OpenCloudOS-Kernel/drivers/bus/mhi/host/init.c

1466 lines
38 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2018-2020, The Linux Foundation. All rights reserved.
*
*/
#include <linux/bitfield.h>
#include <linux/debugfs.h>
#include <linux/device.h>
#include <linux/dma-direction.h>
#include <linux/dma-mapping.h>
#include <linux/idr.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/mhi.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/wait.h>
#include "internal.h"
static DEFINE_IDA(mhi_controller_ida);
const char * const mhi_ee_str[MHI_EE_MAX] = {
[MHI_EE_PBL] = "PRIMARY BOOTLOADER",
[MHI_EE_SBL] = "SECONDARY BOOTLOADER",
[MHI_EE_AMSS] = "MISSION MODE",
[MHI_EE_RDDM] = "RAMDUMP DOWNLOAD MODE",
[MHI_EE_WFW] = "WLAN FIRMWARE",
[MHI_EE_PTHRU] = "PASS THROUGH",
[MHI_EE_EDL] = "EMERGENCY DOWNLOAD",
[MHI_EE_FP] = "FLASH PROGRAMMER",
[MHI_EE_DISABLE_TRANSITION] = "DISABLE",
[MHI_EE_NOT_SUPPORTED] = "NOT SUPPORTED",
};
const char * const dev_state_tran_str[DEV_ST_TRANSITION_MAX] = {
[DEV_ST_TRANSITION_PBL] = "PBL",
[DEV_ST_TRANSITION_READY] = "READY",
[DEV_ST_TRANSITION_SBL] = "SBL",
[DEV_ST_TRANSITION_MISSION_MODE] = "MISSION MODE",
[DEV_ST_TRANSITION_FP] = "FLASH PROGRAMMER",
[DEV_ST_TRANSITION_SYS_ERR] = "SYS ERROR",
[DEV_ST_TRANSITION_DISABLE] = "DISABLE",
};
const char * const mhi_ch_state_type_str[MHI_CH_STATE_TYPE_MAX] = {
[MHI_CH_STATE_TYPE_RESET] = "RESET",
[MHI_CH_STATE_TYPE_STOP] = "STOP",
[MHI_CH_STATE_TYPE_START] = "START",
};
static const char * const mhi_pm_state_str[] = {
[MHI_PM_STATE_DISABLE] = "DISABLE",
[MHI_PM_STATE_POR] = "POWER ON RESET",
[MHI_PM_STATE_M0] = "M0",
[MHI_PM_STATE_M2] = "M2",
[MHI_PM_STATE_M3_ENTER] = "M?->M3",
[MHI_PM_STATE_M3] = "M3",
[MHI_PM_STATE_M3_EXIT] = "M3->M0",
[MHI_PM_STATE_FW_DL_ERR] = "Firmware Download Error",
[MHI_PM_STATE_SYS_ERR_DETECT] = "SYS ERROR Detect",
[MHI_PM_STATE_SYS_ERR_PROCESS] = "SYS ERROR Process",
[MHI_PM_STATE_SYS_ERR_FAIL] = "SYS ERROR Failure",
[MHI_PM_STATE_SHUTDOWN_PROCESS] = "SHUTDOWN Process",
[MHI_PM_STATE_LD_ERR_FATAL_DETECT] = "Linkdown or Error Fatal Detect",
};
const char *to_mhi_pm_state_str(u32 state)
{
int index;
if (state)
index = __fls(state);
if (!state || index >= ARRAY_SIZE(mhi_pm_state_str))
return "Invalid State";
return mhi_pm_state_str[index];
}
static ssize_t serial_number_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct mhi_device *mhi_dev = to_mhi_device(dev);
struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
return sysfs_emit(buf, "Serial Number: %u\n",
mhi_cntrl->serial_number);
}
static DEVICE_ATTR_RO(serial_number);
static ssize_t oem_pk_hash_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct mhi_device *mhi_dev = to_mhi_device(dev);
struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
int i, cnt = 0;
for (i = 0; i < ARRAY_SIZE(mhi_cntrl->oem_pk_hash); i++)
cnt += sysfs_emit_at(buf, cnt, "OEMPKHASH[%d]: 0x%x\n",
i, mhi_cntrl->oem_pk_hash[i]);
return cnt;
}
static DEVICE_ATTR_RO(oem_pk_hash);
static ssize_t soc_reset_store(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct mhi_device *mhi_dev = to_mhi_device(dev);
struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
mhi_soc_reset(mhi_cntrl);
return count;
}
static DEVICE_ATTR_WO(soc_reset);
static struct attribute *mhi_dev_attrs[] = {
&dev_attr_serial_number.attr,
&dev_attr_oem_pk_hash.attr,
&dev_attr_soc_reset.attr,
NULL,
};
ATTRIBUTE_GROUPS(mhi_dev);
/* MHI protocol requires the transfer ring to be aligned with ring length */
static int mhi_alloc_aligned_ring(struct mhi_controller *mhi_cntrl,
struct mhi_ring *ring,
u64 len)
{
ring->alloc_size = len + (len - 1);
ring->pre_aligned = dma_alloc_coherent(mhi_cntrl->cntrl_dev, ring->alloc_size,
&ring->dma_handle, GFP_KERNEL);
if (!ring->pre_aligned)
return -ENOMEM;
ring->iommu_base = (ring->dma_handle + (len - 1)) & ~(len - 1);
ring->base = ring->pre_aligned + (ring->iommu_base - ring->dma_handle);
return 0;
}
void mhi_deinit_free_irq(struct mhi_controller *mhi_cntrl)
{
int i;
struct mhi_event *mhi_event = mhi_cntrl->mhi_event;
for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
if (mhi_event->offload_ev)
continue;
free_irq(mhi_cntrl->irq[mhi_event->irq], mhi_event);
}
free_irq(mhi_cntrl->irq[0], mhi_cntrl);
}
int mhi_init_irq_setup(struct mhi_controller *mhi_cntrl)
{
struct mhi_event *mhi_event = mhi_cntrl->mhi_event;
struct device *dev = &mhi_cntrl->mhi_dev->dev;
unsigned long irq_flags = IRQF_SHARED | IRQF_NO_SUSPEND;
int i, ret;
/* if controller driver has set irq_flags, use it */
if (mhi_cntrl->irq_flags)
irq_flags = mhi_cntrl->irq_flags;
/* Setup BHI_INTVEC IRQ */
ret = request_threaded_irq(mhi_cntrl->irq[0], mhi_intvec_handler,
mhi_intvec_threaded_handler,
irq_flags,
"bhi", mhi_cntrl);
if (ret)
return ret;
/*
* IRQs should be enabled during mhi_async_power_up(), so disable them explicitly here.
