OpenCloudOS-Kernel/drivers/scsi/megaraid/megaraid_sas_base.c

5483 lines
139 KiB
C

/*
* Linux MegaRAID driver for SAS based RAID controllers
*
* Copyright (c) 2009-2011 LSI Corporation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* FILE: megaraid_sas_base.c
* Version : v00.00.05.34-rc1
*
* Authors: LSI Corporation
* Sreenivas Bagalkote
* Sumant Patro
* Bo Yang
* Adam Radford <linuxraid@lsi.com>
*
* Send feedback to: <megaraidlinux@lsi.com>
*
* Mail to: LSI Corporation, 1621 Barber Lane, Milpitas, CA 95035
* ATTN: Linuxraid
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/list.h>
#include <linux/moduleparam.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/uio.h>
#include <linux/slab.h>
#include <asm/uaccess.h>
#include <linux/fs.h>
#include <linux/compat.h>
#include <linux/blkdev.h>
#include <linux/mutex.h>
#include <linux/poll.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#include "megaraid_sas_fusion.h"
#include "megaraid_sas.h"
/*
* poll_mode_io:1- schedule complete completion from q cmd
*/
static unsigned int poll_mode_io;
module_param_named(poll_mode_io, poll_mode_io, int, 0);
MODULE_PARM_DESC(poll_mode_io,
"Complete cmds from IO path, (default=0)");
/*
* Number of sectors per IO command
* Will be set in megasas_init_mfi if user does not provide
*/
static unsigned int max_sectors;
module_param_named(max_sectors, max_sectors, int, 0);
MODULE_PARM_DESC(max_sectors,
"Maximum number of sectors per IO command");
static int msix_disable;
module_param(msix_disable, int, S_IRUGO);
MODULE_PARM_DESC(msix_disable, "Disable MSI-X interrupt handling. Default: 0");
MODULE_LICENSE("GPL");
MODULE_VERSION(MEGASAS_VERSION);
MODULE_AUTHOR("megaraidlinux@lsi.com");
MODULE_DESCRIPTION("LSI MegaRAID SAS Driver");
int megasas_transition_to_ready(struct megasas_instance *instance);
static int megasas_get_pd_list(struct megasas_instance *instance);
static int megasas_issue_init_mfi(struct megasas_instance *instance);
static int megasas_register_aen(struct megasas_instance *instance,
u32 seq_num, u32 class_locale_word);
/*
* PCI ID table for all supported controllers
*/
static struct pci_device_id megasas_pci_table[] = {
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1064R)},
/* xscale IOP */
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078R)},
/* ppc IOP */
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078DE)},
/* ppc IOP */
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078GEN2)},
/* gen2*/
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0079GEN2)},
/* gen2*/
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0073SKINNY)},
/* skinny*/
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0071SKINNY)},
/* skinny*/
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_VERDE_ZCR)},
/* xscale IOP, vega */
{PCI_DEVICE(PCI_VENDOR_ID_DELL, PCI_DEVICE_ID_DELL_PERC5)},
/* xscale IOP */
{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_FUSION)},
/* Fusion */
{}
};
MODULE_DEVICE_TABLE(pci, megasas_pci_table);
static int megasas_mgmt_majorno;
static struct megasas_mgmt_info megasas_mgmt_info;
static struct fasync_struct *megasas_async_queue;
static DEFINE_MUTEX(megasas_async_queue_mutex);
static int megasas_poll_wait_aen;
static DECLARE_WAIT_QUEUE_HEAD(megasas_poll_wait);
static u32 support_poll_for_event;
u32 megasas_dbg_lvl;
static u32 support_device_change;
/* define lock for aen poll */
spinlock_t poll_aen_lock;
void
megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
u8 alt_status);
static u32
megasas_read_fw_status_reg_gen2(struct megasas_register_set __iomem *regs);
static int
megasas_adp_reset_gen2(struct megasas_instance *instance,
struct megasas_register_set __iomem *reg_set);
static irqreturn_t megasas_isr(int irq, void *devp);
static u32
megasas_init_adapter_mfi(struct megasas_instance *instance);
u32
megasas_build_and_issue_cmd(struct megasas_instance *instance,
struct scsi_cmnd *scmd);
static void megasas_complete_cmd_dpc(unsigned long instance_addr);
void
megasas_release_fusion(struct megasas_instance *instance);
int
megasas_ioc_init_fusion(struct megasas_instance *instance);
void
megasas_free_cmds_fusion(struct megasas_instance *instance);
u8
megasas_get_map_info(struct megasas_instance *instance);
int
megasas_sync_map_info(struct megasas_instance *instance);
int
wait_and_poll(struct megasas_instance *instance, struct megasas_cmd *cmd);
void megasas_reset_reply_desc(struct megasas_instance *instance);
u8 MR_ValidateMapInfo(struct MR_FW_RAID_MAP_ALL *map,
struct LD_LOAD_BALANCE_INFO *lbInfo);
int megasas_reset_fusion(struct Scsi_Host *shost);
void megasas_fusion_ocr_wq(struct work_struct *work);
void
megasas_issue_dcmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
{
instance->instancet->fire_cmd(instance,
cmd->frame_phys_addr, 0, instance->reg_set);
}
/**
* megasas_get_cmd - Get a command from the free pool
* @instance: Adapter soft state
*
* Returns a free command from the pool
*/
struct megasas_cmd *megasas_get_cmd(struct megasas_instance
*instance)
{
unsigned long flags;
struct megasas_cmd *cmd = NULL;
spin_lock_irqsave(&instance->cmd_pool_lock, flags);
if (!list_empty(&instance->cmd_pool)) {
cmd = list_entry((&instance->cmd_pool)->next,
struct megasas_cmd, list);
list_del_init(&cmd->list);
} else {
printk(KERN_ERR "megasas: Command pool empty!\n");
}
spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
return cmd;
}
/**
* megasas_return_cmd - Return a cmd to free command pool
* @instance: Adapter soft state
* @cmd: Command packet to be returned to free command pool
*/
inline void
megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
{
unsigned long flags;
spin_lock_irqsave(&instance->cmd_pool_lock, flags);
cmd->scmd = NULL;
cmd->frame_count = 0;
list_add_tail(&cmd->list, &instance->cmd_pool);
spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
}
/**
* The following functions are defined for xscale
* (deviceid : 1064R, PERC5) controllers
*/
/**
* megasas_enable_intr_xscale - Enables interrupts
* @regs: MFI register set
*/
static inline void
megasas_enable_intr_xscale(struct megasas_register_set __iomem * regs)
{
writel(0, &(regs)->outbound_intr_mask);
/* Dummy readl to force pci flush */
readl(&regs->outbound_intr_mask);
}
/**
* megasas_disable_intr_xscale -Disables interrupt
* @regs: MFI register set
*/
static inline void
megasas_disable_intr_xscale(struct megasas_register_set __iomem * regs)
{
u32 mask = 0x1f;
writel(mask, &regs->outbound_intr_mask);
/* Dummy readl to force pci flush */
readl(&regs->outbound_intr_mask);
}
/**
* megasas_read_fw_status_reg_xscale - returns the current FW status value
* @regs: MFI register set
*/
static u32
megasas_read_fw_status_reg_xscale(struct megasas_register_set __iomem * regs)
{
return readl(&(regs)->outbound_msg_0);
}
/**
* megasas_clear_interrupt_xscale - Check & clear interrupt
* @regs: MFI register set
*/
static int
megasas_clear_intr_xscale(struct megasas_register_set __iomem * regs)
{
u32 status;
u32 mfiStatus = 0;
/*
* Check if it is our interrupt
*/
status = readl(&regs->outbound_intr_status);
if (status & MFI_OB_INTR_STATUS_MASK)
mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE;
if (status & MFI_XSCALE_OMR0_CHANGE_INTERRUPT)
mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE;
/*
