to add page to.
* @address: User virtual address of the mapping
* @exclusive: the page is exclusively owned by the current process
*/
static void __page_set_anon_rmap(struct page *page,
struct vm_area_struct *vma, unsigned long address, int exclusive)
{
struct anon_vma *anon_vma = vma->anon_vma;
BUG_ON(!anon_vma);
if (PageAnon(page))
return;
/*
* If the page isn't exclusively mapped into this vma,
* we must use the _oldest_ possible anon_vma for the
* page mapping!
*/
if (!exclusive)
anon_vma = anon_vma->root;
/*
* page_idle does a lockless/optimistic rmap scan on page->mapping.
* Make sure the compiler doesn't split the stores of anon_vma and
* the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
* could mistake the mapping for a struct address_space and crash.
*/
anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
page->index = linear_page_index(vma, address);
}
/**
* __page_check_anon_rmap - sanity check anonymous rmap addition
* @page: the page to add the mapping to
* @vma: the vm area in which the mapping is added
* @address: the user virtual address mapped
*/
static void __page_check_anon_rmap(struct page *page,
struct vm_area_struct *vma, unsigned long address)
{
/*
* The page's anon-rmap details (mapping and index) are guaranteed to
* be set up correctly at this point.
*
* We have exclusion against page_add_anon_rmap because the caller
* always holds the page locked.
*
* We have exclusion against page_add_new_anon_rmap because those pages
* are initially only visible via the pagetables, and the pte is locked
* over the call to page_add_new_anon_rmap.
*/
VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page);
VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
page);
}
/**
* page_add_anon_rmap - add pte mapping to an anonymous page
* @page: the page to add the mapping to
* @vma: the vm area in which the mapping is added
* @address: the user virtual address mapped
* @compound: charge the page as compound or small page
*
* The caller needs to hold the pte lock, and the page must be locked in
* the anon_vma case: to serialize mapping,index checking after setting,
* and to ensure that PageAnon is not being upgraded racily to PageKsm
* (but PageKsm is never downgraded to PageAnon).
*/
void page_add_anon_rmap(struct page *page,
struct vm_area_struct *vma, unsigned long address, bool compound)
{
do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
}
/*
* Special version of the above for do_swap_page, which often runs
* into pages that are exclusively owned by the current process.
* Everybody else should continue to use page_add_anon_rmap above.
*/
void do_page_add_anon_rmap(struct page *page,
struct vm_area_struct *vma, unsigned long address, int flags)
{
bool compound = flags & RMAP_COMPOUND;
bool first;
if (unlikely(PageKsm(page)))
lock_page_memcg(page);
else
VM_BUG_ON_PAGE(!PageLocked(page), page);
if (compound) {
atomic_t *mapcount;
VM_BUG_ON_PAGE(!PageLocked(page), page);
VM_BUG_ON_PAGE(!PageTransHuge(page), page);
mapcount = compound_mapcount_ptr(page);
first = atomic_inc_and_test(mapcount);
} else {
first = atomic_inc_and_test(&page->_mapcount);
}
if (first) {
int nr = compound ? thp_nr_pages(page) : 1;
/*
* We use the irq-unsafe __{inc|mod}_zone_page_stat because
* these counters are not modified in interrupt context, and
* pte lock(a spinlock) is held, which implies preemption
* disabled.
*/
if (compound)
__mod_lruvec_page_state(page, NR_ANON_THPS, nr);
__mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
}
if (unlikely(PageKsm(page))) {
unlock_page_memcg(page);
return;
}
/* address might be in next vma when migration races vma_adjust */
if (first)
__page_set_anon_rmap(page, vma, address,
flags & RMAP_EXCLUSIVE);
else
__page_check_anon_rmap(page, vma, address);
}
/**
* page_add_new_anon_rmap - add pte mapping to a new anonymous page
* @page: the page to add the mapping to
* @vma: the vm area in which the mapping is added
* @address: the user virtual address mapped
* @compound: charge the page as compound or small page
*
* Same as page_add_anon_rmap but must only be called on *new* pages.
* This means the inc-and-test can be bypassed.
* Page does not have to be locked.
*/
void page_add_new_anon_rmap(struct page *page,
struct vm_area_struct *vma, unsigned long address, bool compound)
{
int nr = compound ? thp_nr_pages(page) : 1;
VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
__SetPageSwapBacked(page);
if (compound) {
VM_BUG_ON_PAGE(!PageTransHuge(page), page);
/* increment count (starts at -1) */
atomic_set(compound_mapcount_ptr(page), 0);
if (hpage_pincount_available(page))
atomic_set(compound_pincount_ptr(page), 0);
__mod_lruvec_page_state(page, NR_ANON_THPS, nr);
} else {
/* Anon THP always mapped first with PMD */
VM_BUG_ON_PAGE(PageTransCompound(page), page);
/* increment count (starts at -1) */
atomic_set(&page->_mapcount, 0);
}
__mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
__page_set_anon_rmap(page, vma, address, 1);
}
/**
* page_add_file_rmap - add pte mapping to a file page
* @page: the page to add the mapping to
* @compound: charge the page as compound or small page
*
* The caller needs to hold the pte lock.