* Due to the use of IRQF_SHARED flag as default while requesting IRQs, we assume that
* IRQ_NOAUTOEN is not applicable.
*/
disable_irq(mhi_cntrl->irq[0]);
for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
if (mhi_event->offload_ev)
continue;
if (mhi_event->irq >= mhi_cntrl->nr_irqs) {
dev_err(dev, "irq %d not available for event ring\n",
mhi_event->irq);
ret = -EINVAL;
goto error_request;
}
ret = request_irq(mhi_cntrl->irq[mhi_event->irq],
mhi_irq_handler,
irq_flags,
"mhi", mhi_event);
if (ret) {
dev_err(dev, "Error requesting irq:%d for ev:%d\n",
mhi_cntrl->irq[mhi_event->irq], i);
goto error_request;
}
disable_irq(mhi_cntrl->irq[mhi_event->irq]);
}
return 0;
error_request:
for (--i, --mhi_event; i >= 0; i--, mhi_event--) {
if (mhi_event->offload_ev)
continue;
free_irq(mhi_cntrl->irq[mhi_event->irq], mhi_event);
}
free_irq(mhi_cntrl->irq[0], mhi_cntrl);
return ret;
}
void mhi_deinit_dev_ctxt(struct mhi_controller *mhi_cntrl)
{
int i;
struct mhi_ctxt *mhi_ctxt = mhi_cntrl->mhi_ctxt;
struct mhi_cmd *mhi_cmd;
struct mhi_event *mhi_event;
struct mhi_ring *ring;
mhi_cmd = mhi_cntrl->mhi_cmd;
for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++) {
ring = &mhi_cmd->ring;
dma_free_coherent(mhi_cntrl->cntrl_dev, ring->alloc_size,
ring->pre_aligned, ring->dma_handle);
ring->base = NULL;
ring->iommu_base = 0;
}
dma_free_coherent(mhi_cntrl->cntrl_dev,
sizeof(*mhi_ctxt->cmd_ctxt) * NR_OF_CMD_RINGS,
mhi_ctxt->cmd_ctxt, mhi_ctxt->cmd_ctxt_addr);
mhi_event = mhi_cntrl->mhi_event;
for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
if (mhi_event->offload_ev)
continue;
ring = &mhi_event->ring;
dma_free_coherent(mhi_cntrl->cntrl_dev, ring->alloc_size,
ring->pre_aligned, ring->dma_handle);
ring->base = NULL;
ring->iommu_base = 0;
}
dma_free_coherent(mhi_cntrl->cntrl_dev, sizeof(*mhi_ctxt->er_ctxt) *
mhi_cntrl->total_ev_rings, mhi_ctxt->er_ctxt,
mhi_ctxt->er_ctxt_addr);
dma_free_coherent(mhi_cntrl->cntrl_dev, sizeof(*mhi_ctxt->chan_ctxt) *
mhi_cntrl->max_chan, mhi_ctxt->chan_ctxt,
mhi_ctxt->chan_ctxt_addr);
kfree(mhi_ctxt);
mhi_cntrl->mhi_ctxt = NULL;
}
int mhi_init_dev_ctxt(struct mhi_controller *mhi_cntrl)
{
struct mhi_ctxt *mhi_ctxt;
struct mhi_chan_ctxt *chan_ctxt;
struct mhi_event_ctxt *er_ctxt;
struct mhi_cmd_ctxt *cmd_ctxt;
struct mhi_chan *mhi_chan;
struct mhi_event *mhi_event;
struct mhi_cmd *mhi_cmd;
u32 tmp;
int ret = -ENOMEM, i;
atomic_set(&mhi_cntrl->dev_wake, 0);
atomic_set(&mhi_cntrl->pending_pkts, 0);
mhi_ctxt = kzalloc(sizeof(*mhi_ctxt), GFP_KERNEL);
if (!mhi_ctxt)
return -ENOMEM;
/* Setup channel ctxt */
mhi_ctxt->chan_ctxt = dma_alloc_coherent(mhi_cntrl->cntrl_dev,
sizeof(*mhi_ctxt->chan_ctxt) *
mhi_cntrl->max_chan,
&mhi_ctxt->chan_ctxt_addr,
GFP_KERNEL);
if (!mhi_ctxt->chan_ctxt)
goto error_alloc_chan_ctxt;
mhi_chan = mhi_cntrl->mhi_chan;
chan_ctxt = mhi_ctxt->chan_ctxt;
for (i = 0; i < mhi_cntrl->max_chan; i++, chan_ctxt++, mhi_chan++) {
/* Skip if it is an offload channel */
if (mhi_chan->offload_ch)
continue;
tmp = le32_to_cpu(chan_ctxt->chcfg);
tmp &= ~CHAN_CTX_CHSTATE_MASK;
tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_DISABLED);
tmp &= ~CHAN_CTX_BRSTMODE_MASK;
tmp |= FIELD_PREP(CHAN_CTX_BRSTMODE_MASK, mhi_chan->db_cfg.brstmode);
tmp &= ~CHAN_CTX_POLLCFG_MASK;
tmp |= FIELD_PREP(CHAN_CTX_POLLCFG_MASK, mhi_chan->db_cfg.pollcfg);
chan_ctxt->chcfg = cpu_to_le32(tmp);
chan_ctxt->chtype = cpu_to_le32(mhi_chan->type);
chan_ctxt->erindex = cpu_to_le32(mhi_chan->er_index);
mhi_chan->ch_state = MHI_CH_STATE_DISABLED;
mhi_chan->tre_ring.db_addr = (void __iomem *)&chan_ctxt->wp;
}
/* Setup event context */
mhi_ctxt->er_ctxt = dma_alloc_coherent(mhi_cntrl->cntrl_dev,
sizeof(*mhi_ctxt->er_ctxt) *
mhi_cntrl->total_ev_rings,
&mhi_ctxt->er_ctxt_addr,
GFP_KERNEL);
if (!mhi_ctxt->er_ctxt)
goto error_alloc_er_ctxt;
er_ctxt = mhi_ctxt->er_ctxt;
mhi_event = mhi_cntrl->mhi_event;
for (i = 0; i < mhi_cntrl->total_ev_rings; i++, er_ctxt++,
mhi_event++) {
struct mhi_ring *ring = &mhi_event->ring;
/* Skip if it is an offload event */
if (mhi_event->offload_ev)
continue;
tmp = le32_to_cpu(er_ctxt->intmod);
tmp &= ~EV_CTX_INTMODC_MASK;
tmp &= ~EV_CTX_INTMODT_MASK;
tmp |= FIELD_PREP(EV_CTX_INTMODT_MASK, mhi_event->intmod);
er_ctxt->intmod = cpu_to_le32(tmp);