* Clear the interrupt by writing back the same value
*/
if (mfiStatus)
writel(status, &regs->outbound_intr_status);
/* Dummy readl to force pci flush */
readl(&regs->outbound_intr_status);
return mfiStatus;
}
/**
* megasas_fire_cmd_xscale - Sends command to the FW
* @frame_phys_addr : Physical address of cmd
* @frame_count : Number of frames for the command
* @regs : MFI register set
*/
static inline void
megasas_fire_cmd_xscale(struct megasas_instance *instance,
dma_addr_t frame_phys_addr,
u32 frame_count,
struct megasas_register_set __iomem *regs)
{
unsigned long flags;
spin_lock_irqsave(&instance->hba_lock, flags);
writel((frame_phys_addr >> 3)|(frame_count),
&(regs)->inbound_queue_port);
spin_unlock_irqrestore(&instance->hba_lock, flags);
}
/**
* megasas_adp_reset_xscale - For controller reset
* @regs: MFI register set
*/
static int
megasas_adp_reset_xscale(struct megasas_instance *instance,
struct megasas_register_set __iomem *regs)
{
u32 i;
u32 pcidata;
writel(MFI_ADP_RESET, &regs->inbound_doorbell);
for (i = 0; i < 3; i++)
msleep(1000); /* sleep for 3 secs */
pcidata = 0;
pci_read_config_dword(instance->pdev, MFI_1068_PCSR_OFFSET, &pcidata);
printk(KERN_NOTICE "pcidata = %x\n", pcidata);
if (pcidata & 0x2) {
printk(KERN_NOTICE "mfi 1068 offset read=%x\n", pcidata);
pcidata &= ~0x2;
pci_write_config_dword(instance->pdev,
MFI_1068_PCSR_OFFSET, pcidata);
for (i = 0; i < 2; i++)
msleep(1000); /* need to wait 2 secs again */
pcidata = 0;
pci_read_config_dword(instance->pdev,
MFI_1068_FW_HANDSHAKE_OFFSET, &pcidata);
printk(KERN_NOTICE "1068 offset handshake read=%x\n", pcidata);
if ((pcidata & 0xffff0000) == MFI_1068_FW_READY) {
printk(KERN_NOTICE "1068 offset pcidt=%x\n", pcidata);
pcidata = 0;
pci_write_config_dword(instance->pdev,
MFI_1068_FW_HANDSHAKE_OFFSET, pcidata);
}
}
return 0;
}
/**
* megasas_check_reset_xscale - For controller reset check
* @regs: MFI register set
*/
static int
megasas_check_reset_xscale(struct megasas_instance *instance,
struct megasas_register_set __iomem *regs)
{
u32 consumer;
consumer = *instance->consumer;
if ((instance->adprecovery != MEGASAS_HBA_OPERATIONAL) &&
(*instance->consumer == MEGASAS_ADPRESET_INPROG_SIGN)) {
return 1;
}
return 0;
}
static struct megasas_instance_template megasas_instance_template_xscale = {
.fire_cmd = megasas_fire_cmd_xscale,
.enable_intr = megasas_enable_intr_xscale,
.disable_intr = megasas_disable_intr_xscale,
.clear_intr = megasas_clear_intr_xscale,
.read_fw_status_reg = megasas_read_fw_status_reg_xscale,
.adp_reset = megasas_adp_reset_xscale,
.check_reset = megasas_check_reset_xscale,
.service_isr = megasas_isr,
.tasklet = megasas_complete_cmd_dpc,
.init_adapter = megasas_init_adapter_mfi,
.build_and_issue_cmd = megasas_build_and_issue_cmd,
.issue_dcmd = megasas_issue_dcmd,
};
/**
* This is the end of set of functions & definitions specific
* to xscale (deviceid : 1064R, PERC5) controllers
*/
/**
* The following functions are defined for ppc (deviceid : 0x60)
* controllers
*/
/**
* megasas_enable_intr_ppc - Enables interrupts
* @regs: MFI register set
*/
static inline void
megasas_enable_intr_ppc(struct megasas_register_set __iomem * regs)
{
writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
writel(~0x80000000, &(regs)->outbound_intr_mask);
/* Dummy readl to force pci flush */
readl(&regs->outbound_intr_mask);
}
/**
* megasas_disable_intr_ppc - Disable interrupt
* @regs: MFI register set
*/
static inline void
megasas_disable_intr_ppc(struct megasas_register_set __iomem * regs)
{
u32 mask = 0xFFFFFFFF;
writel(mask, &regs->outbound_intr_mask);
/* Dummy readl to force pci flush */
readl(&regs->outbound_intr_mask);
}
/**
* megasas_read_fw_status_reg_ppc - returns the current FW status value
* @regs: MFI register set
*/
static u32
megasas_read_fw_status_reg_ppc(struct megasas_register_set __iomem * regs)
{
return readl(&(regs)->outbound_scratch_pad);
}
/**
* megasas_clear_interrupt_ppc - Check & clear interrupt
* @regs: MFI register set
*/
static int
megasas_clear_intr_ppc(struct megasas_register_set __iomem * regs)
{
u32 status;
/*
* Check if it is our interrupt
*/
status = readl(&regs->outbound_intr_status);
if (!(status & MFI_REPLY_1078_MESSAGE_INTERRUPT)) {
return 0;
}
/*
* Clear the interrupt by writing back the same value
*/
writel(status, &regs->outbound_doorbell_clear);
/* Dummy readl to force pci flush */
readl(&regs->outbound_doorbell_clear);
return 1;
}
/**
* megasas_fire_cmd_ppc - Sends command to the FW
* @frame_phys_addr : Physical address of cmd
* @frame_count : Number of frames for the command
* @regs : MFI register set
*/
static inline void
megasas_fire_cmd_ppc(struct megasas_instance *instance,
dma_addr_t frame_phys_addr,
u32 frame_count,
struct megasas_register_set __iomem *regs)
{
unsigned long flags;
spin_lock_irqsave(&instance->hba_lock, flags);
writel((frame_phys_addr | (frame_count<<1))|1,
&(regs)->inbound_queue_port);
spin_unlock_irqrestore(&instance->hba_lock, flags);
}
/**
* megasas_adp_reset_ppc - For controller reset
* @regs: MFI register set
*/
static int
megasas_adp_reset_ppc(struct megasas_instance *instance,
struct megasas_register_set __iomem *regs)
{
return 0;
}
/**
* megasas_check_reset_ppc - For controller reset check
* @regs: MFI register set
*/
static int
megasas_check_reset_ppc(struct megasas_instance *instance,
struct megasas_register_set __iomem *regs)
{
return 0;
}
static struct megasas_instance_template megasas_instance_template_ppc = {
.fire_cmd = megasas_fire_cmd_ppc,
.enable_intr = megasas_enable_intr_ppc,
.disable_intr = megasas_disable_intr_ppc,
.clear_intr = megasas_clear_intr_ppc,
.read_fw_status_reg = megasas_read_fw_status_reg_ppc,
.adp_reset = megasas_adp_reset_ppc,
.check_reset = megasas_check_reset_ppc,
.service_isr = megasas_isr,
.tasklet = megasas_complete_cmd_dpc,
.init_adapter = megasas_init_adapter_mfi,
.build_and_issue_cmd = megasas_build_and_issue_cmd,
.issue_dcmd = megasas_issue_dcmd,
};
/**
* megasas_enable_intr_skinny - Enables interrupts
* @regs: MFI register set
*/
static inline void
megasas_enable_intr_skinny(struct megasas_register_set __iomem *regs)
{
writel(0xFFFFFFFF, &(regs)->outbound_intr_mask);
writel(~MFI_SKINNY_ENABLE_INTERRUPT_MASK, &(regs)->outbound_intr_mask);
/* Dummy readl to force pci flush */
readl(&regs->outbound_intr_mask);
}
/**
* megasas_disable_intr_skinny - Disables interrupt
* @regs: MFI register set
*/
static inline void
megasas_disable_intr_skinny(struct megasas_register_set __iomem *regs)
{
u32 mask = 0xFFFFFFFF;
writel(mask, &regs->outbound_intr_mask);
/* Dummy readl to force pci flush */
readl(&regs->outbound_intr_mask);
}
/**
* megasas_read_fw_status_reg_skinny - returns the current FW status value
* @regs: MFI register set
*/
static u32
megasas_read_fw_status_reg_skinny(struct megasas_register_set __iomem *regs)
{
return readl(&(regs)->outbound_scratch_pad);
}
/**
* megasas_clear_interrupt_skinny - Check & clear interrupt
* @regs: MFI register set
*/
static int
megasas_clear_intr_skinny(struct megasas_register_set __iomem *regs)
{
u32 status;
u32 mfiStatus = 0;
/*
* Check if it is our interrupt
*/
status = readl(&regs->outbound_intr_status);
if (!(status & MFI_SKINNY_ENABLE_INTERRUPT_MASK)) {
return 0;
}
/*
* Check if it is our interrupt
*/
