OpenCloudOS-Kernel/drivers/phy/rockchip/phy-rockchip-inno-dsidphy.c

806 lines
23 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2018 Rockchip Electronics Co. Ltd.
*
* Author: Wyon Bi <bivvy.bi@rock-chips.com>
*/
#include <linux/kernel.h>
#include <linux/clk.h>
#include <linux/iopoll.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <linux/phy/phy.h>
#include <linux/pm_runtime.h>
#include <linux/mfd/syscon.h>
#define PSEC_PER_SEC 1000000000000LL
#define UPDATE(x, h, l) (((x) << (l)) & GENMASK((h), (l)))
/*
* The offset address[7:0] is distributed two parts, one from the bit7 to bit5
* is the first address, the other from the bit4 to bit0 is the second address.
* when you configure the registers, you must set both of them. The Clock Lane
* and Data Lane use the same registers with the same second address, but the
* first address is different.
*/
#define FIRST_ADDRESS(x) (((x) & 0x7) << 5)
#define SECOND_ADDRESS(x) (((x) & 0x1f) << 0)
#define PHY_REG(first, second) (FIRST_ADDRESS(first) | \
SECOND_ADDRESS(second))
/* Analog Register Part: reg00 */
#define BANDGAP_POWER_MASK BIT(7)
#define BANDGAP_POWER_DOWN BIT(7)
#define BANDGAP_POWER_ON 0
#define LANE_EN_MASK GENMASK(6, 2)
#define LANE_EN_CK BIT(6)
#define LANE_EN_3 BIT(5)
#define LANE_EN_2 BIT(4)
#define LANE_EN_1 BIT(3)
#define LANE_EN_0 BIT(2)
#define POWER_WORK_MASK GENMASK(1, 0)
#define POWER_WORK_ENABLE UPDATE(1, 1, 0)
#define POWER_WORK_DISABLE UPDATE(2, 1, 0)
/* Analog Register Part: reg01 */
#define REG_SYNCRST_MASK BIT(2)
#define REG_SYNCRST_RESET BIT(2)
#define REG_SYNCRST_NORMAL 0
#define REG_LDOPD_MASK BIT(1)
#define REG_LDOPD_POWER_DOWN BIT(1)
#define REG_LDOPD_POWER_ON 0
#define REG_PLLPD_MASK BIT(0)
#define REG_PLLPD_POWER_DOWN BIT(0)
#define REG_PLLPD_POWER_ON 0
/* Analog Register Part: reg03 */
#define REG_FBDIV_HI_MASK BIT(5)
#define REG_FBDIV_HI(x) UPDATE((x >> 8), 5, 5)
#define REG_PREDIV_MASK GENMASK(4, 0)
#define REG_PREDIV(x) UPDATE(x, 4, 0)
/* Analog Register Part: reg04 */
#define REG_FBDIV_LO_MASK GENMASK(7, 0)
#define REG_FBDIV_LO(x) UPDATE(x, 7, 0)
/* Analog Register Part: reg05 */
#define SAMPLE_CLOCK_PHASE_MASK GENMASK(6, 4)
#define SAMPLE_CLOCK_PHASE(x) UPDATE(x, 6, 4)
#define CLOCK_LANE_SKEW_PHASE_MASK GENMASK(2, 0)
#define CLOCK_LANE_SKEW_PHASE(x) UPDATE(x, 2, 0)
/* Analog Register Part: reg06 */
#define DATA_LANE_3_SKEW_PHASE_MASK GENMASK(6, 4)
#define DATA_LANE_3_SKEW_PHASE(x) UPDATE(x, 6, 4)
#define DATA_LANE_2_SKEW_PHASE_MASK GENMASK(2, 0)
#define DATA_LANE_2_SKEW_PHASE(x) UPDATE(x, 2, 0)
/* Analog Register Part: reg07 */
#define DATA_LANE_1_SKEW_PHASE_MASK GENMASK(6, 4)
#define DATA_LANE_1_SKEW_PHASE(x) UPDATE(x, 6, 4)
#define DATA_LANE_0_SKEW_PHASE_MASK GENMASK(2, 0)
#define DATA_LANE_0_SKEW_PHASE(x) UPDATE(x, 2, 0)