*/
void page_add_file_rmap(struct page *page, bool compound)
{
int i, nr = 1;
VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
lock_page_memcg(page);
if (compound && PageTransHuge(page)) {
int nr_pages = thp_nr_pages(page);
for (i = 0, nr = 0; i < nr_pages; i++) {
if (atomic_inc_and_test(&page[i]._mapcount))
nr++;
}
if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
goto out;
if (PageSwapBacked(page))
__mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
nr_pages);
else
__mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
nr_pages);
} else {
if (PageTransCompound(page) && page_mapping(page)) {
VM_WARN_ON_ONCE(!PageLocked(page));
SetPageDoubleMap(compound_head(page));
if (PageMlocked(page))
clear_page_mlock(compound_head(page));
}
if (!atomic_inc_and_test(&page->_mapcount))
goto out;
}
__mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
out:
unlock_page_memcg(page);
}
static void page_remove_file_rmap(struct page *page, bool compound)
{
int i, nr = 1;
VM_BUG_ON_PAGE(compound && !PageHead(page), page);
/* Hugepages are not counted in NR_FILE_MAPPED for now. */
if (unlikely(PageHuge(page))) {
/* hugetlb pages are always mapped with pmds */
atomic_dec(compound_mapcount_ptr(page));
return;
}
/* page still mapped by someone else? */
if (compound && PageTransHuge(page)) {
int nr_pages = thp_nr_pages(page);
for (i = 0, nr = 0; i < nr_pages; i++) {
if (atomic_add_negative(-1, &page[i]._mapcount))
nr++;
}
if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
return;
if (PageSwapBacked(page))
__mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
-nr_pages);
else
__mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
-nr_pages);
} else {
if (!atomic_add_negative(-1, &page->_mapcount))
return;
}
/*
* We use the irq-unsafe __{inc|mod}_lruvec_page_state because
* these counters are not modified in interrupt context, and
* pte lock(a spinlock) is held, which implies preemption disabled.
*/
__mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
if (unlikely(PageMlocked(page)))
clear_page_mlock(page);
}
static void page_remove_anon_compound_rmap(struct page *page)
{
int i, nr;
if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
return;
/* Hugepages are not counted in NR_ANON_PAGES for now. */
if (unlikely(PageHuge(page)))
return;
if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
return;
__mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
if (TestClearPageDoubleMap(page)) {
/*
* Subpages can be mapped with PTEs too. Check how many of
* them are still mapped.
*/
for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
if (atomic_add_negative(-1, &page[i]._mapcount))
nr++;
}
/*
* Queue the page for deferred split if at least one small
* page of the compound page is unmapped, but at least one
* small page is still mapped.
*/
if (nr && nr < thp_nr_pages(page))
deferred_split_huge_page(page);
} else {
nr = thp_nr_pages(page);
}
if (unlikely(PageMlocked(page)))
clear_page_mlock(page);
if (nr)
__mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
}
/**
* page_remove_rmap - take down pte mapping from a page
* @page: page to remove mapping from
* @compound: uncharge the page as compound or small page
*
* The caller needs to hold the pte lock.
*/
void page_remove_rmap(struct page *page, bool compound)
{
lock_page_memcg(page);
if (!PageAnon(page)) {
page_remove_file_rmap(page, compound);
goto out;
}
if (compound) {
page_remove_anon_compound_rmap(page);
goto out;
}
/* page still mapped by someone else? */
if (!atomic_add_negative(-1, &page->_mapcount))
goto out;
/*
* We use the irq-unsafe __{inc|mod}_zone_page_stat because
* these counters are not modified in interrupt context, and
* pte lock(a spinlock) is held, which implies preemption disabled.
*/
__dec_lruvec_page_state(page, NR_ANON_MAPPED);
if (unlikely(PageMlocked(page)))
clear_page_mlock(page);
if (PageTransCompound(page))
deferred_split_huge_page(compound_head(page));
/*
* It would be tidy to reset the PageAnon mapping here,
* but that might overwrite a racing page_add_anon_rmap
* which increments mapcount after us but sets mapping
* before us: so leave the reset to free_unref_page,
* and remember that it's only reliable while mapped.
* Leaving it set also helps swapoff to reinstate ptes
* faster for those pages still in swapcache.