if ((megasas_read_fw_status_reg_gen2(regs) & MFI_STATE_MASK) ==
MFI_STATE_FAULT) {
mfiStatus = MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE;
} else
mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE;
/*
* Clear the interrupt by writing back the same value
*/
writel(status, &regs->outbound_intr_status);
/*
* dummy read to flush PCI
*/
readl(&regs->outbound_intr_status);
return mfiStatus;
}
/**
* megasas_fire_cmd_skinny - Sends command to the FW
* @frame_phys_addr : Physical address of cmd
* @frame_count : Number of frames for the command
* @regs : MFI register set
*/
static inline void
megasas_fire_cmd_skinny(struct megasas_instance *instance,
dma_addr_t frame_phys_addr,
u32 frame_count,
struct megasas_register_set __iomem *regs)
{
unsigned long flags;
spin_lock_irqsave(&instance->hba_lock, flags);
writel(0, &(regs)->inbound_high_queue_port);
writel((frame_phys_addr | (frame_count<<1))|1,
&(regs)->inbound_low_queue_port);
spin_unlock_irqrestore(&instance->hba_lock, flags);
}
/**
* megasas_check_reset_skinny - For controller reset check
* @regs: MFI register set
*/
static int
megasas_check_reset_skinny(struct megasas_instance *instance,
struct megasas_register_set __iomem *regs)
{
return 0;
}
static struct megasas_instance_template megasas_instance_template_skinny = {
.fire_cmd = megasas_fire_cmd_skinny,
.enable_intr = megasas_enable_intr_skinny,
.disable_intr = megasas_disable_intr_skinny,
.clear_intr = megasas_clear_intr_skinny,
.read_fw_status_reg = megasas_read_fw_status_reg_skinny,
.adp_reset = megasas_adp_reset_gen2,
.check_reset = megasas_check_reset_skinny,
.service_isr = megasas_isr,
.tasklet = megasas_complete_cmd_dpc,
.init_adapter = megasas_init_adapter_mfi,
.build_and_issue_cmd = megasas_build_and_issue_cmd,
.issue_dcmd = megasas_issue_dcmd,
};
/**
* The following functions are defined for gen2 (deviceid : 0x78 0x79)
* controllers
*/
/**
* megasas_enable_intr_gen2 - Enables interrupts
* @regs: MFI register set
*/
static inline void
megasas_enable_intr_gen2(struct megasas_register_set __iomem *regs)
{
writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
/* write ~0x00000005 (4 & 1) to the intr mask*/
writel(~MFI_GEN2_ENABLE_INTERRUPT_MASK, &(regs)->outbound_intr_mask);
/* Dummy readl to force pci flush */
readl(&regs->outbound_intr_mask);
}
/**
* megasas_disable_intr_gen2 - Disables interrupt
* @regs: MFI register set
*/
static inline void
megasas_disable_intr_gen2(struct megasas_register_set __iomem *regs)
{
u32 mask = 0xFFFFFFFF;
writel(mask, &regs->outbound_intr_mask);
/* Dummy readl to force pci flush */
readl(&regs->outbound_intr_mask);
}
/**
* megasas_read_fw_status_reg_gen2 - returns the current FW status value
* @regs: MFI register set
*/
static u32
megasas_read_fw_status_reg_gen2(struct megasas_register_set __iomem *regs)
{
return readl(&(regs)->outbound_scratch_pad);
}
/**
* megasas_clear_interrupt_gen2 - Check & clear interrupt
* @regs: MFI register set
*/
static int
megasas_clear_intr_gen2(struct megasas_register_set __iomem *regs)
{
u32 status;
u32 mfiStatus = 0;
/*
* Check if it is our interrupt
*/
status = readl(&regs->outbound_intr_status);
if (status & MFI_GEN2_ENABLE_INTERRUPT_MASK) {
mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE;
}
if (status & MFI_G2_OUTBOUND_DOORBELL_CHANGE_INTERRUPT) {
mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE;
}
/*
* Clear the interrupt by writing back the same value
*/
if (mfiStatus)
writel(status, &regs->outbound_doorbell_clear);
/* Dummy readl to force pci flush */
readl(&regs->outbound_intr_status);
return mfiStatus;
}
/**
* megasas_fire_cmd_gen2 - Sends command to the FW
* @frame_phys_addr : Physical address of cmd
* @frame_count : Number of frames for the command
* @regs : MFI register set
*/
static inline void
megasas_fire_cmd_gen2(struct megasas_instance *instance,
dma_addr_t frame_phys_addr,
u32 frame_count,
struct megasas_register_set __iomem *regs)
{
unsigned long flags;
spin_lock_irqsave(&instance->hba_lock, flags);
writel((frame_phys_addr | (frame_count<<1))|1,
&(regs)->inbound_queue_port);
spin_unlock_irqrestore(&instance->hba_lock, flags);
}
/**
* megasas_adp_reset_gen2 - For controller reset
* @regs: MFI register set
*/
static int
megasas_adp_reset_gen2(struct megasas_instance *instance,
struct megasas_register_set __iomem *reg_set)
{
u32 retry = 0 ;
u32 HostDiag;
u32 *seq_offset = &reg_set->seq_offset;
u32 *hostdiag_offset = &reg_set->host_diag;
if (instance->instancet == &megasas_instance_template_skinny) {
seq_offset = &reg_set->fusion_seq_offset;
hostdiag_offset = &reg_set->fusion_host_diag;
}
writel(0, seq_offset);
writel(4, seq_offset);
writel(0xb, seq_offset);
writel(2, seq_offset);
writel(7, seq_offset);
writel(0xd, seq_offset);
msleep(1000);
HostDiag = (u32)readl(hostdiag_offset);
while ( !( HostDiag & DIAG_WRITE_ENABLE) ) {
msleep(100);
HostDiag = (u32)readl(hostdiag_offset);
printk(KERN_NOTICE "RESETGEN2: retry=%x, hostdiag=%x\n",
retry, HostDiag);
if (retry++ >= 100)
return 1;
}
printk(KERN_NOTICE "ADP_RESET_GEN2: HostDiag=%x\n", HostDiag);
writel((HostDiag | DIAG_RESET_ADAPTER), hostdiag_offset);
ssleep(10);
HostDiag = (u32)readl(hostdiag_offset);
while ( ( HostDiag & DIAG_RESET_ADAPTER) ) {
msleep(100);
HostDiag = (u32)readl(hostdiag_offset);
printk(KERN_NOTICE "RESET_GEN2: retry=%x, hostdiag=%x\n",
retry, HostDiag);
if (retry++ >= 1000)
return 1;
}
return 0;
}
/**
* megasas_check_reset_gen2 - For controller reset check
* @regs: MFI register set
*/
static int
megasas_check_reset_gen2(struct megasas_instance *instance,
struct megasas_register_set __iomem *regs)
{
if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) {
return 1;
}
return 0;
}
static struct megasas_instance_template megasas_instance_template_gen2 = {
.fire_cmd = megasas_fire_cmd_gen2,
.enable_intr = megasas_enable_intr_gen2,
.disable_intr = megasas_disable_intr_gen2,
.clear_intr = megasas_clear_intr_gen2,
.read_fw_status_reg = megasas_read_fw_status_reg_gen2,
.adp_reset = megasas_adp_reset_gen2,
.check_reset = megasas_check_reset_gen2,
.service_isr = megasas_isr,
.tasklet = megasas_complete_cmd_dpc,
.init_adapter = megasas_init_adapter_mfi,
.build_and_issue_cmd = megasas_build_and_issue_cmd,
.issue_dcmd = megasas_issue_dcmd,
};
/**
* This is the end of set of functions & definitions
* specific to gen2 (deviceid : 0x78, 0x79) controllers
*/
/*
* Template added for TB (Fusion)
*/
extern struct megasas_instance_template megasas_instance_template_fusion;
/**
* megasas_issue_polled - Issues a polling command
* @instance: Adapter soft state
* @cmd: Command packet to be issued
*
* For polling, MFI requires the cmd_status to be set to 0xFF before posting.
*/
int
megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
{
struct megasas_header *frame_hdr = &cmd->frame->hdr;
frame_hdr->cmd_status = 0xFF;
frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
/*
* Issue the frame using inbound queue port
*/
instance->instancet->issue_dcmd(instance, cmd);
/*
* Wait for cmd_status to change
*/
return wait_and_poll(instance, cmd);
}
/**
* megasas_issue_blocked_cmd - Synchronous wrapper around regular FW cmds
* @instance: Adapter soft state
* @cmd: Command to be issued
*
* This function waits on an event for the command to be returned from ISR.
* Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
* Used to issue ioctl commands.
*/
static int
megasas_issue_blocked_cmd(struct megasas_instance *instance,
struct megasas_cmd *cmd)
{
cmd->cmd_status = ENODATA;
instance->instancet->issue_dcmd(instance, cmd);
wait_event(instance->int_cmd_wait_q, cmd->cmd_status != ENODATA);
return 0;
}
/**
* megasas_issue_blocked_abort_cmd - Aborts previously issued cmd
* @instance: Adapter soft state
* @cmd_to_abort: Previously issued cmd to be aborted
*
* MFI firmware can abort previously issued AEN command (automatic event
* notification). The megasas_issue_blocked_abort_cmd() issues such abort
* cmd and waits for return status.
* Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
*/
static int
megasas_issue_blocked_abort_cmd(struct megasas_instance *instance,
struct megasas_cmd *cmd_to_abort)
{
struct megasas_cmd *cmd;
struct megasas_abort_frame *abort_fr;
cmd = megasas_get_cmd(instance);
if (!cmd)
return -1;
abort_fr = &cmd->frame->abort;
/*
* Prepare and issue the abort frame
*/
abort_fr->cmd = MFI_CMD_ABORT;
abort_fr->cmd_status = 0xFF;
abort_fr->flags = 0;
abort_fr->abort_context = cmd_to_abort->index;
abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
abort_fr->abort_mfi_phys_addr_hi = 0;
cmd->sync_cmd = 1;
cmd->cmd_status = 0xFF;
instance->instancet->issue_dcmd(instance, cmd);
/*
* Wait for this cmd to complete
*/
wait_event(instance->abort_cmd_wait_q, cmd->cmd_status != 0xFF);
cmd->sync_cmd = 0;
megasas_return_cmd(instance, cmd);
return 0;
}
/**
* megasas_make_sgl32 - Prepares 32-bit SGL
* @instance: Adapter soft state
* @scp: SCSI command from the mid-layer
* @mfi_sgl: SGL to be filled in
*
* If successful, this function returns the number of SG elements. Otherwise,
* it returnes -1.
*/
static int
megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp,
union megasas_sgl *mfi_sgl)
{
int i;
int sge_count;
struct scatterlist *os_sgl;
sge_count = scsi_dma_map(scp);
BUG_ON(sge_count < 0);
if (sge_count) {
scsi_for_each_sg(scp, os_sgl, sge_count, i) {
mfi_sgl->sge32[i].length = sg_dma_len(os_sgl);
mfi_sgl->sge32[i].phys_addr = sg_dma_address(os_sgl);
}
}
return sge_count;
}
/**
* megasas_make_sgl64 - Prepares 64-bit SGL
* @instance: Adapter soft state
* @scp: SCSI command from the mid-layer
* @mfi_sgl: SGL to be filled in
*
* If successful, this function returns the number of SG elements. Otherwise,
* it returnes -1.
*/
static int
megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp,
union megasas_sgl *mfi_sgl)
{
int i;
int sge_count;
struct scatterlist *os_sgl;
sge_count = scsi_dma_map(scp);
BUG_ON(sge_count < 0);
if (sge_count) {
scsi_for_each_sg(scp, os_sgl, sge_count, i) {
mfi_sgl->sge64[i].length = sg_dma_len(os_sgl);
mfi_sgl->sge64[i].phys_addr = sg_dma_address(os_sgl);
}
}
return sge_count;
}
/**
* megasas_make_sgl_skinny - Prepares IEEE SGL
* @instance: Adapter soft state
* @scp: SCSI command from the mid-layer
* @mfi_sgl: SGL to be filled in
*
* If successful, this function returns the number of SG elements. Otherwise,
* it returnes -1.
*/
static int
megasas_make_sgl_skinny(struct megasas_instance *instance,
struct scsi_cmnd *scp, union megasas_sgl *mfi_sgl)
{
int i;
int sge_count;
struct scatterlist *os_sgl;
sge_count = scsi_dma_map(scp);
if (sge_count) {
scsi_for_each_sg(scp, os_sgl, sge_count, i) {
mfi_sgl->sge_skinny[i].length = sg_dma_len(os_sgl);
mfi_sgl->sge_skinny[i].phys_addr =
sg_dma_address(os_sgl);
mfi_sgl->sge_skinny[i].flag = 0;
}
}
return sge_count;
}
/**
* megasas_get_frame_count - Computes the number of frames
* @frame_type : type of frame- io or pthru frame
* @sge_count : number of sg elements
*
* Returns the number of frames required for numnber of sge's (sge_count)
*/
static u32 megasas_get_frame_count(struct megasas_instance *instance,
u8 sge_count, u8 frame_type)
{
int num_cnt;
int sge_bytes;
u32 sge_sz;
u32 frame_count=0;
sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
sizeof(struct megasas_sge32);
if (instance->flag_ieee) {
sge_sz = sizeof(struct megasas_sge_skinny);
}
/*
* Main frame can contain 2 SGEs for 64-bit SGLs and
* 3 SGEs for 32-bit SGLs for ldio &
* 1 SGEs for 64-bit SGLs and
* 2 SGEs for 32-bit SGLs for pthru frame
*/
if (unlikely(frame_type == PTHRU_FRAME)) {
if (instance->flag_ieee == 1) {
num_cnt = sge_count - 1;
} else if (IS_DMA64)
num_cnt = sge_count - 1;
else
num_cnt = sge_count - 2;
} else {
if (instance->flag_ieee == 1) {
num_cnt = sge_count - 1;
} else if (IS_DMA64)
num_cnt = sge_count - 2;
else
num_cnt = sge_count - 3;
}
if(num_cnt>0){
sge_bytes = sge_sz * num_cnt;
frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) ;
}
/* Main frame */
frame_count +=1;
if (frame_count > 7)
frame_count = 8;
return frame_count;
}
/**
* megasas_build_dcdb - Prepares a direct cdb (DCDB) command
* @instance: Adapter soft state
* @scp: SCSI command
* @cmd: Command to be prepared in
*
* This function prepares CDB commands. These are typcially pass-through
* commands to the devices.
*/
static int
megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp,
struct megasas_cmd *cmd)
{
u32 is_logical;
u32 device_id;
u16 flags = 0;
struct megasas_pthru_frame *pthru;
is_logical = MEGASAS_IS_LOGICAL(scp);
device_id = MEGASAS_DEV_INDEX(instance, scp);
pthru = (struct megasas_pthru_frame *)cmd->frame;
if (scp->sc_data_direction == PCI_DMA_TODEVICE)
flags = MFI_FRAME_DIR_WRITE;
else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
flags = MFI_FRAME_DIR_READ;
else if (scp->sc_data_direction == PCI_DMA_NONE)
flags = MFI_FRAME_DIR_NONE;
if (instance->flag_ieee == 1) {
flags |= MFI_FRAME_IEEE;
}
/*
* Prepare the DCDB frame
*/
pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO;
pthru->cmd_status = 0x0;
pthru->scsi_status = 0x0;
pthru->target_id = device_id;
pthru->lun = scp->device->lun;
pthru->cdb_len = scp->cmd_len;
pthru->timeout = 0;
pthru->pad_0 = 0;
pthru->flags = flags;
pthru->data_xfer_len = scsi_bufflen(scp);
memcpy(pthru->cdb, scp->cmnd, scp->cmd_len);
/*
* If the command is for the tape device, set the
* pthru timeout to the os layer timeout value.
*/
if (scp->device->type == TYPE_TAPE) {
if ((scp->request->timeout / HZ) > 0xFFFF)
pthru->timeout = 0xFFFF;
else
pthru->timeout = scp->request->timeout / HZ;
}
/*
* Construct SGL
*/
if (instance->flag_ieee == 1) {
pthru->flags |= MFI_FRAME_SGL64;
pthru->sge_count = megasas_make_sgl_skinny(instance, scp,
&pthru->sgl);
} else if (IS_DMA64) {
pthru->flags |= MFI_FRAME_SGL64;
pthru->sge_count = megasas_make_sgl64(instance, scp,
&pthru->sgl);
} else
pthru->sge_count = megasas_make_sgl32(instance, scp,
&pthru->sgl);
if (pthru->sge_count > instance->max_num_sge) {
printk(KERN_ERR "megasas: DCDB two many SGE NUM=%x\n",
pthru->sge_count);
return 0;
}
/*
* Sense info specific
*/
pthru->sense_len = SCSI_SENSE_BUFFERSIZE;
pthru->sense_buf_phys_addr_hi = 0;
pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
/*
* Compute the total number of frames this command consumes. FW uses
* this number to pull sufficient number of frames from host memory.