er_ctxt->ertype = cpu_to_le32(MHI_ER_TYPE_VALID);
er_ctxt->msivec = cpu_to_le32(mhi_event->irq);
mhi_event->db_cfg.db_mode = true;
ring->el_size = sizeof(struct mhi_ring_element);
ring->len = ring->el_size * ring->elements;
ret = mhi_alloc_aligned_ring(mhi_cntrl, ring, ring->len);
if (ret)
goto error_alloc_er;
/*
* If the read pointer equals to the write pointer, then the
* ring is empty
*/
ring->rp = ring->wp = ring->base;
er_ctxt->rbase = cpu_to_le64(ring->iommu_base);
er_ctxt->rp = er_ctxt->wp = er_ctxt->rbase;
er_ctxt->rlen = cpu_to_le64(ring->len);
ring->ctxt_wp = &er_ctxt->wp;
}
/* Setup cmd context */
ret = -ENOMEM;
mhi_ctxt->cmd_ctxt = dma_alloc_coherent(mhi_cntrl->cntrl_dev,
sizeof(*mhi_ctxt->cmd_ctxt) *
NR_OF_CMD_RINGS,
&mhi_ctxt->cmd_ctxt_addr,
GFP_KERNEL);
if (!mhi_ctxt->cmd_ctxt)
goto error_alloc_er;
mhi_cmd = mhi_cntrl->mhi_cmd;
cmd_ctxt = mhi_ctxt->cmd_ctxt;
for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++, cmd_ctxt++) {
struct mhi_ring *ring = &mhi_cmd->ring;
ring->el_size = sizeof(struct mhi_ring_element);
ring->elements = CMD_EL_PER_RING;
ring->len = ring->el_size * ring->elements;
ret = mhi_alloc_aligned_ring(mhi_cntrl, ring, ring->len);
if (ret)
goto error_alloc_cmd;
ring->rp = ring->wp = ring->base;
cmd_ctxt->rbase = cpu_to_le64(ring->iommu_base);
cmd_ctxt->rp = cmd_ctxt->wp = cmd_ctxt->rbase;
cmd_ctxt->rlen = cpu_to_le64(ring->len);
ring->ctxt_wp = &cmd_ctxt->wp;
}
mhi_cntrl->mhi_ctxt = mhi_ctxt;
return 0;
error_alloc_cmd:
for (--i, --mhi_cmd; i >= 0; i--, mhi_cmd--) {
struct mhi_ring *ring = &mhi_cmd->ring;
dma_free_coherent(mhi_cntrl->cntrl_dev, ring->alloc_size,
ring->pre_aligned, ring->dma_handle);
}
dma_free_coherent(mhi_cntrl->cntrl_dev,
sizeof(*mhi_ctxt->cmd_ctxt) * NR_OF_CMD_RINGS,
mhi_ctxt->cmd_ctxt, mhi_ctxt->cmd_ctxt_addr);
i = mhi_cntrl->total_ev_rings;
mhi_event = mhi_cntrl->mhi_event + i;
error_alloc_er:
for (--i, --mhi_event; i >= 0; i--, mhi_event--) {
struct mhi_ring *ring = &mhi_event->ring;
if (mhi_event->offload_ev)
continue;
dma_free_coherent(mhi_cntrl->cntrl_dev, ring->alloc_size,
ring->pre_aligned, ring->dma_handle);
}
dma_free_coherent(mhi_cntrl->cntrl_dev, sizeof(*mhi_ctxt->er_ctxt) *
mhi_cntrl->total_ev_rings, mhi_ctxt->er_ctxt,
mhi_ctxt->er_ctxt_addr);
error_alloc_er_ctxt:
dma_free_coherent(mhi_cntrl->cntrl_dev, sizeof(*mhi_ctxt->chan_ctxt) *
mhi_cntrl->max_chan, mhi_ctxt->chan_ctxt,
mhi_ctxt->chan_ctxt_addr);
error_alloc_chan_ctxt:
kfree(mhi_ctxt);
return ret;
}
int mhi_init_mmio(struct mhi_controller *mhi_cntrl)
{
u32 val;
int i, ret;
struct mhi_chan *mhi_chan;
struct mhi_event *mhi_event;
void __iomem *base = mhi_cntrl->regs;
struct device *dev = &mhi_cntrl->mhi_dev->dev;
struct {
u32 offset;
u32 val;
} reg_info[] = {
{
CCABAP_HIGHER,
upper_32_bits(mhi_cntrl->mhi_ctxt->chan_ctxt_addr),
},
{
CCABAP_LOWER,
lower_32_bits(mhi_cntrl->mhi_ctxt->chan_ctxt_addr),
},
{
ECABAP_HIGHER,
upper_32_bits(mhi_cntrl->mhi_ctxt->er_ctxt_addr),
},
{
ECABAP_LOWER,
lower_32_bits(mhi_cntrl->mhi_ctxt->er_ctxt_addr),
},
{
CRCBAP_HIGHER,
upper_32_bits(mhi_cntrl->mhi_ctxt->cmd_ctxt_addr),
},
{
CRCBAP_LOWER,
lower_32_bits(mhi_cntrl->mhi_ctxt->cmd_ctxt_addr),
},
{
MHICTRLBASE_HIGHER,
upper_32_bits(mhi_cntrl->iova_start),
},
{
MHICTRLBASE_LOWER,
lower_32_bits(mhi_cntrl->iova_start),
},
{
MHIDATABASE_HIGHER,
upper_32_bits(mhi_cntrl->iova_start),
},
{
MHIDATABASE_LOWER,
lower_32_bits(mhi_cntrl->iova_start),
},
{
MHICTRLLIMIT_HIGHER,
upper_32_bits(mhi_cntrl->iova_stop),
},
{
MHICTRLLIMIT_LOWER,
lower_32_bits(mhi_cntrl->iova_stop),
},
{
MHIDATALIMIT_HIGHER,
upper_32_bits(mhi_cntrl->iova_stop),
},
{
MHIDATALIMIT_LOWER,
lower_32_bits(mhi_cntrl->iova_stop),
},
{0, 0}
};
dev_dbg(dev, "Initializing MHI registers\n");
/* Read channel db offset */
ret = mhi_read_reg(mhi_cntrl, base, CHDBOFF, &val);
if (ret) {
dev_err(dev, "Unable to read CHDBOFF register\n");
return -EIO;
}
if (val >= mhi_cntrl->reg_len - (8 * MHI_DEV_WAKE_DB)) {
dev_err(dev, "CHDB offset: 0x%x is out of range: 0x%zx\n",
val, mhi_cntrl->reg_len - (8 * MHI_DEV_WAKE_DB));
return -ERANGE;
}
/* Setup wake db */
mhi_cntrl->wake_db = base + val + (8 * MHI_DEV_WAKE_DB);
mhi_cntrl->wake_set = false;
/* Setup channel db address for each channel in tre_ring */
mhi_chan = mhi_cntrl->mhi_chan;