*/
out:
unlock_page_memcg(page);
}
/*
* @arg: enum ttu_flags will be passed to this argument
*/
static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
unsigned long address, void *arg)
{
struct mm_struct *mm = vma->vm_mm;
struct page_vma_mapped_walk pvmw = {
.page = page,
.vma = vma,
.address = address,
};
pte_t pteval;
struct page *subpage;
bool ret = true;
struct mmu_notifier_range range;
enum ttu_flags flags = (enum ttu_flags)(long)arg;
/*
* When racing against e.g. zap_pte_range() on another cpu,
* in between its ptep_get_and_clear_full() and page_remove_rmap(),
* try_to_unmap() may return before page_mapped() has become false,
* if page table locking is skipped: use TTU_SYNC to wait for that.
*/
if (flags & TTU_SYNC)
pvmw.flags = PVMW_SYNC;
if (flags & TTU_SPLIT_HUGE_PMD)
split_huge_pmd_address(vma, address, false, page);
/*
* For THP, we have to assume the worse case ie pmd for invalidation.
* For hugetlb, it could be much worse if we need to do pud
* invalidation in the case of pmd sharing.
*
* Note that the page can not be free in this function as call of
* try_to_unmap() must hold a reference on the page.
*/
range.end = PageKsm(page) ?
address + PAGE_SIZE : vma_address_end(page, vma);
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
address, range.end);
if (PageHuge(page)) {
/*
* If sharing is possible, start and end will be adjusted
* accordingly.
*/
adjust_range_if_pmd_sharing_possible(vma, &range.start,
&range.end);
}
mmu_notifier_invalidate_range_start(&range);
while (page_vma_mapped_walk(&pvmw)) {
/*
* If the page is mlock()d, we cannot swap it out.
*/
if (!(flags & TTU_IGNORE_MLOCK)) {
if (vma->vm_flags & VM_LOCKED) {
/* PTE-mapped THP are never marked as mlocked */
if (!PageTransCompound(page) ||
(PageHead(page) && !PageDoubleMap(page))) {
/*
* Holding pte lock, we do *not* need
* mmap_lock here
*/
mlock_vma_page(page);
}
ret = false;
page_vma_mapped_walk_done(&pvmw);
break;
}
}
/* Unexpected PMD-mapped THP? */
VM_BUG_ON_PAGE(!pvmw.pte, page);
subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
address = pvmw.address;
if (PageHuge(page) && !PageAnon(page)) {
/*
* To call huge_pmd_unshare, i_mmap_rwsem must be
* held in write mode. Caller needs to explicitly
* do this outside rmap routines.
*/
VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
/*
* huge_pmd_unshare unmapped an entire PMD
* page. There is no way of knowing exactly
* which PMDs may be cached for this mm, so
* we must flush them all. start/end were
* already adjusted above to cover this range.
*/
flush_cache_range(vma, range.start, range.end);
flush_tlb_range(vma, range.start, range.end);
mmu_notifier_invalidate_range(mm, range.start,
range.end);
/*
* The ref count of the PMD page was dropped
* which is part of the way map counting
* is done for shared PMDs. Return 'true'
* here. When there is no other sharing,
* huge_pmd_unshare returns false and we will
* unmap the actual page and drop map count
* to zero.
*/
page_vma_mapped_walk_done(&pvmw);
break;
}
}
/* Nuke the page table entry. */
flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
if (should_defer_flush(mm, flags)) {
/*
* We clear the PTE but do not flush so potentially
* a remote CPU could still be writing to the page.
* If the entry was previously clean then the
* architecture must guarantee that a clear->dirty
* transition on a cached TLB entry is written through
* and traps if the PTE is unmapped.
*/
pteval = ptep_get_and_clear(mm, address, pvmw.pte);
set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
} else {
pteval = ptep_clear_flush(vma, address, pvmw.pte);
}
/* Move the dirty bit to the page. Now the pte is gone. */
if (pte_dirty(pteval))
set_page_dirty(page);
/* Update high watermark before we lower rss */
update_hiwater_rss(mm);
if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
if (PageHuge(page)) {
hugetlb_count_sub(compound_nr(page), mm);
set_huge_swap_pte_at(mm, address,
pvmw.pte, pteval,
vma_mmu_pagesize(vma));
} else {
dec_mm_counter(mm, mm_counter(page));
set_pte_at(mm, address, pvmw.pte, pteval);
}
} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
/*
* The guest indicated that the page content is of no
* interest anymore. Simply discard the pte, vmscan
* will take care of the rest.
* A future reference will then fault in a new zero
* page. When userfaultfd is active, we must not drop
* this page though, as its main user (postcopy
* migration) will not expect userfaults on already
* copied pages.
*/
dec_mm_counter(mm, mm_counter(page));
/* We have to invalidate as we cleared the pte */
mmu_notifier_invalidate_range(mm, address,
address + PAGE_SIZE);
} else if (PageAnon(page)) {
swp_entry_t entry = { .val = page_private(subpage) };
pte_t swp_pte;
/*
* Store the swap location in the pte.
* See handle_pte_fault() ...