/* Analog Register Part: reg08 */
#define SAMPLE_CLOCK_DIRECTION_MASK BIT(4)
#define SAMPLE_CLOCK_DIRECTION_REVERSE BIT(4)
#define SAMPLE_CLOCK_DIRECTION_FORWARD 0
/* Digital Register Part: reg00 */
#define REG_DIG_RSTN_MASK BIT(0)
#define REG_DIG_RSTN_NORMAL BIT(0)
#define REG_DIG_RSTN_RESET 0
/* Digital Register Part: reg01 */
#define INVERT_TXCLKESC_MASK BIT(1)
#define INVERT_TXCLKESC_ENABLE BIT(1)
#define INVERT_TXCLKESC_DISABLE 0
#define INVERT_TXBYTECLKHS_MASK BIT(0)
#define INVERT_TXBYTECLKHS_ENABLE BIT(0)
#define INVERT_TXBYTECLKHS_DISABLE 0
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg05 */
#define T_LPX_CNT_MASK GENMASK(5, 0)
#define T_LPX_CNT(x) UPDATE(x, 5, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg06 */
#define T_HS_PREPARE_CNT_MASK GENMASK(6, 0)
#define T_HS_PREPARE_CNT(x) UPDATE(x, 6, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg07 */
#define T_HS_ZERO_CNT_MASK GENMASK(5, 0)
#define T_HS_ZERO_CNT(x) UPDATE(x, 5, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg08 */
#define T_HS_TRAIL_CNT_MASK GENMASK(6, 0)
#define T_HS_TRAIL_CNT(x) UPDATE(x, 6, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg09 */
#define T_HS_EXIT_CNT_MASK GENMASK(4, 0)
#define T_HS_EXIT_CNT(x) UPDATE(x, 4, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0a */
#define T_CLK_POST_CNT_MASK GENMASK(3, 0)
#define T_CLK_POST_CNT(x) UPDATE(x, 3, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0c */
#define LPDT_TX_PPI_SYNC_MASK BIT(2)
#define LPDT_TX_PPI_SYNC_ENABLE BIT(2)
#define LPDT_TX_PPI_SYNC_DISABLE 0
#define T_WAKEUP_CNT_HI_MASK GENMASK(1, 0)
#define T_WAKEUP_CNT_HI(x) UPDATE(x, 1, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0d */
#define T_WAKEUP_CNT_LO_MASK GENMASK(7, 0)
#define T_WAKEUP_CNT_LO(x) UPDATE(x, 7, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0e */
#define T_CLK_PRE_CNT_MASK GENMASK(3, 0)
#define T_CLK_PRE_CNT(x) UPDATE(x, 3, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg10 */
#define T_TA_GO_CNT_MASK GENMASK(5, 0)
#define T_TA_GO_CNT(x) UPDATE(x, 5, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg11 */
#define T_TA_SURE_CNT_MASK GENMASK(5, 0)
#define T_TA_SURE_CNT(x) UPDATE(x, 5, 0)
/* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg12 */
#define T_TA_WAIT_CNT_MASK GENMASK(5, 0)
#define T_TA_WAIT_CNT(x) UPDATE(x, 5, 0)
/* LVDS Register Part: reg00 */
#define LVDS_DIGITAL_INTERNAL_RESET_MASK BIT(2)
#define LVDS_DIGITAL_INTERNAL_RESET_DISABLE BIT(2)
#define LVDS_DIGITAL_INTERNAL_RESET_ENABLE 0
/* LVDS Register Part: reg01 */
#define LVDS_DIGITAL_INTERNAL_ENABLE_MASK BIT(7)
#define LVDS_DIGITAL_INTERNAL_ENABLE BIT(7)
#define LVDS_DIGITAL_INTERNAL_DISABLE 0
/* LVDS Register Part: reg03 */
#define MODE_ENABLE_MASK GENMASK(2, 0)