for (i = 0; i < mhi_cntrl->max_chan; i++, val += 8, mhi_chan++)
mhi_chan->tre_ring.db_addr = base + val;
/* Read event ring db offset */
ret = mhi_read_reg(mhi_cntrl, base, ERDBOFF, &val);
if (ret) {
dev_err(dev, "Unable to read ERDBOFF register\n");
return -EIO;
}
if (val >= mhi_cntrl->reg_len - (8 * mhi_cntrl->total_ev_rings)) {
dev_err(dev, "ERDB offset: 0x%x is out of range: 0x%zx\n",
val, mhi_cntrl->reg_len - (8 * mhi_cntrl->total_ev_rings));
return -ERANGE;
}
/* Setup event db address for each ev_ring */
mhi_event = mhi_cntrl->mhi_event;
for (i = 0; i < mhi_cntrl->total_ev_rings; i++, val += 8, mhi_event++) {
if (mhi_event->offload_ev)
continue;
mhi_event->ring.db_addr = base + val;
}
/* Setup DB register for primary CMD rings */
mhi_cntrl->mhi_cmd[PRIMARY_CMD_RING].ring.db_addr = base + CRDB_LOWER;
/* Write to MMIO registers */
for (i = 0; reg_info[i].offset; i++)
mhi_write_reg(mhi_cntrl, base, reg_info[i].offset,
reg_info[i].val);
ret = mhi_write_reg_field(mhi_cntrl, base, MHICFG, MHICFG_NER_MASK,
mhi_cntrl->total_ev_rings);
if (ret) {
dev_err(dev, "Unable to write MHICFG register\n");
return ret;
}
ret = mhi_write_reg_field(mhi_cntrl, base, MHICFG, MHICFG_NHWER_MASK,
mhi_cntrl->hw_ev_rings);
if (ret) {
dev_err(dev, "Unable to write MHICFG register\n");
return ret;
}
return 0;
}
void mhi_deinit_chan_ctxt(struct mhi_controller *mhi_cntrl,
struct mhi_chan *mhi_chan)
{
struct mhi_ring *buf_ring;
struct mhi_ring *tre_ring;
struct mhi_chan_ctxt *chan_ctxt;
u32 tmp;
buf_ring = &mhi_chan->buf_ring;
tre_ring = &mhi_chan->tre_ring;
chan_ctxt = &mhi_cntrl->mhi_ctxt->chan_ctxt[mhi_chan->chan];
if (!chan_ctxt->rbase) /* Already uninitialized */
return;
dma_free_coherent(mhi_cntrl->cntrl_dev, tre_ring->alloc_size,
tre_ring->pre_aligned, tre_ring->dma_handle);
vfree(buf_ring->base);
buf_ring->base = tre_ring->base = NULL;
tre_ring->ctxt_wp = NULL;
chan_ctxt->rbase = 0;
chan_ctxt->rlen = 0;
chan_ctxt->rp = 0;
chan_ctxt->wp = 0;
tmp = le32_to_cpu(chan_ctxt->chcfg);
tmp &= ~CHAN_CTX_CHSTATE_MASK;
tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_DISABLED);
chan_ctxt->chcfg = cpu_to_le32(tmp);
/* Update to all cores */
smp_wmb();
}
int mhi_init_chan_ctxt(struct mhi_controller *mhi_cntrl,
struct mhi_chan *mhi_chan)
{
struct mhi_ring *buf_ring;
struct mhi_ring *tre_ring;
struct mhi_chan_ctxt *chan_ctxt;
u32 tmp;
int ret;
buf_ring = &mhi_chan->buf_ring;
tre_ring = &mhi_chan->tre_ring;
tre_ring->el_size = sizeof(struct mhi_ring_element);
tre_ring->len = tre_ring->el_size * tre_ring->elements;
chan_ctxt = &mhi_cntrl->mhi_ctxt->chan_ctxt[mhi_chan->chan];
ret = mhi_alloc_aligned_ring(mhi_cntrl, tre_ring, tre_ring->len);
if (ret)
return -ENOMEM;
buf_ring->el_size = sizeof(struct mhi_buf_info);
buf_ring->len = buf_ring->el_size * buf_ring->elements;
buf_ring->base = vzalloc(buf_ring->len);
if (!buf_ring->base) {
dma_free_coherent(mhi_cntrl->cntrl_dev, tre_ring->alloc_size,
tre_ring->pre_aligned, tre_ring->dma_handle);
return -ENOMEM;
}
tmp = le32_to_cpu(chan_ctxt->chcfg);
tmp &= ~CHAN_CTX_CHSTATE_MASK;
tmp |= FIELD_PREP(CHAN_CTX_CHSTATE_MASK, MHI_CH_STATE_ENABLED);
chan_ctxt->chcfg = cpu_to_le32(tmp);
chan_ctxt->rbase = cpu_to_le64(tre_ring->iommu_base);
chan_ctxt->rp = chan_ctxt->wp = chan_ctxt->rbase;
chan_ctxt->rlen = cpu_to_le64(tre_ring->len);
tre_ring->ctxt_wp = &chan_ctxt->wp;
tre_ring->rp = tre_ring->wp = tre_ring->base;
buf_ring->rp = buf_ring->wp = buf_ring->base;
mhi_chan->db_cfg.db_mode = 1;
/* Update to all cores */
smp_wmb();
return 0;
}
static int parse_ev_cfg(struct mhi_controller *mhi_cntrl,
const struct mhi_controller_config *config)
{
struct mhi_event *mhi_event;
const struct mhi_event_config *event_cfg;
struct device *dev = mhi_cntrl->cntrl_dev;
int i, num;
num = config->num_events;
mhi_cntrl->total_ev_rings = num;
mhi_cntrl->mhi_event = kcalloc(num, sizeof(*mhi_cntrl->mhi_event),
GFP_KERNEL);
if (!mhi_cntrl->mhi_event)
return -ENOMEM;
/* Populate event ring */
mhi_event = mhi_cntrl->mhi_event;
for (i = 0; i < num; i++) {
event_cfg = &config->event_cfg[i];
mhi_event->er_index = i;
mhi_event->ring.elements = event_cfg->num_elements;
mhi_event->intmod = event_cfg->irq_moderation_ms;
mhi_event->irq = event_cfg->irq;
if (event_cfg->channel != U32_MAX) {