*/
if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
WARN_ON_ONCE(1);
ret = false;
/* We have to invalidate as we cleared the pte */
mmu_notifier_invalidate_range(mm, address,
address + PAGE_SIZE);
page_vma_mapped_walk_done(&pvmw);
break;
}
/* MADV_FREE page check */
if (!PageSwapBacked(page)) {
if (!PageDirty(page)) {
/* Invalidate as we cleared the pte */
mmu_notifier_invalidate_range(mm,
address, address + PAGE_SIZE);
dec_mm_counter(mm, MM_ANONPAGES);
goto discard;
}
/*
* If the page was redirtied, it cannot be
* discarded. Remap the page to page table.
*/
set_pte_at(mm, address, pvmw.pte, pteval);
SetPageSwapBacked(page);
ret = false;
page_vma_mapped_walk_done(&pvmw);
break;
}
if (swap_duplicate(entry) < 0) {
set_pte_at(mm, address, pvmw.pte, pteval);
ret = false;
page_vma_mapped_walk_done(&pvmw);
break;
}
if (arch_unmap_one(mm, vma, address, pteval) < 0) {
set_pte_at(mm, address, pvmw.pte, pteval);
ret = false;
page_vma_mapped_walk_done(&pvmw);
break;
}
if (list_empty(&mm->mmlist)) {
spin_lock(&mmlist_lock);
if (list_empty(&mm->mmlist))
list_add(&mm->mmlist, &init_mm.mmlist);
spin_unlock(&mmlist_lock);
}
dec_mm_counter(mm, MM_ANONPAGES);
inc_mm_counter(mm, MM_SWAPENTS);
swp_pte = swp_entry_to_pte(entry);
if (pte_soft_dirty(pteval))
swp_pte = pte_swp_mksoft_dirty(swp_pte);
if (pte_uffd_wp(pteval))
swp_pte = pte_swp_mkuffd_wp(swp_pte);
set_pte_at(mm, address, pvmw.pte, swp_pte);
/* Invalidate as we cleared the pte */
mmu_notifier_invalidate_range(mm, address,
address + PAGE_SIZE);
} else {
/*
* This is a locked file-backed page, thus it cannot
* be removed from the page cache and replaced by a new
* page before mmu_notifier_invalidate_range_end, so no
* concurrent thread might update its page table to
* point at new page while a device still is using this
* page.
*
* See Documentation/vm/mmu_notifier.rst
*/
dec_mm_counter(mm, mm_counter_file(page));
}
discard:
/*
* No need to call mmu_notifier_invalidate_range() it has be
* done above for all cases requiring it to happen under page
* table lock before mmu_notifier_invalidate_range_end()
*
* See Documentation/vm/mmu_notifier.rst
*/
page_remove_rmap(subpage, PageHuge(page));
put_page(page);
}
mmu_notifier_invalidate_range_end(&range);
return ret;
}
static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
{
return vma_is_temporary_stack(vma);
}
static int page_not_mapped(struct page *page)
{
return !page_mapped(page);
}
/**
* try_to_unmap - try to remove all page table mappings to a page
* @page: the page to get unmapped
* @flags: action and flags
*
* Tries to remove all the page table entries which are mapping this
* page, used in the pageout path. Caller must hold the page lock.
*
* It is the caller's responsibility to check if the page is still
* mapped when needed (use TTU_SYNC to prevent accounting races).
*/
void try_to_unmap(struct page *page, enum ttu_flags flags)
{
struct rmap_walk_control rwc = {
.rmap_one = try_to_unmap_one,
.arg = (void *)flags,
.done = page_not_mapped,
.anon_lock = page_lock_anon_vma_read,
};
if (flags & TTU_RMAP_LOCKED)
rmap_walk_locked(page, &rwc);
else
rmap_walk(page, &rwc);
}
/*
* @arg: enum ttu_flags will be passed to this argument.
*
* If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
* containing migration entries.
*/
static bool try_to_migrate_one(struct page *page, struct vm_area_struct *vma,
unsigned long address, void *arg)
{
struct mm_struct *mm = vma->vm_mm;
struct page_vma_mapped_walk pvmw = {
.page = page,
.vma = vma,
.address = address,
};
pte_t pteval;
struct page *subpage;
bool ret = true;
struct mmu_notifier_range range;
enum ttu_flags flags = (enum ttu_flags)(long)arg;
/*
* When racing against e.g. zap_pte_range() on another cpu,
* in between its ptep_get_and_clear_full() and page_remove_rmap(),
* try_to_migrate() may return before page_mapped() has become false,
* if page table locking is skipped: use TTU_SYNC to wait for that.
*/
if (flags & TTU_SYNC)
pvmw.flags = PVMW_SYNC;
/*
* unmap_page() in mm/huge_memory.c is the only user of migration with
* TTU_SPLIT_HUGE_PMD and it wants to freeze.