*/
cmd->frame_count = megasas_get_frame_count(instance, pthru->sge_count,
PTHRU_FRAME);
return cmd->frame_count;
}
/**
* megasas_build_ldio - Prepares IOs to logical devices
* @instance: Adapter soft state
* @scp: SCSI command
* @cmd: Command to be prepared
*
* Frames (and accompanying SGLs) for regular SCSI IOs use this function.
*/
static int
megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp,
struct megasas_cmd *cmd)
{
u32 device_id;
u8 sc = scp->cmnd[0];
u16 flags = 0;
struct megasas_io_frame *ldio;
device_id = MEGASAS_DEV_INDEX(instance, scp);
ldio = (struct megasas_io_frame *)cmd->frame;
if (scp->sc_data_direction == PCI_DMA_TODEVICE)
flags = MFI_FRAME_DIR_WRITE;
else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
flags = MFI_FRAME_DIR_READ;
if (instance->flag_ieee == 1) {
flags |= MFI_FRAME_IEEE;
}
/*
* Prepare the Logical IO frame: 2nd bit is zero for all read cmds
*/
ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ;
ldio->cmd_status = 0x0;
ldio->scsi_status = 0x0;
ldio->target_id = device_id;
ldio->timeout = 0;
ldio->reserved_0 = 0;
ldio->pad_0 = 0;
ldio->flags = flags;
ldio->start_lba_hi = 0;
ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0;
/*
* 6-byte READ(0x08) or WRITE(0x0A) cdb
*/
if (scp->cmd_len == 6) {
ldio->lba_count = (u32) scp->cmnd[4];
ldio->start_lba_lo = ((u32) scp->cmnd[1] << 16) |
((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3];
ldio->start_lba_lo &= 0x1FFFFF;
}
/*
* 10-byte READ(0x28) or WRITE(0x2A) cdb
*/
else if (scp->cmd_len == 10) {
ldio->lba_count = (u32) scp->cmnd[8] |
((u32) scp->cmnd[7] << 8);
ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
((u32) scp->cmnd[3] << 16) |
((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
}
/*
* 12-byte READ(0xA8) or WRITE(0xAA) cdb
*/
else if (scp->cmd_len == 12) {
ldio->lba_count = ((u32) scp->cmnd[6] << 24) |
((u32) scp->cmnd[7] << 16) |
((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
((u32) scp->cmnd[3] << 16) |
((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
}
/*
* 16-byte READ(0x88) or WRITE(0x8A) cdb
*/
else if (scp->cmd_len == 16) {
ldio->lba_count = ((u32) scp->cmnd[10] << 24) |
((u32) scp->cmnd[11] << 16) |
((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13];
ldio->start_lba_lo = ((u32) scp->cmnd[6] << 24) |
((u32) scp->cmnd[7] << 16) |
((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
ldio->start_lba_hi = ((u32) scp->cmnd[2] << 24) |
((u32) scp->cmnd[3] << 16) |
((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
}
/*
* Construct SGL
*/
if (instance->flag_ieee) {
ldio->flags |= MFI_FRAME_SGL64;
ldio->sge_count = megasas_make_sgl_skinny(instance, scp,
&ldio->sgl);
} else if (IS_DMA64) {
ldio->flags |= MFI_FRAME_SGL64;
ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl);
} else
ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl);
if (ldio->sge_count > instance->max_num_sge) {
printk(KERN_ERR "megasas: build_ld_io: sge_count = %x\n",
ldio->sge_count);
return 0;
}
/*
* Sense info specific
*/
ldio->sense_len = SCSI_SENSE_BUFFERSIZE;
ldio->sense_buf_phys_addr_hi = 0;
ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
/*
* Compute the total number of frames this command consumes. FW uses
* this number to pull sufficient number of frames from host memory.
*/
cmd->frame_count = megasas_get_frame_count(instance,
ldio->sge_count, IO_FRAME);
return cmd->frame_count;
}
/**
* megasas_is_ldio - Checks if the cmd is for logical drive
* @scmd: SCSI command
*
* Called by megasas_queue_command to find out if the command to be queued
* is a logical drive command
*/
inline int megasas_is_ldio(struct scsi_cmnd *cmd)
{
if (!MEGASAS_IS_LOGICAL(cmd))
return 0;
switch (cmd->cmnd[0]) {
case READ_10:
case WRITE_10:
case READ_12:
case WRITE_12:
case READ_6:
case WRITE_6:
case READ_16:
case WRITE_16:
return 1;
default:
return 0;
}
}
/**
* megasas_dump_pending_frames - Dumps the frame address of all pending cmds
* in FW
* @instance: Adapter soft state
*/
static inline void
megasas_dump_pending_frames(struct megasas_instance *instance)
{
struct megasas_cmd *cmd;
int i,n;
union megasas_sgl *mfi_sgl;
struct megasas_io_frame *ldio;
struct megasas_pthru_frame *pthru;
u32 sgcount;
u32 max_cmd = instance->max_fw_cmds;
printk(KERN_ERR "\nmegasas[%d]: Dumping Frame Phys Address of all pending cmds in FW\n",instance->host->host_no);
printk(KERN_ERR "megasas[%d]: Total OS Pending cmds : %d\n",instance->host->host_no,atomic_read(&instance->fw_outstanding));
if (IS_DMA64)
printk(KERN_ERR "\nmegasas[%d]: 64 bit SGLs were sent to FW\n",instance->host->host_no);
else
printk(KERN_ERR "\nmegasas[%d]: 32 bit SGLs were sent to FW\n",instance->host->host_no);
printk(KERN_ERR "megasas[%d]: Pending OS cmds in FW : \n",instance->host->host_no);
for (i = 0; i < max_cmd; i++) {
cmd = instance->cmd_list[i];
if(!cmd->scmd)
continue;
printk(KERN_ERR "megasas[%d]: Frame addr :0x%08lx : ",instance->host->host_no,(unsigned long)cmd->frame_phys_addr);
if (megasas_is_ldio(cmd->scmd)){
ldio = (struct megasas_io_frame *)cmd->frame;
mfi_sgl = &ldio->sgl;
sgcount = ldio->sge_count;
printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lba lo : 0x%x, lba_hi : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no, cmd->frame_count,ldio->cmd,ldio->target_id, ldio->start_lba_lo,ldio->start_lba_hi,ldio->sense_buf_phys_addr_lo,sgcount);
}
else {
pthru = (struct megasas_pthru_frame *) cmd->frame;
mfi_sgl = &pthru->sgl;
sgcount = pthru->sge_count;
printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lun : 0x%x, cdb_len : 0x%x, data xfer len : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no,cmd->frame_count,pthru->cmd,pthru->target_id,pthru->lun,pthru->cdb_len , pthru->data_xfer_len,pthru->sense_buf_phys_addr_lo,sgcount);
}
if(megasas_dbg_lvl & MEGASAS_DBG_LVL){
for (n = 0; n < sgcount; n++){
if (IS_DMA64)
printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%08lx ",mfi_sgl->sge64[n].length , (unsigned long)mfi_sgl->sge64[n].phys_addr) ;
else
printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%x ",mfi_sgl->sge32[n].length , mfi_sgl->sge32[n].phys_addr) ;
}
}
printk(KERN_ERR "\n");
} /*for max_cmd*/
printk(KERN_ERR "\nmegasas[%d]: Pending Internal cmds in FW : \n",instance->host->host_no);
for (i = 0; i < max_cmd; i++) {
cmd = instance->cmd_list[i];
if(cmd->sync_cmd == 1){
printk(KERN_ERR "0x%08lx : ", (unsigned long)cmd->frame_phys_addr);
}
}
printk(KERN_ERR "megasas[%d]: Dumping Done.\n\n",instance->host->host_no);
}
u32
megasas_build_and_issue_cmd(struct megasas_instance *instance,
struct scsi_cmnd *scmd)
{
struct megasas_cmd *cmd;
u32 frame_count;
cmd = megasas_get_cmd(instance);
if (!cmd)
return SCSI_MLQUEUE_HOST_BUSY;
/*
* Logical drive command
*/
if (megasas_is_ldio(scmd))
frame_count = megasas_build_ldio(instance, scmd, cmd);
else
frame_count = megasas_build_dcdb(instance, scmd, cmd);