/* This event ring has a dedicated channel */
mhi_event->chan = event_cfg->channel;
if (mhi_event->chan >= mhi_cntrl->max_chan) {
dev_err(dev,
"Event Ring channel not available\n");
goto error_ev_cfg;
}
mhi_event->mhi_chan =
&mhi_cntrl->mhi_chan[mhi_event->chan];
}
/* Priority is fixed to 1 for now */
mhi_event->priority = 1;
mhi_event->db_cfg.brstmode = event_cfg->mode;
if (MHI_INVALID_BRSTMODE(mhi_event->db_cfg.brstmode))
goto error_ev_cfg;
if (mhi_event->db_cfg.brstmode == MHI_DB_BRST_ENABLE)
mhi_event->db_cfg.process_db = mhi_db_brstmode;
else
mhi_event->db_cfg.process_db = mhi_db_brstmode_disable;
mhi_event->data_type = event_cfg->data_type;
switch (mhi_event->data_type) {
case MHI_ER_DATA:
mhi_event->process_event = mhi_process_data_event_ring;
break;
case MHI_ER_CTRL:
mhi_event->process_event = mhi_process_ctrl_ev_ring;
break;
default:
dev_err(dev, "Event Ring type not supported\n");
goto error_ev_cfg;
}
mhi_event->hw_ring = event_cfg->hardware_event;
if (mhi_event->hw_ring)
mhi_cntrl->hw_ev_rings++;
else
mhi_cntrl->sw_ev_rings++;
mhi_event->cl_manage = event_cfg->client_managed;
mhi_event->offload_ev = event_cfg->offload_channel;
mhi_event++;
}
return 0;
error_ev_cfg:
kfree(mhi_cntrl->mhi_event);
return -EINVAL;
}
static int parse_ch_cfg(struct mhi_controller *mhi_cntrl,
const struct mhi_controller_config *config)
{
const struct mhi_channel_config *ch_cfg;
struct device *dev = mhi_cntrl->cntrl_dev;
int i;
u32 chan;
mhi_cntrl->max_chan = config->max_channels;
/*
* The allocation of MHI channels can exceed 32KB in some scenarios,
* so to avoid any memory possible allocation failures, vzalloc is
* used here
*/
mhi_cntrl->mhi_chan = vcalloc(mhi_cntrl->max_chan,
sizeof(*mhi_cntrl->mhi_chan));
if (!mhi_cntrl->mhi_chan)
return -ENOMEM;
INIT_LIST_HEAD(&mhi_cntrl->lpm_chans);
/* Populate channel configurations */
for (i = 0; i < config->num_channels; i++) {
struct mhi_chan *mhi_chan;
ch_cfg = &config->ch_cfg[i];
chan = ch_cfg->num;
if (chan >= mhi_cntrl->max_chan) {
dev_err(dev, "Channel %d not available\n", chan);
goto error_chan_cfg;
}
mhi_chan = &mhi_cntrl->mhi_chan[chan];
mhi_chan->name = ch_cfg->name;
mhi_chan->chan = chan;
mhi_chan->tre_ring.elements = ch_cfg->num_elements;
if (!mhi_chan->tre_ring.elements)
goto error_chan_cfg;
/*
* For some channels, local ring length should be bigger than
* the transfer ring length due to internal logical channels
* in device. So host can queue much more buffers than transfer
* ring length. Example, RSC channels should have a larger local
* channel length than transfer ring length.
*/
mhi_chan->buf_ring.elements = ch_cfg->local_elements;
if (!mhi_chan->buf_ring.elements)
mhi_chan->buf_ring.elements = mhi_chan->tre_ring.elements;
mhi_chan->er_index = ch_cfg->event_ring;
mhi_chan->dir = ch_cfg->dir;
/*
* For most channels, chtype is identical to channel directions.
* So, if it is not defined then assign channel direction to
* chtype
*/
mhi_chan->type = ch_cfg->type;
if (!mhi_chan->type)
mhi_chan->type = (enum mhi_ch_type)mhi_chan->dir;
mhi_chan->ee_mask = ch_cfg->ee_mask;
mhi_chan->db_cfg.pollcfg = ch_cfg->pollcfg;
mhi_chan->lpm_notify = ch_cfg->lpm_notify;
mhi_chan->offload_ch = ch_cfg->offload_channel;
mhi_chan->db_cfg.reset_req = ch_cfg->doorbell_mode_switch;
mhi_chan->pre_alloc = ch_cfg->auto_queue;
mhi_chan->wake_capable = ch_cfg->wake_capable;
/*
* If MHI host allocates buffers, then the channel direction
* should be DMA_FROM_DEVICE
*/
if (mhi_chan->pre_alloc && mhi_chan->dir != DMA_FROM_DEVICE) {
dev_err(dev, "Invalid channel configuration\n");
goto error_chan_cfg;
}
/*
* Bi-directional and direction less channel must be an
* offload channel
*/
if ((mhi_chan->dir == DMA_BIDIRECTIONAL ||
mhi_chan->dir == DMA_NONE) && !mhi_chan->offload_ch) {
dev_err(dev, "Invalid channel configuration\n");
goto error_chan_cfg;
}
if (!mhi_chan->offload_ch) {
mhi_chan->db_cfg.brstmode = ch_cfg->doorbell;
if (MHI_INVALID_BRSTMODE(mhi_chan->db_cfg.brstmode)) {
dev_err(dev, "Invalid Door bell mode\n");
goto error_chan_cfg;
}
}
if (mhi_chan->db_cfg.brstmode == MHI_DB_BRST_ENABLE)
mhi_chan->db_cfg.process_db = mhi_db_brstmode;
else
mhi_chan->db_cfg.process_db = mhi_db_brstmode_disable;
mhi_chan->configured = true;
if (mhi_chan->lpm_notify)