*/
if (flags & TTU_SPLIT_HUGE_PMD)
split_huge_pmd_address(vma, address, true, page);
/*
* For THP, we have to assume the worse case ie pmd for invalidation.
* For hugetlb, it could be much worse if we need to do pud
* invalidation in the case of pmd sharing.
*
* Note that the page can not be free in this function as call of
* try_to_unmap() must hold a reference on the page.
*/
range.end = PageKsm(page) ?
address + PAGE_SIZE : vma_address_end(page, vma);
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
address, range.end);
if (PageHuge(page)) {
/*
* If sharing is possible, start and end will be adjusted
* accordingly.
*/
adjust_range_if_pmd_sharing_possible(vma, &range.start,
&range.end);
}
mmu_notifier_invalidate_range_start(&range);
while (page_vma_mapped_walk(&pvmw)) {
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
/* PMD-mapped THP migration entry */
if (!pvmw.pte) {
VM_BUG_ON_PAGE(PageHuge(page) ||
!PageTransCompound(page), page);
set_pmd_migration_entry(&pvmw, page);
continue;
}
#endif
/* Unexpected PMD-mapped THP? */
VM_BUG_ON_PAGE(!pvmw.pte, page);
subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
address = pvmw.address;
if (PageHuge(page) && !PageAnon(page)) {
/*
* To call huge_pmd_unshare, i_mmap_rwsem must be
* held in write mode. Caller needs to explicitly
* do this outside rmap routines.
*/
VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
/*
* huge_pmd_unshare unmapped an entire PMD
* page. There is no way of knowing exactly
* which PMDs may be cached for this mm, so
* we must flush them all. start/end were
* already adjusted above to cover this range.
*/
flush_cache_range(vma, range.start, range.end);
flush_tlb_range(vma, range.start, range.end);
mmu_notifier_invalidate_range(mm, range.start,
range.end);
/*
* The ref count of the PMD page was dropped
* which is part of the way map counting
* is done for shared PMDs. Return 'true'
* here. When there is no other sharing,
* huge_pmd_unshare returns false and we will
* unmap the actual page and drop map count
* to zero.
*/
page_vma_mapped_walk_done(&pvmw);
break;
}
}
/* Nuke the page table entry. */
flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
pteval = ptep_clear_flush(vma, address, pvmw.pte);
/* Move the dirty bit to the page. Now the pte is gone. */
if (pte_dirty(pteval))
set_page_dirty(page);
/* Update high watermark before we lower rss */
update_hiwater_rss(mm);
if (is_zone_device_page(page)) {
swp_entry_t entry;
pte_t swp_pte;
/*
* Store the pfn of the page in a special migration
* pte. do_swap_page() will wait until the migration
* pte is removed and then restart fault handling.
*/
entry = make_readable_migration_entry(
page_to_pfn(page));
swp_pte = swp_entry_to_pte(entry);
/*
* pteval maps a zone device page and is therefore
* a swap pte.
*/
if (pte_swp_soft_dirty(pteval))
swp_pte = pte_swp_mksoft_dirty(swp_pte);
if (pte_swp_uffd_wp(pteval))
swp_pte = pte_swp_mkuffd_wp(swp_pte);
set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
/*
* No need to invalidate here it will synchronize on
* against the special swap migration pte.
*
* The assignment to subpage above was computed from a
* swap PTE which results in an invalid pointer.
* Since only PAGE_SIZE pages can currently be
* migrated, just set it to page. This will need to be
* changed when hugepage migrations to device private
* memory are supported.
*/
subpage = page;
} else if (PageHWPoison(page)) {
pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
if (PageHuge(page)) {
hugetlb_count_sub(compound_nr(page), mm);
set_huge_swap_pte_at(mm, address,
pvmw.pte, pteval,
vma_mmu_pagesize(vma));
} else {
dec_mm_counter(mm, mm_counter(page));
set_pte_at(mm, address, pvmw.pte, pteval);
}
} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
/*
* The guest indicated that the page content is of no
* interest anymore. Simply discard the pte, vmscan
* will take care of the rest.
* A future reference will then fault in a new zero
* page. When userfaultfd is active, we must not drop
* this page though, as its main user (postcopy
* migration) will not expect userfaults on already
* copied pages.
*/
dec_mm_counter(mm, mm_counter(page));
/* We have to invalidate as we cleared the pte */
mmu_notifier_invalidate_range(mm, address,
address + PAGE_SIZE);
} else {
swp_entry_t entry;
pte_t swp_pte;
if (arch_unmap_one(mm, vma, address, pteval) < 0) {
set_pte_at(mm, address, pvmw.pte, pteval);
ret = false;
page_vma_mapped_walk_done(&pvmw);
break;
}
/*
* Store the pfn of the page in a special migration
* pte. do_swap_page() will wait until the migration
* pte is removed and then restart fault handling.