#define TTL_MODE_ENABLE BIT(2)
#define LVDS_MODE_ENABLE BIT(1)
#define MIPI_MODE_ENABLE BIT(0)
/* LVDS Register Part: reg0b */
#define LVDS_LANE_EN_MASK GENMASK(7, 3)
#define LVDS_DATA_LANE0_EN BIT(7)
#define LVDS_DATA_LANE1_EN BIT(6)
#define LVDS_DATA_LANE2_EN BIT(5)
#define LVDS_DATA_LANE3_EN BIT(4)
#define LVDS_CLK_LANE_EN BIT(3)
#define LVDS_PLL_POWER_MASK BIT(2)
#define LVDS_PLL_POWER_OFF BIT(2)
#define LVDS_PLL_POWER_ON 0
#define LVDS_BANDGAP_POWER_MASK BIT(0)
#define LVDS_BANDGAP_POWER_DOWN BIT(0)
#define LVDS_BANDGAP_POWER_ON 0
#define DSI_PHY_RSTZ 0xa0
#define PHY_ENABLECLK BIT(2)
#define DSI_PHY_STATUS 0xb0
#define PHY_LOCK BIT(0)
struct mipi_dphy_timing {
unsigned int clkmiss;
unsigned int clkpost;
unsigned int clkpre;
unsigned int clkprepare;
unsigned int clksettle;
unsigned int clktermen;
unsigned int clktrail;
unsigned int clkzero;
unsigned int dtermen;
unsigned int eot;
unsigned int hsexit;
unsigned int hsprepare;
unsigned int hszero;
unsigned int hssettle;
unsigned int hsskip;
unsigned int hstrail;
unsigned int init;
unsigned int lpx;
unsigned int taget;
unsigned int tago;
unsigned int tasure;
unsigned int wakeup;
};
struct inno_dsidphy {
struct device *dev;
struct clk *ref_clk;
struct clk *pclk_phy;
struct clk *pclk_host;
void __iomem *phy_base;
void __iomem *host_base;
struct reset_control *rst;
enum phy_mode mode;
struct {
struct clk_hw hw;
u8 prediv;
u16 fbdiv;
unsigned long rate;
} pll;
};
enum {
REGISTER_PART_ANALOG,
REGISTER_PART_DIGITAL,
REGISTER_PART_CLOCK_LANE,
REGISTER_PART_DATA0_LANE,
REGISTER_PART_DATA1_LANE,
REGISTER_PART_DATA2_LANE,
REGISTER_PART_DATA3_LANE,
REGISTER_PART_LVDS,
};
static inline struct inno_dsidphy *hw_to_inno(struct clk_hw *hw)
{
return container_of(hw, struct inno_dsidphy, pll.hw);
}
static void phy_update_bits(struct inno_dsidphy *inno,
u8 first, u8 second, u8 mask, u8 val)
{
u32 reg = PHY_REG(first, second) << 2;
unsigned int tmp, orig;
orig = readl(inno->phy_base + reg);
tmp = orig & ~mask;
tmp |= val & mask;
writel(tmp, inno->phy_base + reg);
}
static void mipi_dphy_timing_get_default(struct mipi_dphy_timing *timing,
unsigned long period)
{
/* Global Operation Timing Parameters */
timing->clkmiss = 0;
timing->clkpost = 70000 + 52 * period;
timing->clkpre = 8 * period;
timing->clkprepare = 65000;
timing->clksettle = 95000;
timing->clktermen = 0;
timing->clktrail = 80000;
timing->clkzero = 260000;
timing->dtermen = 0;
timing->eot = 0;
timing->hsexit = 120000;
timing->hsprepare = 65000 + 4 * period;
timing->hszero = 145000 + 6 * period;
timing->hssettle = 85000 + 6 * period;
timing->hsskip = 40000;
timing->hstrail = max(8 * period, 60000 + 4 * period);
timing->init = 100000000;
timing->lpx = 60000;
timing->taget = 5 * timing->lpx;
timing->tago = 4 * timing->lpx;