list_add_tail(&mhi_chan->node, &mhi_cntrl->lpm_chans);
}
return 0;
error_chan_cfg:
vfree(mhi_cntrl->mhi_chan);
return -EINVAL;
}
static int parse_config(struct mhi_controller *mhi_cntrl,
const struct mhi_controller_config *config)
{
int ret;
/* Parse MHI channel configuration */
ret = parse_ch_cfg(mhi_cntrl, config);
if (ret)
return ret;
/* Parse MHI event configuration */
ret = parse_ev_cfg(mhi_cntrl, config);
if (ret)
goto error_ev_cfg;
mhi_cntrl->timeout_ms = config->timeout_ms;
if (!mhi_cntrl->timeout_ms)
mhi_cntrl->timeout_ms = MHI_TIMEOUT_MS;
mhi_cntrl->bounce_buf = config->use_bounce_buf;
mhi_cntrl->buffer_len = config->buf_len;
if (!mhi_cntrl->buffer_len)
mhi_cntrl->buffer_len = MHI_MAX_MTU;
/* By default, host is allowed to ring DB in both M0 and M2 states */
mhi_cntrl->db_access = MHI_PM_M0 | MHI_PM_M2;
if (config->m2_no_db)
mhi_cntrl->db_access &= ~MHI_PM_M2;
return 0;
error_ev_cfg:
vfree(mhi_cntrl->mhi_chan);
return ret;
}
int mhi_register_controller(struct mhi_controller *mhi_cntrl,
const struct mhi_controller_config *config)
{
struct mhi_event *mhi_event;
struct mhi_chan *mhi_chan;
struct mhi_cmd *mhi_cmd;
struct mhi_device *mhi_dev;
u32 soc_info;
int ret, i;
if (!mhi_cntrl || !mhi_cntrl->cntrl_dev || !mhi_cntrl->regs ||
!mhi_cntrl->runtime_get || !mhi_cntrl->runtime_put ||
!mhi_cntrl->status_cb || !mhi_cntrl->read_reg ||
!mhi_cntrl->write_reg || !mhi_cntrl->nr_irqs ||
!mhi_cntrl->irq || !mhi_cntrl->reg_len)
return -EINVAL;
ret = parse_config(mhi_cntrl, config);
if (ret)
return -EINVAL;
mhi_cntrl->mhi_cmd = kcalloc(NR_OF_CMD_RINGS,
sizeof(*mhi_cntrl->mhi_cmd), GFP_KERNEL);
if (!mhi_cntrl->mhi_cmd) {
ret = -ENOMEM;
goto err_free_event;
}
INIT_LIST_HEAD(&mhi_cntrl->transition_list);
mutex_init(&mhi_cntrl->pm_mutex);
rwlock_init(&mhi_cntrl->pm_lock);
spin_lock_init(&mhi_cntrl->transition_lock);
spin_lock_init(&mhi_cntrl->wlock);
INIT_WORK(&mhi_cntrl->st_worker, mhi_pm_st_worker);
init_waitqueue_head(&mhi_cntrl->state_event);
mhi_cntrl->hiprio_wq = alloc_ordered_workqueue("mhi_hiprio_wq", WQ_HIGHPRI);
if (!mhi_cntrl->hiprio_wq) {
dev_err(mhi_cntrl->cntrl_dev, "Failed to allocate workqueue\n");
ret = -ENOMEM;
goto err_free_cmd;
}
mhi_cmd = mhi_cntrl->mhi_cmd;
for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++)
spin_lock_init(&mhi_cmd->lock);
mhi_event = mhi_cntrl->mhi_event;
for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
/* Skip for offload events */
if (mhi_event->offload_ev)
continue;
mhi_event->mhi_cntrl = mhi_cntrl;
spin_lock_init(&mhi_event->lock);
if (mhi_event->data_type == MHI_ER_CTRL)
tasklet_init(&mhi_event->task, mhi_ctrl_ev_task,
(ulong)mhi_event);
else
tasklet_init(&mhi_event->task, mhi_ev_task,
(ulong)mhi_event);
}
mhi_chan = mhi_cntrl->mhi_chan;
for (i = 0; i < mhi_cntrl->max_chan; i++, mhi_chan++) {
mutex_init(&mhi_chan->mutex);
init_completion(&mhi_chan->completion);
rwlock_init(&mhi_chan->lock);
/* used in setting bei field of TRE */
mhi_event = &mhi_cntrl->mhi_event[mhi_chan->er_index];
mhi_chan->intmod = mhi_event->intmod;
}
if (mhi_cntrl->bounce_buf) {
mhi_cntrl->map_single = mhi_map_single_use_bb;
mhi_cntrl->unmap_single = mhi_unmap_single_use_bb;
} else {
mhi_cntrl->map_single = mhi_map_single_no_bb;
mhi_cntrl->unmap_single = mhi_unmap_single_no_bb;
}
/* Read the MHI device info */
ret = mhi_read_reg(mhi_cntrl, mhi_cntrl->regs,
SOC_HW_VERSION_OFFS, &soc_info);
if (ret)
goto err_destroy_wq;
mhi_cntrl->family_number = FIELD_GET(SOC_HW_VERSION_FAM_NUM_BMSK, soc_info);
mhi_cntrl->device_number = FIELD_GET(SOC_HW_VERSION_DEV_NUM_BMSK, soc_info);
mhi_cntrl->major_version = FIELD_GET(SOC_HW_VERSION_MAJOR_VER_BMSK, soc_info);
mhi_cntrl->minor_version = FIELD_GET(SOC_HW_VERSION_MINOR_VER_BMSK, soc_info);
mhi_cntrl->index = ida_alloc(&mhi_controller_ida, GFP_KERNEL);
if (mhi_cntrl->index < 0) {
ret = mhi_cntrl->index;
goto err_destroy_wq;
}
ret = mhi_init_irq_setup(mhi_cntrl);
if (ret)
goto err_ida_free;
/* Register controller with MHI bus */
mhi_dev = mhi_alloc_device(mhi_cntrl);
if (IS_ERR(mhi_dev)) {
dev_err(mhi_cntrl->cntrl_dev, "Failed to allocate MHI device\n");
ret = PTR_ERR(mhi_dev);
goto error_setup_irq;
}
mhi_dev->dev_type = MHI_DEVICE_CONTROLLER;
mhi_dev->mhi_cntrl = mhi_cntrl;
dev_set_name(&mhi_dev->dev, "mhi%d", mhi_cntrl->index);