*/
if (pte_write(pteval))
entry = make_writable_migration_entry(
page_to_pfn(subpage));
else
entry = make_readable_migration_entry(
page_to_pfn(subpage));
swp_pte = swp_entry_to_pte(entry);
if (pte_soft_dirty(pteval))
swp_pte = pte_swp_mksoft_dirty(swp_pte);
if (pte_uffd_wp(pteval))
swp_pte = pte_swp_mkuffd_wp(swp_pte);
set_pte_at(mm, address, pvmw.pte, swp_pte);
/*
* No need to invalidate here it will synchronize on
* against the special swap migration pte.
*/
}
/*
* No need to call mmu_notifier_invalidate_range() it has be
* done above for all cases requiring it to happen under page
* table lock before mmu_notifier_invalidate_range_end()
*
* See Documentation/vm/mmu_notifier.rst
*/
page_remove_rmap(subpage, PageHuge(page));
put_page(page);
}
mmu_notifier_invalidate_range_end(&range);
return ret;
}
/**
* try_to_migrate - try to replace all page table mappings with swap entries
* @page: the page to replace page table entries for
* @flags: action and flags
*
* Tries to remove all the page table entries which are mapping this page and
* replace them with special swap entries. Caller must hold the page lock.
*/
void try_to_migrate(struct page *page, enum ttu_flags flags)
{
struct rmap_walk_control rwc = {
.rmap_one = try_to_migrate_one,
.arg = (void *)flags,
.done = page_not_mapped,
.anon_lock = page_lock_anon_vma_read,
};
/*
* Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
* TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
*/
if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
TTU_SYNC)))
return;
if (is_zone_device_page(page) && !is_device_private_page(page))
return;
/*
* During exec, a temporary VMA is setup and later moved.
* The VMA is moved under the anon_vma lock but not the
* page tables leading to a race where migration cannot
* find the migration ptes. Rather than increasing the
* locking requirements of exec(), migration skips
* temporary VMAs until after exec() completes.
*/
if (!PageKsm(page) && PageAnon(page))
rwc.invalid_vma = invalid_migration_vma;
if (flags & TTU_RMAP_LOCKED)
rmap_walk_locked(page, &rwc);
else
rmap_walk(page, &rwc);
}
/*
* Walks the vma's mapping a page and mlocks the page if any locked vma's are
* found. Once one is found the page is locked and the scan can be terminated.
*/
static bool page_mlock_one(struct page *page, struct vm_area_struct *vma,
unsigned long address, void *unused)
{
struct page_vma_mapped_walk pvmw = {
.page = page,
.vma = vma,
.address = address,
};
/* An un-locked vma doesn't have any pages to lock, continue the scan */
if (!(vma->vm_flags & VM_LOCKED))
return true;
while (page_vma_mapped_walk(&pvmw)) {
/*
* Need to recheck under the ptl to serialise with
* __munlock_pagevec_fill() after VM_LOCKED is cleared in
* munlock_vma_pages_range().
*/
if (vma->vm_flags & VM_LOCKED) {
/*
* PTE-mapped THP are never marked as mlocked, but
* this function is never called when PageDoubleMap().
*/
mlock_vma_page(page);
/*
* No need to scan further once the page is marked
* as mlocked.
*/
page_vma_mapped_walk_done(&pvmw);
return false;
}
}
return true;
}
/**
* page_mlock - try to mlock a page
* @page: the page to be mlocked
*
* Called from munlock code. Checks all of the VMAs mapping the page and mlocks
* the page if any are found. The page will be returned with PG_mlocked cleared
* if it is not mapped by any locked vmas.
*/
void page_mlock(struct page *page)
{
struct rmap_walk_control rwc = {
.rmap_one = page_mlock_one,
.done = page_not_mapped,
.anon_lock = page_lock_anon_vma_read,
};
VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
rmap_walk(page, &rwc);
}
#ifdef CONFIG_DEVICE_PRIVATE
struct make_exclusive_args {
struct mm_struct *mm;
unsigned long address;
void *owner;
bool valid;
};
static bool page_make_device_exclusive_one(struct page *page,
struct vm_area_struct *vma, unsigned long address, void *priv)
{
struct mm_struct *mm = vma->vm_mm;
struct page_vma_mapped_walk pvmw = {
.page = page,
.vma = vma,
.address = address,
};
struct make_exclusive_args *args = priv;
pte_t pteval;
struct page *subpage;
bool ret = true;
struct mmu_notifier_range range;
swp_entry_t entry;
pte_t swp_pte;
mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
vma->vm_mm, address, min(vma->vm_end,
address + page_size(page)), args->owner);
mmu_notifier_invalidate_range_start(&range);
while (page_vma_mapped_walk(&pvmw)) {
/* Unexpected PMD-mapped THP? */
VM_BUG_ON_PAGE(!pvmw.pte, page);
if (!pte_present(*pvmw.pte)) {
ret = false;
page_vma_mapped_walk_done(&pvmw);
break;
}
subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
address = pvmw.address;
/* Nuke the page table entry. */
flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
pteval = ptep_clear_flush(vma, address, pvmw.pte);
/* Move the dirty bit to the page. Now the pte is gone. */
if (pte_dirty(pteval))
set_page_dirty(page);
/*
* Check that our target page is still mapped at the expected
* address.