timing->tasure = 2 * timing->lpx;
timing->wakeup = 1000000000;
}
static void inno_dsidphy_mipi_mode_enable(struct inno_dsidphy *inno)
{
struct mipi_dphy_timing gotp;
const struct {
unsigned long rate;
u8 hs_prepare;
u8 clk_lane_hs_zero;
u8 data_lane_hs_zero;
u8 hs_trail;
} timings[] = {
{ 110000000, 0x20, 0x16, 0x02, 0x22},
{ 150000000, 0x06, 0x16, 0x03, 0x45},
{ 200000000, 0x18, 0x17, 0x04, 0x0b},
{ 250000000, 0x05, 0x17, 0x05, 0x16},
{ 300000000, 0x51, 0x18, 0x06, 0x2c},
{ 400000000, 0x64, 0x19, 0x07, 0x33},
{ 500000000, 0x20, 0x1b, 0x07, 0x4e},
{ 600000000, 0x6a, 0x1d, 0x08, 0x3a},
{ 700000000, 0x3e, 0x1e, 0x08, 0x6a},
{ 800000000, 0x21, 0x1f, 0x09, 0x29},
{1000000000, 0x09, 0x20, 0x09, 0x27},
};
u32 t_txbyteclkhs, t_txclkesc, ui;
u32 txbyteclkhs, txclkesc, esc_clk_div;
u32 hs_exit, clk_post, clk_pre, wakeup, lpx, ta_go, ta_sure, ta_wait;
u32 hs_prepare, hs_trail, hs_zero, clk_lane_hs_zero, data_lane_hs_zero;
unsigned int i;
/* Select MIPI mode */
phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
MODE_ENABLE_MASK, MIPI_MODE_ENABLE);
/* Configure PLL */
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
REG_PREDIV_MASK, REG_PREDIV(inno->pll.prediv));
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
REG_FBDIV_HI_MASK, REG_FBDIV_HI(inno->pll.fbdiv));
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
REG_FBDIV_LO_MASK, REG_FBDIV_LO(inno->pll.fbdiv));
/* Enable PLL and LDO */
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
REG_LDOPD_MASK | REG_PLLPD_MASK,
REG_LDOPD_POWER_ON | REG_PLLPD_POWER_ON);
/* Reset analog */
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
REG_SYNCRST_MASK, REG_SYNCRST_RESET);
udelay(1);
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
REG_SYNCRST_MASK, REG_SYNCRST_NORMAL);
/* Reset digital */
phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
REG_DIG_RSTN_MASK, REG_DIG_RSTN_RESET);
udelay(1);
phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
REG_DIG_RSTN_MASK, REG_DIG_RSTN_NORMAL);
txbyteclkhs = inno->pll.rate / 8;
t_txbyteclkhs = div_u64(PSEC_PER_SEC, txbyteclkhs);
esc_clk_div = DIV_ROUND_UP(txbyteclkhs, 20000000);
txclkesc = txbyteclkhs / esc_clk_div;
t_txclkesc = div_u64(PSEC_PER_SEC, txclkesc);
ui = div_u64(PSEC_PER_SEC, inno->pll.rate);
memset(&gotp, 0, sizeof(gotp));
mipi_dphy_timing_get_default(&gotp, ui);
/*
* The value of counter for HS Ths-exit
* Ths-exit = Tpin_txbyteclkhs * value
*/
hs_exit = DIV_ROUND_UP(gotp.hsexit, t_txbyteclkhs);
/*
* The value of counter for HS Tclk-post
* Tclk-post = Tpin_txbyteclkhs * value
*/
clk_post = DIV_ROUND_UP(gotp.clkpost, t_txbyteclkhs);
/*
* The value of counter for HS Tclk-pre
* Tclk-pre = Tpin_txbyteclkhs * value
*/
clk_pre = DIV_ROUND_UP(gotp.clkpre, t_txbyteclkhs);
/*