if (!frame_count)
goto out_return_cmd;
cmd->scmd = scmd;
scmd->SCp.ptr = (char *)cmd;
/*
* Issue the command to the FW
*/
atomic_inc(&instance->fw_outstanding);
instance->instancet->fire_cmd(instance, cmd->frame_phys_addr,
cmd->frame_count-1, instance->reg_set);
/*
* Check if we have pend cmds to be completed
*/
if (poll_mode_io && atomic_read(&instance->fw_outstanding))
tasklet_schedule(&instance->isr_tasklet);
return 0;
out_return_cmd:
megasas_return_cmd(instance, cmd);
return 1;
}
/**
* megasas_queue_command - Queue entry point
* @scmd: SCSI command to be queued
* @done: Callback entry point
*/
static int
megasas_queue_command_lck(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *))
{
struct megasas_instance *instance;
unsigned long flags;
instance = (struct megasas_instance *)
scmd->device->host->hostdata;
if (instance->issuepend_done == 0)
return SCSI_MLQUEUE_HOST_BUSY;
spin_lock_irqsave(&instance->hba_lock, flags);
if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) {
spin_unlock_irqrestore(&instance->hba_lock, flags);
return SCSI_MLQUEUE_HOST_BUSY;
}
spin_unlock_irqrestore(&instance->hba_lock, flags);
scmd->scsi_done = done;
scmd->result = 0;
if (MEGASAS_IS_LOGICAL(scmd) &&
(scmd->device->id >= MEGASAS_MAX_LD || scmd->device->lun)) {
scmd->result = DID_BAD_TARGET << 16;
goto out_done;
}
switch (scmd->cmnd[0]) {
case SYNCHRONIZE_CACHE:
/*
* FW takes care of flush cache on its own
* No need to send it down
*/
scmd->result = DID_OK << 16;
goto out_done;
default:
break;
}
if (instance->instancet->build_and_issue_cmd(instance, scmd)) {
printk(KERN_ERR "megasas: Err returned from build_and_issue_cmd\n");
return SCSI_MLQUEUE_HOST_BUSY;
}
return 0;
out_done:
done(scmd);
return 0;
}
static DEF_SCSI_QCMD(megasas_queue_command)
static struct megasas_instance *megasas_lookup_instance(u16 host_no)
{
int i;
for (i = 0; i < megasas_mgmt_info.max_index; i++) {
if ((megasas_mgmt_info.instance[i]) &&
(megasas_mgmt_info.instance[i]->host->host_no == host_no))
return megasas_mgmt_info.instance[i];
}
return NULL;
}
static int megasas_slave_configure(struct scsi_device *sdev)
{
u16 pd_index = 0;
struct megasas_instance *instance ;
instance = megasas_lookup_instance(sdev->host->host_no);
/*
* Don't export physical disk devices to the disk driver.
*
* FIXME: Currently we don't export them to the midlayer at all.
* That will be fixed once LSI engineers have audited the
* firmware for possible issues.
*/
if (sdev->channel < MEGASAS_MAX_PD_CHANNELS &&
sdev->type == TYPE_DISK) {
pd_index = (sdev->channel * MEGASAS_MAX_DEV_PER_CHANNEL) +
sdev->id;
if (instance->pd_list[pd_index].driveState ==
MR_PD_STATE_SYSTEM) {
blk_queue_rq_timeout(sdev->request_queue,
MEGASAS_DEFAULT_CMD_TIMEOUT * HZ);
return 0;
}
return -ENXIO;
}
/*
* The RAID firmware may require extended timeouts.
*/
blk_queue_rq_timeout(sdev->request_queue,
MEGASAS_DEFAULT_CMD_TIMEOUT * HZ);
return 0;
}
static int megasas_slave_alloc(struct scsi_device *sdev)
{
u16 pd_index = 0;
struct megasas_instance *instance ;
instance = megasas_lookup_instance(sdev->host->host_no);
if ((sdev->channel < MEGASAS_MAX_PD_CHANNELS) &&
(sdev->type == TYPE_DISK)) {
/*
* Open the OS scan to the SYSTEM PD
*/
pd_index =
(sdev->channel * MEGASAS_MAX_DEV_PER_CHANNEL) +
sdev->id;
if ((instance->pd_list[pd_index].driveState ==
MR_PD_STATE_SYSTEM) &&
(instance->pd_list[pd_index].driveType ==
TYPE_DISK)) {
return 0;
}
return -ENXIO;
}
return 0;
}
void megaraid_sas_kill_hba(struct megasas_instance *instance)
{
if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
(instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY) ||
(instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION)) {
writel(MFI_STOP_ADP, &instance->reg_set->doorbell);
} else {
writel(MFI_STOP_ADP, &instance->reg_set->inbound_doorbell);
}
}
/**
* megasas_check_and_restore_queue_depth - Check if queue depth needs to be
* restored to max value
* @instance: Adapter soft state
*
*/
void
megasas_check_and_restore_queue_depth(struct megasas_instance *instance)
{
unsigned long flags;
if (instance->flag & MEGASAS_FW_BUSY
&& time_after(jiffies, instance->last_time + 5 * HZ)
&& atomic_read(&instance->fw_outstanding) < 17) {
spin_lock_irqsave(instance->host->host_lock, flags);
instance->flag &= ~MEGASAS_FW_BUSY;
if ((instance->pdev->device ==
PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
(instance->pdev->device ==
PCI_DEVICE_ID_LSI_SAS0071SKINNY)) {
instance->host->can_queue =
instance->max_fw_cmds - MEGASAS_SKINNY_INT_CMDS;
} else
instance->host->can_queue =
instance->max_fw_cmds - MEGASAS_INT_CMDS;
spin_unlock_irqrestore(instance->host->host_lock, flags);
}
}
/**
* megasas_complete_cmd_dpc - Returns FW's controller structure
* @instance_addr: Address of adapter soft state
*
* Tasklet to complete cmds
*/
static void megasas_complete_cmd_dpc(unsigned long instance_addr)
{
u32 producer;
u32 consumer;
u32 context;
struct megasas_cmd *cmd;
struct megasas_instance *instance =
(struct megasas_instance *)instance_addr;
unsigned long flags;
/* If we have already declared adapter dead, donot complete cmds */
if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR )
return;
spin_lock_irqsave(&instance->completion_lock, flags);
producer = *instance->producer;
consumer = *instance->consumer;
while (consumer != producer) {
context = instance->reply_queue[consumer];
if (context >= instance->max_fw_cmds) {
printk(KERN_ERR "Unexpected context value %x\n",
context);
BUG();
}
cmd = instance->cmd_list[context];
megasas_complete_cmd(instance, cmd, DID_OK);
consumer++;
if (consumer == (instance->max_fw_cmds + 1)) {
consumer = 0;
}
}
*instance->consumer = producer;
spin_unlock_irqrestore(&instance->completion_lock, flags);
/*
* Check if we can restore can_queue
*/
megasas_check_and_restore_queue_depth(instance);
}
static void
megasas_internal_reset_defer_cmds(struct megasas_instance *instance);
static void
process_fw_state_change_wq(struct work_struct *work);
void megasas_do_ocr(struct megasas_instance *instance)
{
if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1064R) ||
(instance->pdev->device == PCI_DEVICE_ID_DELL_PERC5) ||
(instance->pdev->device == PCI_DEVICE_ID_LSI_VERDE_ZCR)) {
*instance->consumer = MEGASAS_ADPRESET_INPROG_SIGN;
}
instance->instancet->disable_intr(instance->reg_set);
instance->adprecovery = MEGASAS_ADPRESET_SM_INFAULT;
instance->issuepend_done = 0;
atomic_set(&instance->fw_outstanding, 0);
megasas_internal_reset_defer_cmds(instance);
process_fw_state_change_wq(&instance->work_init);
}
/**
* megasas_wait_for_outstanding - Wait for all outstanding cmds
* @instance: Adapter soft state
*
* This function waits for up to MEGASAS_RESET_WAIT_TIME seconds for FW to
* complete all its outstanding commands. Returns error if one or more IOs
* are pending after this time period. It also marks the controller dead.