mhi_dev->name = dev_name(&mhi_dev->dev);
/* Init wakeup source */
device_init_wakeup(&mhi_dev->dev, true);
ret = device_add(&mhi_dev->dev);
if (ret)
goto err_release_dev;
mhi_cntrl->mhi_dev = mhi_dev;
mhi_create_debugfs(mhi_cntrl);
return 0;
err_release_dev:
put_device(&mhi_dev->dev);
error_setup_irq:
mhi_deinit_free_irq(mhi_cntrl);
err_ida_free:
ida_free(&mhi_controller_ida, mhi_cntrl->index);
err_destroy_wq:
destroy_workqueue(mhi_cntrl->hiprio_wq);
err_free_cmd:
kfree(mhi_cntrl->mhi_cmd);
err_free_event:
kfree(mhi_cntrl->mhi_event);
vfree(mhi_cntrl->mhi_chan);
return ret;
}
EXPORT_SYMBOL_GPL(mhi_register_controller);
void mhi_unregister_controller(struct mhi_controller *mhi_cntrl)
{
struct mhi_device *mhi_dev = mhi_cntrl->mhi_dev;
struct mhi_chan *mhi_chan = mhi_cntrl->mhi_chan;
unsigned int i;
mhi_deinit_free_irq(mhi_cntrl);
mhi_destroy_debugfs(mhi_cntrl);
destroy_workqueue(mhi_cntrl->hiprio_wq);
kfree(mhi_cntrl->mhi_cmd);
kfree(mhi_cntrl->mhi_event);
/* Drop the references to MHI devices created for channels */
for (i = 0; i < mhi_cntrl->max_chan; i++, mhi_chan++) {
if (!mhi_chan->mhi_dev)
continue;
put_device(&mhi_chan->mhi_dev->dev);
}
vfree(mhi_cntrl->mhi_chan);
device_del(&mhi_dev->dev);
put_device(&mhi_dev->dev);
ida_free(&mhi_controller_ida, mhi_cntrl->index);
}
EXPORT_SYMBOL_GPL(mhi_unregister_controller);
struct mhi_controller *mhi_alloc_controller(void)
{
struct mhi_controller *mhi_cntrl;
mhi_cntrl = kzalloc(sizeof(*mhi_cntrl), GFP_KERNEL);
return mhi_cntrl;
}
EXPORT_SYMBOL_GPL(mhi_alloc_controller);
void mhi_free_controller(struct mhi_controller *mhi_cntrl)
{
kfree(mhi_cntrl);
}
EXPORT_SYMBOL_GPL(mhi_free_controller);
int mhi_prepare_for_power_up(struct mhi_controller *mhi_cntrl)
{
struct device *dev = &mhi_cntrl->mhi_dev->dev;
u32 bhi_off, bhie_off;
int ret;
mutex_lock(&mhi_cntrl->pm_mutex);
ret = mhi_init_dev_ctxt(mhi_cntrl);
if (ret)
goto error_dev_ctxt;
ret = mhi_read_reg(mhi_cntrl, mhi_cntrl->regs, BHIOFF, &bhi_off);
if (ret) {
dev_err(dev, "Error getting BHI offset\n");
goto error_reg_offset;
}
if (bhi_off >= mhi_cntrl->reg_len) {
dev_err(dev, "BHI offset: 0x%x is out of range: 0x%zx\n",
bhi_off, mhi_cntrl->reg_len);
ret = -ERANGE;
goto error_reg_offset;
}
mhi_cntrl->bhi = mhi_cntrl->regs + bhi_off;
if (mhi_cntrl->fbc_download || mhi_cntrl->rddm_size) {
ret = mhi_read_reg(mhi_cntrl, mhi_cntrl->regs, BHIEOFF,
&bhie_off);
if (ret) {
dev_err(dev, "Error getting BHIE offset\n");
goto error_reg_offset;
}
if (bhie_off >= mhi_cntrl->reg_len) {
dev_err(dev,
"BHIe offset: 0x%x is out of range: 0x%zx\n",
bhie_off, mhi_cntrl->reg_len);
ret = -ERANGE;
goto error_reg_offset;
}
mhi_cntrl->bhie = mhi_cntrl->regs + bhie_off;
}
if (mhi_cntrl->rddm_size) {
/*
* This controller supports RDDM, so we need to manually clear
* BHIE RX registers since POR values are undefined.
*/
memset_io(mhi_cntrl->bhie + BHIE_RXVECADDR_LOW_OFFS,
0, BHIE_RXVECSTATUS_OFFS - BHIE_RXVECADDR_LOW_OFFS +
4);
/*
* Allocate RDDM table for debugging purpose if specified
*/
mhi_alloc_bhie_table(mhi_cntrl, &mhi_cntrl->rddm_image,
mhi_cntrl->rddm_size);
if (mhi_cntrl->rddm_image) {
ret = mhi_rddm_prepare(mhi_cntrl,
mhi_cntrl->rddm_image);
if (ret) {
mhi_free_bhie_table(mhi_cntrl,
mhi_cntrl->rddm_image);
goto error_reg_offset;
}
}
}
mutex_unlock(&mhi_cntrl->pm_mutex);
return 0;
error_reg_offset:
mhi_deinit_dev_ctxt(mhi_cntrl);
error_dev_ctxt:
mutex_unlock(&mhi_cntrl->pm_mutex);
return ret;
}
EXPORT_SYMBOL_GPL(mhi_prepare_for_power_up);
void mhi_unprepare_after_power_down(struct mhi_controller *mhi_cntrl)
{
if (mhi_cntrl->fbc_image) {
mhi_free_bhie_table(mhi_cntrl, mhi_cntrl->fbc_image);
mhi_cntrl->fbc_image = NULL;
}
if (mhi_cntrl->rddm_image) {
mhi_free_bhie_table(mhi_cntrl, mhi_cntrl->rddm_image);
mhi_cntrl->rddm_image = NULL;
}
mhi_cntrl->bhi = NULL;
mhi_cntrl->bhie = NULL;
mhi_deinit_dev_ctxt(mhi_cntrl);
}
EXPORT_SYMBOL_GPL(mhi_unprepare_after_power_down);
static void mhi_release_device(struct device *dev)
{
struct mhi_device *mhi_dev = to_mhi_device(dev);
/*
* We need to set the mhi_chan->mhi_dev to NULL here since the MHI
* devices for the channels will only get created if the mhi_dev
* associated with it is NULL. This scenario will happen during the
* controller suspend and resume.