*/
if (args->mm == mm && args->address == address &&
pte_write(pteval))
args->valid = true;
/*
* Store the pfn of the page in a special migration
* pte. do_swap_page() will wait until the migration
* pte is removed and then restart fault handling.
*/
if (pte_write(pteval))
entry = make_writable_device_exclusive_entry(
page_to_pfn(subpage));
else
entry = make_readable_device_exclusive_entry(
page_to_pfn(subpage));
swp_pte = swp_entry_to_pte(entry);
if (pte_soft_dirty(pteval))
swp_pte = pte_swp_mksoft_dirty(swp_pte);
if (pte_uffd_wp(pteval))
swp_pte = pte_swp_mkuffd_wp(swp_pte);
set_pte_at(mm, address, pvmw.pte, swp_pte);
/*
* There is a reference on the page for the swap entry which has
* been removed, so shouldn't take another.
*/
page_remove_rmap(subpage, false);
}
mmu_notifier_invalidate_range_end(&range);
return ret;
}
/**
* page_make_device_exclusive - mark the page exclusively owned by a device
* @page: the page to replace page table entries for
* @mm: the mm_struct where the page is expected to be mapped
* @address: address where the page is expected to be mapped
* @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
*
* Tries to remove all the page table entries which are mapping this page and
* replace them with special device exclusive swap entries to grant a device
* exclusive access to the page. Caller must hold the page lock.
*
* Returns false if the page is still mapped, or if it could not be unmapped
* from the expected address. Otherwise returns true (success).
*/
static bool page_make_device_exclusive(struct page *page, struct mm_struct *mm,
unsigned long address, void *owner)
{
struct make_exclusive_args args = {
.mm = mm,
.address = address,
.owner = owner,
.valid = false,
};
struct rmap_walk_control rwc = {
.rmap_one = page_make_device_exclusive_one,
.done = page_not_mapped,
.anon_lock = page_lock_anon_vma_read,
.arg = &args,
};
/*
* Restrict to anonymous pages for now to avoid potential writeback
* issues. Also tail pages shouldn't be passed to rmap_walk so skip
* those.
*/
if (!PageAnon(page) || PageTail(page))
return false;
rmap_walk(page, &rwc);
return args.valid && !page_mapcount(page);
}
/**
* make_device_exclusive_range() - Mark a range for exclusive use by a device
* @mm: mm_struct of assoicated target process
* @start: start of the region to mark for exclusive device access
* @end: end address of region
* @pages: returns the pages which were successfully marked for exclusive access
* @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
*
* Returns: number of pages found in the range by GUP. A page is marked for
* exclusive access only if the page pointer is non-NULL.
*
* This function finds ptes mapping page(s) to the given address range, locks
* them and replaces mappings with special swap entries preventing userspace CPU
* access. On fault these entries are replaced with the original mapping after
* calling MMU notifiers.
*
* A driver using this to program access from a device must use a mmu notifier
* critical section to hold a device specific lock during programming. Once
* programming is complete it should drop the page lock and reference after
* which point CPU access to the page will revoke the exclusive access.
*/
int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
unsigned long end, struct page **pages,
void *owner)
{
long npages = (end - start) >> PAGE_SHIFT;
long i;
npages = get_user_pages_remote(mm, start, npages,
FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
pages, NULL, NULL);
if (npages < 0)
return npages;
for (i = 0; i < npages; i++, start += PAGE_SIZE) {
if (!trylock_page(pages[i])) {
put_page(pages[i]);
pages[i] = NULL;
continue;
}
if (!page_make_device_exclusive(pages[i], mm, start, owner)) {
unlock_page(pages[i]);
put_page(pages[i]);
pages[i] = NULL;
}
}
return npages;
}
EXPORT_SYMBOL_GPL(make_device_exclusive_range);
#endif
void __put_anon_vma(struct anon_vma *anon_vma)
{
struct anon_vma *root = anon_vma->root;
anon_vma_free(anon_vma);
if (root != anon_vma && atomic_dec_and_test(&root->refcount))
anon_vma_free(root);
}
static struct anon_vma *rmap_walk_anon_lock(struct page *page,
struct rmap_walk_control *rwc)
{
struct anon_vma *anon_vma;
if (rwc->anon_lock)
return rwc->anon_lock(page);
/*
* Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
* because that depends on page_mapped(); but not all its usages
* are holding mmap_lock. Users without mmap_lock are required to
* take a reference count to prevent the anon_vma disappearing
*/
anon_vma = page_anon_vma(page);
if (!anon_vma)
return NULL;
anon_vma_lock_read(anon_vma);
return anon_vma;
}
/*
* rmap_walk_anon - do something to anonymous page using the object-based
* rmap method
* @page: the page to be handled
* @rwc: control variable according to each walk type
*
* Find all the mappings of a page using the mapping pointer and the vma chains
* contained in the anon_vma struct it points to.