*/
static int megasas_wait_for_outstanding(struct megasas_instance *instance)
{
int i;
u32 reset_index;
u32 wait_time = MEGASAS_RESET_WAIT_TIME;
u8 adprecovery;
unsigned long flags;
struct list_head clist_local;
struct megasas_cmd *reset_cmd;
u32 fw_state;
u8 kill_adapter_flag;
spin_lock_irqsave(&instance->hba_lock, flags);
adprecovery = instance->adprecovery;
spin_unlock_irqrestore(&instance->hba_lock, flags);
if (adprecovery != MEGASAS_HBA_OPERATIONAL) {
INIT_LIST_HEAD(&clist_local);
spin_lock_irqsave(&instance->hba_lock, flags);
list_splice_init(&instance->internal_reset_pending_q,
&clist_local);
spin_unlock_irqrestore(&instance->hba_lock, flags);
printk(KERN_NOTICE "megasas: HBA reset wait ...\n");
for (i = 0; i < wait_time; i++) {
msleep(1000);
spin_lock_irqsave(&instance->hba_lock, flags);
adprecovery = instance->adprecovery;
spin_unlock_irqrestore(&instance->hba_lock, flags);
if (adprecovery == MEGASAS_HBA_OPERATIONAL)
break;
}
if (adprecovery != MEGASAS_HBA_OPERATIONAL) {
printk(KERN_NOTICE "megasas: reset: Stopping HBA.\n");
spin_lock_irqsave(&instance->hba_lock, flags);
instance->adprecovery = MEGASAS_HW_CRITICAL_ERROR;
spin_unlock_irqrestore(&instance->hba_lock, flags);
return FAILED;
}
reset_index = 0;
while (!list_empty(&clist_local)) {
reset_cmd = list_entry((&clist_local)->next,
struct megasas_cmd, list);
list_del_init(&reset_cmd->list);
if (reset_cmd->scmd) {
reset_cmd->scmd->result = DID_RESET << 16;
printk(KERN_NOTICE "%d:%p reset [%02x]\n",
reset_index, reset_cmd,
reset_cmd->scmd->cmnd[0]);
reset_cmd->scmd->scsi_done(reset_cmd->scmd);
megasas_return_cmd(instance, reset_cmd);
} else if (reset_cmd->sync_cmd) {
printk(KERN_NOTICE "megasas:%p synch cmds"
"reset queue\n",
reset_cmd);
reset_cmd->cmd_status = ENODATA;
instance->instancet->fire_cmd(instance,
reset_cmd->frame_phys_addr,
0, instance->reg_set);
} else {
printk(KERN_NOTICE "megasas: %p unexpected"
"cmds lst\n",
reset_cmd);
}
reset_index++;
}
return SUCCESS;
}
for (i = 0; i < wait_time; i++) {
int outstanding = atomic_read(&instance->fw_outstanding);
if (!outstanding)
break;
if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
printk(KERN_NOTICE "megasas: [%2d]waiting for %d "
"commands to complete\n",i,outstanding);
/*
* Call cmd completion routine. Cmd to be
* be completed directly without depending on isr.
*/
megasas_complete_cmd_dpc((unsigned long)instance);
}
msleep(1000);
}
i = 0;
kill_adapter_flag = 0;
do {
fw_state = instance->instancet->read_fw_status_reg(
instance->reg_set) & MFI_STATE_MASK;
if ((fw_state == MFI_STATE_FAULT) &&
(instance->disableOnlineCtrlReset == 0)) {
if (i == 3) {
kill_adapter_flag = 2;
break;
}
megasas_do_ocr(instance);
kill_adapter_flag = 1;
/* wait for 1 secs to let FW finish the pending cmds */
msleep(1000);
}
i++;
} while (i <= 3);
if (atomic_read(&instance->fw_outstanding) &&
!kill_adapter_flag) {
if (instance->disableOnlineCtrlReset == 0) {
megasas_do_ocr(instance);
/* wait for 5 secs to let FW finish the pending cmds */
for (i = 0; i < wait_time; i++) {
int outstanding =
atomic_read(&instance->fw_outstanding);
if (!outstanding)
return SUCCESS;
msleep(1000);
}
}
}
if (atomic_read(&instance->fw_outstanding) ||
(kill_adapter_flag == 2)) {
printk(KERN_NOTICE "megaraid_sas: pending cmds after reset\n");
/*
* Send signal to FW to stop processing any pending cmds.
* The controller will be taken offline by the OS now.
*/
if ((instance->pdev->device ==
PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
(instance->pdev->device ==
PCI_DEVICE_ID_LSI_SAS0071SKINNY)) {
writel(MFI_STOP_ADP,
&instance->reg_set->doorbell);
} else {
writel(MFI_STOP_ADP,
&instance->reg_set->inbound_doorbell);
}
megasas_dump_pending_frames(instance);
spin_lock_irqsave(&instance->hba_lock, flags);
instance->adprecovery = MEGASAS_HW_CRITICAL_ERROR;
spin_unlock_irqrestore(&instance->hba_lock, flags);
return FAILED;
}
printk(KERN_NOTICE "megaraid_sas: no pending cmds after reset\n");
return SUCCESS;
}
/**
* megasas_generic_reset - Generic reset routine
* @scmd: Mid-layer SCSI command
*
* This routine implements a generic reset handler for device, bus and host
* reset requests. Device, bus and host specific reset handlers can use this
* function after they do their specific tasks.
*/
static int megasas_generic_reset(struct scsi_cmnd *scmd)
{
int ret_val;
struct megasas_instance *instance;
instance = (struct megasas_instance *)scmd->device->host->hostdata;
scmd_printk(KERN_NOTICE, scmd, "megasas: RESET cmd=%x retries=%x\n",
scmd->cmnd[0], scmd->retries);
if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) {
printk(KERN_ERR "megasas: cannot recover from previous reset "
"failures\n");
return FAILED;
}
ret_val = megasas_wait_for_outstanding(instance);
if (ret_val == SUCCESS)
printk(KERN_NOTICE "megasas: reset successful \n");
else
printk(KERN_ERR "megasas: failed to do reset\n");
return ret_val;
}
/**
* megasas_reset_timer - quiesce the adapter if required
* @scmd: scsi cmnd
*
* Sets the FW busy flag and reduces the host->can_queue if the
* cmd has not been completed within the timeout period.
*/
static enum
blk_eh_timer_return megasas_reset_timer(struct scsi_cmnd *scmd)
{
struct megasas_cmd *cmd = (struct megasas_cmd *)scmd->SCp.ptr;
struct megasas_instance *instance;
unsigned long flags;
if (time_after(jiffies, scmd->jiffies_at_alloc +
(MEGASAS_DEFAULT_CMD_TIMEOUT * 2) * HZ)) {
return BLK_EH_NOT_HANDLED;
}
instance = cmd->instance;
if (!(instance->flag & MEGASAS_FW_BUSY)) {
/* FW is busy, throttle IO */
spin_lock_irqsave(instance->host->host_lock, flags);
instance->host->can_queue = 16;
instance->last_time = jiffies;
instance->flag |= MEGASAS_FW_BUSY;
spin_unlock_irqrestore(instance->host->host_lock, flags);
}
return BLK_EH_RESET_TIMER;
}
/**
* megasas_reset_device - Device reset handler entry point
*/
static int megasas_reset_device(struct scsi_cmnd *scmd)
{
int ret;
/*
* First wait for all commands to complete
*/
ret = megasas_generic_reset(scmd);
return ret;
}
/**
* megasas_reset_bus_host - Bus & host reset handler entry point
*/
static int megasas_reset_bus_host(struct scsi_cmnd *scmd)
{
int ret;
struct megasas_instance *instance;
instance = (struct megasas_instance *)scmd->device->host->hostdata;
/*
* First wait for all commands to complete
*/
if (instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION)
ret = megasas_reset_fusion(scmd->device->host);
else
ret = megasas_generic_reset(scmd);
return ret;
}
/**
* megasas_bios_param - Returns disk geometry for a disk
* @sdev: device handle
* @bdev: block device
* @capacity: drive capacity
* @geom: geometry parameters
*/
static int
megasas_bios_param(struct scsi_device *sdev, struct block_device *bdev,
sector_t capacity, int geom[])
{
int heads;
int sectors;
sector_t cylinders;
unsigned long tmp;
/* Default heads (64) & sectors (32) */
heads = 64;
sectors = 32;
tmp = heads * sectors;
cylinders = capacity;
sector_div(cylinders, tmp);
/*
* Handle extended translation size for logical drives > 1Gb
*/
if (capacity >= 0x200000) {
heads = 255;
sectors = 63;
tmp = heads*sectors;
cylinders = capacity;
sector_div(cylinders, tmp);
}
geom[0] = heads;
geom[1] = sectors;
geom[2] = cylinders;
return 0;
}
static void megasas_aen_polling(struct work_struct *work);
/**
* megasas_service_aen - Processes an event notification
* @instance: Adapter soft state
* @cmd: AEN command completed by the ISR
*
* For AEN, driver sends a command down to FW that is held by the FW till an
* event occurs. When an event of interest occurs, FW completes the command
* that it was previously holding.