* The value of counter for HS Tlpx Time
* Tlpx = Tpin_txbyteclkhs * (2 + value)
*/
lpx = DIV_ROUND_UP(gotp.lpx, t_txbyteclkhs);
if (lpx >= 2)
lpx -= 2;
/*
* The value of counter for HS Tta-go
* Tta-go for turnaround
* Tta-go = Ttxclkesc * value
*/
ta_go = DIV_ROUND_UP(gotp.tago, t_txclkesc);
/*
* The value of counter for HS Tta-sure
* Tta-sure for turnaround
* Tta-sure = Ttxclkesc * value
*/
ta_sure = DIV_ROUND_UP(gotp.tasure, t_txclkesc);
/*
* The value of counter for HS Tta-wait
* Tta-wait for turnaround
* Tta-wait = Ttxclkesc * value
*/
ta_wait = DIV_ROUND_UP(gotp.taget, t_txclkesc);
for (i = 0; i < ARRAY_SIZE(timings); i++)
if (inno->pll.rate <= timings[i].rate)
break;
if (i == ARRAY_SIZE(timings))
--i;
hs_prepare = timings[i].hs_prepare;
hs_trail = timings[i].hs_trail;
clk_lane_hs_zero = timings[i].clk_lane_hs_zero;
data_lane_hs_zero = timings[i].data_lane_hs_zero;
wakeup = 0x3ff;
for (i = REGISTER_PART_CLOCK_LANE; i <= REGISTER_PART_DATA3_LANE; i++) {
if (i == REGISTER_PART_CLOCK_LANE)
hs_zero = clk_lane_hs_zero;
else
hs_zero = data_lane_hs_zero;
phy_update_bits(inno, i, 0x05, T_LPX_CNT_MASK,
T_LPX_CNT(lpx));
phy_update_bits(inno, i, 0x06, T_HS_PREPARE_CNT_MASK,
T_HS_PREPARE_CNT(hs_prepare));
phy_update_bits(inno, i, 0x07, T_HS_ZERO_CNT_MASK,
T_HS_ZERO_CNT(hs_zero));
phy_update_bits(inno, i, 0x08, T_HS_TRAIL_CNT_MASK,
T_HS_TRAIL_CNT(hs_trail));
phy_update_bits(inno, i, 0x09, T_HS_EXIT_CNT_MASK,
T_HS_EXIT_CNT(hs_exit));
phy_update_bits(inno, i, 0x0a, T_CLK_POST_CNT_MASK,
T_CLK_POST_CNT(clk_post));
phy_update_bits(inno, i, 0x0e, T_CLK_PRE_CNT_MASK,
T_CLK_PRE_CNT(clk_pre));
phy_update_bits(inno, i, 0x0c, T_WAKEUP_CNT_HI_MASK,
T_WAKEUP_CNT_HI(wakeup >> 8));
phy_update_bits(inno, i, 0x0d, T_WAKEUP_CNT_LO_MASK,
T_WAKEUP_CNT_LO(wakeup));
phy_update_bits(inno, i, 0x10, T_TA_GO_CNT_MASK,
T_TA_GO_CNT(ta_go));
phy_update_bits(inno, i, 0x11, T_TA_SURE_CNT_MASK,
T_TA_SURE_CNT(ta_sure));
phy_update_bits(inno, i, 0x12, T_TA_WAIT_CNT_MASK,
T_TA_WAIT_CNT(ta_wait));
}
/* Enable all lanes on analog part */
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
LANE_EN_MASK, LANE_EN_CK | LANE_EN_3 | LANE_EN_2 |
LANE_EN_1 | LANE_EN_0);
}
static void inno_dsidphy_lvds_mode_enable(struct inno_dsidphy *inno)
{
u8 prediv = 2;
u16 fbdiv = 28;
/* Sample clock reverse direction */
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
SAMPLE_CLOCK_DIRECTION_MASK,
SAMPLE_CLOCK_DIRECTION_REVERSE);
/* Select LVDS mode */
phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
MODE_ENABLE_MASK, LVDS_MODE_ENABLE);
/* Configure PLL */
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
REG_PREDIV_MASK, REG_PREDIV(prediv));
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
REG_FBDIV_HI_MASK, REG_FBDIV_HI(fbdiv));
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