*/
if (mhi_dev->ul_chan)
mhi_dev->ul_chan->mhi_dev = NULL;
if (mhi_dev->dl_chan)
mhi_dev->dl_chan->mhi_dev = NULL;
kfree(mhi_dev);
}
struct mhi_device *mhi_alloc_device(struct mhi_controller *mhi_cntrl)
{
struct mhi_device *mhi_dev;
struct device *dev;
mhi_dev = kzalloc(sizeof(*mhi_dev), GFP_KERNEL);
if (!mhi_dev)
return ERR_PTR(-ENOMEM);
dev = &mhi_dev->dev;
device_initialize(dev);
dev->bus = &mhi_bus_type;
dev->release = mhi_release_device;
if (mhi_cntrl->mhi_dev) {
/* for MHI client devices, parent is the MHI controller device */
dev->parent = &mhi_cntrl->mhi_dev->dev;
} else {
/* for MHI controller device, parent is the bus device (e.g. pci device) */
dev->parent = mhi_cntrl->cntrl_dev;
}
mhi_dev->mhi_cntrl = mhi_cntrl;
mhi_dev->dev_wake = 0;
return mhi_dev;
}
static int mhi_driver_probe(struct device *dev)
{
struct mhi_device *mhi_dev = to_mhi_device(dev);
struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
struct device_driver *drv = dev->driver;
struct mhi_driver *mhi_drv = to_mhi_driver(drv);
struct mhi_event *mhi_event;
struct mhi_chan *ul_chan = mhi_dev->ul_chan;
struct mhi_chan *dl_chan = mhi_dev->dl_chan;
int ret;
/* Bring device out of LPM */
ret = mhi_device_get_sync(mhi_dev);
if (ret)
return ret;
ret = -EINVAL;
if (ul_chan) {
/*
* If channel supports LPM notifications then status_cb should
* be provided
*/
if (ul_chan->lpm_notify && !mhi_drv->status_cb)
goto exit_probe;
/* For non-offload channels then xfer_cb should be provided */
if (!ul_chan->offload_ch && !mhi_drv->ul_xfer_cb)
goto exit_probe;
ul_chan->xfer_cb = mhi_drv->ul_xfer_cb;
}
ret = -EINVAL;
if (dl_chan) {
/*
* If channel supports LPM notifications then status_cb should
* be provided
*/
if (dl_chan->lpm_notify && !mhi_drv->status_cb)
goto exit_probe;
/* For non-offload channels then xfer_cb should be provided */
if (!dl_chan->offload_ch && !mhi_drv->dl_xfer_cb)
goto exit_probe;
mhi_event = &mhi_cntrl->mhi_event[dl_chan->er_index];
/*
* If the channel event ring is managed by client, then
* status_cb must be provided so that the framework can
* notify pending data
*/
if (mhi_event->cl_manage && !mhi_drv->status_cb)
goto exit_probe;
dl_chan->xfer_cb = mhi_drv->dl_xfer_cb;
}
/* Call the user provided probe function */
ret = mhi_drv->probe(mhi_dev, mhi_dev->id);
if (ret)
goto exit_probe;
mhi_device_put(mhi_dev);
return ret;
exit_probe:
mhi_unprepare_from_transfer(mhi_dev);
mhi_device_put(mhi_dev);
return ret;
}
static int mhi_driver_remove(struct device *dev)
{
struct mhi_device *mhi_dev = to_mhi_device(dev);
struct mhi_driver *mhi_drv = to_mhi_driver(dev->driver);
struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
struct mhi_chan *mhi_chan;
enum mhi_ch_state ch_state[] = {
MHI_CH_STATE_DISABLED,
MHI_CH_STATE_DISABLED
};
int dir;
/* Skip if it is a controller device */
if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
return 0;
/* Reset both channels */
for (dir = 0; dir < 2; dir++) {
mhi_chan = dir ? mhi_dev->ul_chan : mhi_dev->dl_chan;
if (!mhi_chan)
continue;
/* Wake all threads waiting for completion */
write_lock_irq(&mhi_chan->lock);
mhi_chan->ccs = MHI_EV_CC_INVALID;
complete_all(&mhi_chan->completion);
write_unlock_irq(&mhi_chan->lock);
/* Set the channel state to disabled */
mutex_lock(&mhi_chan->mutex);
write_lock_irq(&mhi_chan->lock);
ch_state[dir] = mhi_chan->ch_state;
mhi_chan->ch_state = MHI_CH_STATE_SUSPENDED;
write_unlock_irq(&mhi_chan->lock);
/* Reset the non-offload channel */
if (!mhi_chan->offload_ch)
mhi_reset_chan(mhi_cntrl, mhi_chan);
mutex_unlock(&mhi_chan->mutex);
}
mhi_drv->remove(mhi_dev);
/* De-init channel if it was enabled */
for (dir = 0; dir < 2; dir++) {
mhi_chan = dir ? mhi_dev->ul_chan : mhi_dev->dl_chan;
if (!mhi_chan)
continue;
mutex_lock(&mhi_chan->mutex);
if ((ch_state[dir] == MHI_CH_STATE_ENABLED ||
ch_state[dir] == MHI_CH_STATE_STOP) &&
!mhi_chan->offload_ch)
mhi_deinit_chan_ctxt(mhi_cntrl, mhi_chan);
mhi_chan->ch_state = MHI_CH_STATE_DISABLED;
mutex_unlock(&mhi_chan->mutex);
}
while (mhi_dev->dev_wake)
mhi_device_put(mhi_dev);
return 0;
}
int __mhi_driver_register(struct mhi_driver *mhi_drv, struct module *owner)
{
struct device_driver *driver = &mhi_drv->driver;
if (!mhi_drv->probe || !mhi_drv->remove)
return -EINVAL;
driver->bus = &mhi_bus_type;
driver->owner = owner;
driver->probe = mhi_driver_probe;
driver->remove = mhi_driver_remove;
return driver_register(driver);
}
EXPORT_SYMBOL_GPL(__mhi_driver_register);
void mhi_driver_unregister(struct mhi_driver *mhi_drv)
{
driver_unregister(&mhi_drv->driver);
}
EXPORT_SYMBOL_GPL(mhi_driver_unregister);
static int mhi_uevent(const struct device *dev, struct kobj_uevent_env *env)
{
const struct mhi_device *mhi_dev = to_mhi_device(dev);
return add_uevent_var(env, "MODALIAS=" MHI_DEVICE_MODALIAS_FMT,
mhi_dev->name);
}
static int mhi_match(struct device *dev, struct device_driver *drv)
{
struct mhi_device *mhi_dev = to_mhi_device(dev);
struct mhi_driver *mhi_drv = to_mhi_driver(drv);
const struct mhi_device_id *id;
/*
* If the device is a controller type then there is no client driver
* associated with it
*/
if (mhi_dev->dev_type == MHI_DEVICE_CONTROLLER)
return 0;
for (id = mhi_drv->id_table; id->chan[0]; id++)
if (!strcmp(mhi_dev->name, id->chan)) {
mhi_dev->id = id;
return 1;
}
return 0;
};
struct bus_type mhi_bus_type = {
.name = "mhi",
.dev_name = "mhi",
.match = mhi_match,
.uevent = mhi_uevent,
.dev_groups = mhi_dev_groups,
};
static int __init mhi_init(void)
{
mhi_debugfs_init();
return bus_register(&mhi_bus_type);
}
static void __exit mhi_exit(void)
{
mhi_debugfs_exit();
bus_unregister(&mhi_bus_type);
}
postcore_initcall(mhi_init);
module_exit(mhi_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Modem Host Interface");