*
* When called from page_mlock(), the mmap_lock of the mm containing the vma
* where the page was found will be held for write. So, we won't recheck
* vm_flags for that VMA. That should be OK, because that vma shouldn't be
* LOCKED.
*/
static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
bool locked)
{
struct anon_vma *anon_vma;
pgoff_t pgoff_start, pgoff_end;
struct anon_vma_chain *avc;
if (locked) {
anon_vma = page_anon_vma(page);
/* anon_vma disappear under us? */
VM_BUG_ON_PAGE(!anon_vma, page);
} else {
anon_vma = rmap_walk_anon_lock(page, rwc);
}
if (!anon_vma)
return;
pgoff_start = page_to_pgoff(page);
pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
pgoff_start, pgoff_end) {
struct vm_area_struct *vma = avc->vma;
unsigned long address = vma_address(page, vma);
VM_BUG_ON_VMA(address == -EFAULT, vma);
cond_resched();
if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
continue;
if (!rwc->rmap_one(page, vma, address, rwc->arg))
break;
if (rwc->done && rwc->done(page))
break;
}
if (!locked)
anon_vma_unlock_read(anon_vma);
}
/*
* rmap_walk_file - do something to file page using the object-based rmap method
* @page: the page to be handled
* @rwc: control variable according to each walk type
*
* Find all the mappings of a page using the mapping pointer and the vma chains
* contained in the address_space struct it points to.
*
* When called from page_mlock(), the mmap_lock of the mm containing the vma
* where the page was found will be held for write. So, we won't recheck
* vm_flags for that VMA. That should be OK, because that vma shouldn't be
* LOCKED.
*/
static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
bool locked)
{
struct address_space *mapping = page_mapping(page);
pgoff_t pgoff_start, pgoff_end;
struct vm_area_struct *vma;
/*
* The page lock not only makes sure that page->mapping cannot
* suddenly be NULLified by truncation, it makes sure that the
* structure at mapping cannot be freed and reused yet,
* so we can safely take mapping->i_mmap_rwsem.
*/
VM_BUG_ON_PAGE(!PageLocked(page), page);
if (!mapping)
return;
pgoff_start = page_to_pgoff(page);
pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
if (!locked)
i_mmap_lock_read(mapping);
vma_interval_tree_foreach(vma, &mapping->i_mmap,
pgoff_start, pgoff_end) {
unsigned long address = vma_address(page, vma);
VM_BUG_ON_VMA(address == -EFAULT, vma);
cond_resched();
if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
continue;
if (!rwc->rmap_one(page, vma, address, rwc->arg))
goto done;
if (rwc->done && rwc->done(page))
goto done;
}
done:
if (!locked)
i_mmap_unlock_read(mapping);
}
void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
{
if (unlikely(PageKsm(page)))
rmap_walk_ksm(page, rwc);
else if (PageAnon(page))
rmap_walk_anon(page, rwc, false);
else
rmap_walk_file(page, rwc, false);
}
/* Like rmap_walk, but caller holds relevant rmap lock */
void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
{
/* no ksm support for now */
VM_BUG_ON_PAGE(PageKsm(page), page);
if (PageAnon(page))
rmap_walk_anon(page, rwc, true);
else
rmap_walk_file(page, rwc, true);
}
#ifdef CONFIG_HUGETLB_PAGE
/*
* The following two functions are for anonymous (private mapped) hugepages.
* Unlike common anonymous pages, anonymous hugepages have no accounting code
* and no lru code, because we handle hugepages differently from common pages.
*/
void hugepage_add_anon_rmap(struct page *page,
struct vm_area_struct *vma, unsigned long address)
{
struct anon_vma *anon_vma = vma->anon_vma;
int first;
BUG_ON(!PageLocked(page));
BUG_ON(!anon_vma);
/* address might be in next vma when migration races vma_adjust */
first = atomic_inc_and_test(compound_mapcount_ptr(page));
if (first)
__page_set_anon_rmap(page, vma, address, 0);
}
void hugepage_add_new_anon_rmap(struct page *page,
struct vm_area_struct *vma, unsigned long address)
{
BUG_ON(address < vma->vm_start || address >= vma->vm_end);
atomic_set(compound_mapcount_ptr(page), 0);
if (hpage_pincount_available(page))
atomic_set(compound_pincount_ptr(page), 0);
__page_set_anon_rmap(page, vma, address, 1);
}
#endif /* CONFIG_HUGETLB_PAGE */