REG_FBDIV_LO_MASK, REG_FBDIV_LO(fbdiv));
phy_update_bits(inno, REGISTER_PART_LVDS, 0x08, 0xff, 0xfc);
/* Enable PLL and Bandgap */
phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
LVDS_PLL_POWER_ON | LVDS_BANDGAP_POWER_ON);
msleep(20);
/* Reset LVDS digital logic */
phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
LVDS_DIGITAL_INTERNAL_RESET_MASK,
LVDS_DIGITAL_INTERNAL_RESET_ENABLE);
udelay(1);
phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
LVDS_DIGITAL_INTERNAL_RESET_MASK,
LVDS_DIGITAL_INTERNAL_RESET_DISABLE);
/* Enable LVDS digital logic */
phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
LVDS_DIGITAL_INTERNAL_ENABLE);
/* Enable LVDS analog driver */
phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
LVDS_LANE_EN_MASK, LVDS_CLK_LANE_EN |
LVDS_DATA_LANE0_EN | LVDS_DATA_LANE1_EN |
LVDS_DATA_LANE2_EN | LVDS_DATA_LANE3_EN);
}
static int inno_dsidphy_power_on(struct phy *phy)
{
struct inno_dsidphy *inno = phy_get_drvdata(phy);
clk_prepare_enable(inno->pclk_phy);
pm_runtime_get_sync(inno->dev);
/* Bandgap power on */
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
BANDGAP_POWER_MASK, BANDGAP_POWER_ON);
/* Enable power work */
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
POWER_WORK_MASK, POWER_WORK_ENABLE);
switch (inno->mode) {
case PHY_MODE_MIPI_DPHY:
inno_dsidphy_mipi_mode_enable(inno);
break;
case PHY_MODE_LVDS:
inno_dsidphy_lvds_mode_enable(inno);
break;
default:
return -EINVAL;
}
return 0;
}
static int inno_dsidphy_power_off(struct phy *phy)
{
struct inno_dsidphy *inno = phy_get_drvdata(phy);
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, 0);
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
REG_LDOPD_MASK | REG_PLLPD_MASK,
REG_LDOPD_POWER_DOWN | REG_PLLPD_POWER_DOWN);
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
POWER_WORK_MASK, POWER_WORK_DISABLE);
phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
BANDGAP_POWER_MASK, BANDGAP_POWER_DOWN);
phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, LVDS_LANE_EN_MASK, 0);
phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
LVDS_DIGITAL_INTERNAL_DISABLE);
phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
LVDS_PLL_POWER_OFF | LVDS_BANDGAP_POWER_DOWN);
pm_runtime_put(inno->dev);
clk_disable_unprepare(inno->pclk_phy);
return 0;
}
static int inno_dsidphy_set_mode(struct phy *phy, enum phy_mode mode,
int submode)
{
struct inno_dsidphy *inno = phy_get_drvdata(phy);
switch (mode) {
case PHY_MODE_MIPI_DPHY:
case PHY_MODE_LVDS:
inno->mode = mode;
break;
default:
return -EINVAL;
}
return 0;
}
static const struct phy_ops inno_dsidphy_ops = {
.set_mode = inno_dsidphy_set_mode,
.power_on = inno_dsidphy_power_on,
.power_off = inno_dsidphy_power_off,
.owner = THIS_MODULE,
};
static unsigned long inno_dsidphy_pll_round_rate(struct inno_dsidphy *inno,
unsigned long prate,
unsigned long rate,
u8 *prediv, u16 *fbdiv)
{
unsigned long best_freq = 0;
unsigned long fref, fout;
u8 min_prediv, max_prediv;
u8 _prediv, best_prediv = 1;
u16 _fbdiv, best_fbdiv = 1;
u32 min_delta = UINT_MAX;
/*
* The PLL output frequency can be calculated using a simple formula:
* PLL_Output_Frequency = (FREF / PREDIV * FBDIV) / 2
* PLL_Output_Frequency: it is equal to DDR-Clock-Frequency * 2
*/
fref = prate / 2;
if (rate > 1000000000UL)
fout = 1000000000UL;
else
fout = rate;
/* 5Mhz < Fref / prediv < 40MHz */
min_prediv = DIV_ROUND_UP(fref, 40000000);
max_prediv = fref / 5000000;
for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) {
u64 tmp;
u32 delta;
tmp = (u64)fout * _prediv;
do_div(tmp, fref);
_fbdiv = tmp;
/*
* The possible settings of feedback divider are
* 12, 13, 14, 16, ~ 511
*/
if (_fbdiv == 15)
continue;
if (_fbdiv < 12 || _fbdiv > 511)
continue;
tmp = (u64)_fbdiv * fref;
do_div(tmp, _prediv);
delta = abs(fout - tmp);
if (!delta) {
best_prediv = _prediv;
best_fbdiv = _fbdiv;
best_freq = tmp;
break;
} else if (delta < min_delta) {
best_prediv = _prediv;
best_fbdiv = _fbdiv;
best_freq = tmp;
min_delta = delta;
}
}
if (best_freq) {
*prediv = best_prediv;
*fbdiv = best_fbdiv;
}
return best_freq;
}
static long inno_dsidphy_pll_clk_round_rate(struct clk_hw *hw,
unsigned long rate,
unsigned long *prate)
{
struct inno_dsidphy *inno = hw_to_inno(hw);
unsigned long fout;
u16 fbdiv = 1;
u8 prediv = 1;
fout = inno_dsidphy_pll_round_rate(inno, *prate, rate,
&prediv, &fbdiv);
return fout;
}
static int inno_dsidphy_pll_clk_set_rate(struct clk_hw *hw,
unsigned long rate,
unsigned long parent_rate)
{
struct inno_dsidphy *inno = hw_to_inno(hw);
unsigned long fout;
u16 fbdiv = 1;
u8 prediv = 1;
fout = inno_dsidphy_pll_round_rate(inno, parent_rate, rate,
&prediv, &fbdiv);
dev_dbg(inno->dev, "fin=%lu, fout=%lu, prediv=%u, fbdiv=%u\n",
parent_rate, fout, prediv, fbdiv);
inno->pll.prediv = prediv;
inno->pll.fbdiv = fbdiv;
inno->pll.rate = fout;
return 0;
}
static unsigned long
inno_dsidphy_pll_clk_recalc_rate(struct clk_hw *hw, unsigned long prate)
{
struct inno_dsidphy *inno = hw_to_inno(hw);
/* PLL_Output_Frequency = (FREF / PREDIV * FBDIV) / 2 */
return (prate / inno->pll.prediv * inno->pll.fbdiv) / 2;
}
static const struct clk_ops inno_dsidphy_pll_clk_ops = {
.round_rate = inno_dsidphy_pll_clk_round_rate,
.set_rate = inno_dsidphy_pll_clk_set_rate,
.recalc_rate = inno_dsidphy_pll_clk_recalc_rate,
};
static int inno_dsidphy_pll_register(struct inno_dsidphy *inno)
{
struct device *dev = inno->dev;
struct clk *clk;
const char *parent_name;
struct clk_init_data init;
int ret;
parent_name = __clk_get_name(inno->ref_clk);
init.name = "mipi_dphy_pll";
ret = of_property_read_string(dev->of_node, "clock-output-names",
&init.name);
if (ret < 0)
dev_dbg(dev, "phy should set clock-output-names property\n");
init.ops = &inno_dsidphy_pll_clk_ops;
init.parent_names = &parent_name;
init.num_parents = 1;
init.flags = 0;
inno->pll.hw.init = &init;
clk = devm_clk_register(dev, &inno->pll.hw);
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
dev_err(dev, "failed to register PLL: %d\n", ret);
return ret;
}
return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get,
&inno->pll.hw);
}
static int inno_dsidphy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct inno_dsidphy *inno;
struct phy_provider *phy_provider;
struct phy *phy;
int ret;
inno = devm_kzalloc(dev, sizeof(*inno), GFP_KERNEL);
if (!inno)
return -ENOMEM;
inno->dev = dev;
platform_set_drvdata(pdev, inno);
inno->phy_base = devm_platform_ioremap_resource(pdev, 0);
if (!inno->phy_base)
return -ENOMEM;
inno->ref_clk = devm_clk_get(dev, "ref");
if (IS_ERR(inno->ref_clk)) {
ret = PTR_ERR(inno->ref_clk);
dev_err(dev, "failed to get ref clock: %d\n", ret);
return ret;
}
inno->pclk_phy = devm_clk_get(dev, "pclk");
if (IS_ERR(inno->pclk_phy)) {
ret = PTR_ERR(inno->pclk_phy);
dev_err(dev, "failed to get phy pclk: %d\n", ret);
return ret;
}
inno->rst = devm_reset_control_get(dev, "apb");
if (IS_ERR(inno->rst)) {
ret = PTR_ERR(inno->rst);
dev_err(dev, "failed to get system reset control: %d\n", ret);
return ret;
}
phy = devm_phy_create(dev, NULL, &inno_dsidphy_ops);
if (IS_ERR(phy)) {
ret = PTR_ERR(phy);
dev_err(dev, "failed to create phy: %d\n", ret);
return ret;
}
phy_set_drvdata(phy, inno);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
if (IS_ERR(phy_provider)) {
ret = PTR_ERR(phy_provider);
dev_err(dev, "failed to register phy provider: %d\n", ret);
return ret;
}
ret = inno_dsidphy_pll_register(inno);
if (ret)
return ret;
pm_runtime_enable(dev);
return 0;
}
static int inno_dsidphy_remove(struct platform_device *pdev)
{
struct inno_dsidphy *inno = platform_get_drvdata(pdev);
pm_runtime_disable(inno->dev);
return 0;
}
static const struct of_device_id inno_dsidphy_of_match[] = {
{ .compatible = "rockchip,px30-dsi-dphy", },
{ .compatible = "rockchip,rk3128-dsi-dphy", },
{ .compatible = "rockchip,rk3368-dsi-dphy", },
{}
};
MODULE_DEVICE_TABLE(of, inno_dsidphy_of_match);
static struct platform_driver inno_dsidphy_driver = {
.driver = {
.name = "inno-dsidphy",
.of_match_table = of_match_ptr(inno_dsidphy_of_match),
},
.probe = inno_dsidphy_probe,
.remove = inno_dsidphy_remove,
};
module_platform_driver(inno_dsidphy_driver);
MODULE_AUTHOR("Wyon Bi <bivvy.bi@rock-chips.com>");
MODULE_DESCRIPTION("Innosilicon MIPI/LVDS/TTL Video Combo PHY driver");
MODULE_LICENSE("GPL v2");