*
* This routines sends SIGIO signal to processes that have registered with the
* driver for AEN.
*/
static void
megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
{
unsigned long flags;
/*
* Don't signal app if it is just an aborted previously registered aen
*/
if ((!cmd->abort_aen) && (instance->unload == 0)) {
spin_lock_irqsave(&poll_aen_lock, flags);
megasas_poll_wait_aen = 1;
spin_unlock_irqrestore(&poll_aen_lock, flags);
wake_up(&megasas_poll_wait);
kill_fasync(&megasas_async_queue, SIGIO, POLL_IN);
}
else
cmd->abort_aen = 0;
instance->aen_cmd = NULL;
megasas_return_cmd(instance, cmd);
if ((instance->unload == 0) &&
((instance->issuepend_done == 1))) {
struct megasas_aen_event *ev;
ev = kzalloc(sizeof(*ev), GFP_ATOMIC);
if (!ev) {
printk(KERN_ERR "megasas_service_aen: out of memory\n");
} else {
ev->instance = instance;
instance->ev = ev;
INIT_WORK(&ev->hotplug_work, megasas_aen_polling);
schedule_delayed_work(
(struct delayed_work *)&ev->hotplug_work, 0);
}
}
}
/*
* Scsi host template for megaraid_sas driver
*/
static struct scsi_host_template megasas_template = {
.module = THIS_MODULE,
.name = "LSI SAS based MegaRAID driver",
.proc_name = "megaraid_sas",
.slave_configure = megasas_slave_configure,
.slave_alloc = megasas_slave_alloc,
.queuecommand = megasas_queue_command,
.eh_device_reset_handler = megasas_reset_device,
.eh_bus_reset_handler = megasas_reset_bus_host,
.eh_host_reset_handler = megasas_reset_bus_host,
.eh_timed_out = megasas_reset_timer,
.bios_param = megasas_bios_param,
.use_clustering = ENABLE_CLUSTERING,
};
/**
* megasas_complete_int_cmd - Completes an internal command
* @instance: Adapter soft state
* @cmd: Command to be completed
*
* The megasas_issue_blocked_cmd() function waits for a command to complete
* after it issues a command. This function wakes up that waiting routine by
* calling wake_up() on the wait queue.
*/
static void
megasas_complete_int_cmd(struct megasas_instance *instance,
struct megasas_cmd *cmd)
{
cmd->cmd_status = cmd->frame->io.cmd_status;
if (cmd->cmd_status == ENODATA) {
cmd->cmd_status = 0;
}
wake_up(&instance->int_cmd_wait_q);
}
/**
* megasas_complete_abort - Completes aborting a command
* @instance: Adapter soft state
* @cmd: Cmd that was issued to abort another cmd
*
* The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q
* after it issues an abort on a previously issued command. This function
* wakes up all functions waiting on the same wait queue.
*/
static void
megasas_complete_abort(struct megasas_instance *instance,
struct megasas_cmd *cmd)
{
if (cmd->sync_cmd) {
cmd->sync_cmd = 0;
cmd->cmd_status = 0;
wake_up(&instance->abort_cmd_wait_q);
}
return;
}
/**
* megasas_complete_cmd - Completes a command
* @instance: Adapter soft state
* @cmd: Command to be completed
* @alt_status: If non-zero, use this value as status to
* SCSI mid-layer instead of the value returned
* by the FW. This should be used if caller wants
* an alternate status (as in the case of aborted
* commands)
*/
void
megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
u8 alt_status)
{
int exception = 0;
struct megasas_header *hdr = &cmd->frame->hdr;
unsigned long flags;
struct fusion_context *fusion = instance->ctrl_context;
/* flag for the retry reset */
cmd->retry_for_fw_reset = 0;
if (cmd->scmd)
cmd->scmd->SCp.ptr = NULL;
switch (hdr->cmd) {
case MFI_CMD_PD_SCSI_IO:
case MFI_CMD_LD_SCSI_IO:
/*
* MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
* issued either through an IO path or an IOCTL path. If it
* was via IOCTL, we will send it to internal completion.
*/
if (cmd->sync_cmd) {
cmd->sync_cmd = 0;
megasas_complete_int_cmd(instance, cmd);
break;
}
case MFI_CMD_LD_READ:
case MFI_CMD_LD_WRITE:
if (alt_status) {
cmd->scmd->result = alt_status << 16;
exception = 1;
}
if (exception) {
atomic_dec(&instance->fw_outstanding);
scsi_dma_unmap(cmd->scmd);
cmd->scmd->scsi_done(cmd->scmd);
megasas_return_cmd(instance, cmd);
break;
}
switch (hdr->cmd_status) {
case MFI_STAT_OK:
cmd->scmd->result = DID_OK << 16;
break;
case MFI_STAT_SCSI_IO_FAILED:
case MFI_STAT_LD_INIT_IN_PROGRESS:
cmd->scmd->result =
(DID_ERROR << 16) | hdr->scsi_status;
break;
case MFI_STAT_SCSI_DONE_WITH_ERROR:
cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status;
if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) {
memset(cmd->scmd->sense_buffer, 0,
SCSI_SENSE_BUFFERSIZE);
memcpy(cmd->scmd->sense_buffer, cmd->sense,
hdr->sense_len);
cmd->scmd->result |= DRIVER_SENSE << 24;
}
break;
case MFI_STAT_LD_OFFLINE:
case MFI_STAT_DEVICE_NOT_FOUND:
cmd->scmd->result = DID_BAD_TARGET << 16;
break;
default:
printk(KERN_DEBUG "megasas: MFI FW status %#x\n",
hdr->cmd_status);
cmd->scmd->result = DID_ERROR << 16;
break;
}
atomic_dec(&instance->fw_outstanding);
scsi_dma_unmap(cmd->scmd);
cmd->scmd->scsi_done(cmd->scmd);
megasas_return_cmd(instance, cmd);
break;
case MFI_CMD_SMP:
case MFI_CMD_STP:
case MFI_CMD_DCMD:
/* Check for LD map update */
if ((cmd->frame->dcmd.opcode == MR_DCMD_LD_MAP_GET_INFO) &&
(cmd->frame->dcmd.mbox.b[1] == 1)) {
spin_lock_irqsave(instance->host->host_lock, flags);
if (cmd->frame->hdr.cmd_status != 0) {
if (cmd->frame->hdr.cmd_status !=
MFI_STAT_NOT_FOUND)
printk(KERN_WARNING "megasas: map sync"
"failed, status = 0x%x.\n",
cmd->frame->hdr.cmd_status);
else {
megasas_return_cmd(instance, cmd);
spin_unlock_irqrestore(
instance->host->host_lock,
flags);
break;
}
} else
instance->map_id++;
megasas_return_cmd(instance, cmd);
if (MR_ValidateMapInfo(
fusion->ld_map[(instance->map_id & 1)],
fusion->load_balance_info))
fusion->fast_path_io = 1;
else
fusion->fast_path_io = 0;
megasas_sync_map_info(instance);
spin_unlock_irqrestore(instance->host->host_lock,
flags);
break;
}
if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_GET_INFO ||
cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_GET) {
spin_lock_irqsave(&poll_aen_lock, flags);
megasas_poll_wait_aen = 0;
spin_unlock_irqrestore(&poll_aen_lock, flags);
}
/*
* See if got an event notification
*/
if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_WAIT)
megasas_service_aen(instance, cmd);
else
megasas_complete_int_cmd(instance, cmd);
break;
case MFI_CMD_ABORT:
/*
* Cmd issued to abort another cmd returned
*/
megasas_complete_abort(instance, cmd);
break;
default:
printk("megasas: Unknown command completed! [0x%X]\n",
hdr->cmd);
break;
}
}
/**
* megasas_issue_pending_cmds_again - issue all pending cmds
* in FW again because of the fw reset
* @instance: Adapter soft state
*/
static inline void
megasas_issue_pending_cmds_again(struct megasas_instance *instance)
{
struct megasas_cmd *cmd;
struct list_head clist_local;
union megasas_evt_class_locale class_locale;
unsigned long flags;
u32 seq_num;
INIT_LIST_HEAD(&clist_local);
spin_lock_irqsave(&instance->hba_lock, flags);
list_splice_init(&instance->internal_reset_pending_q, &clist_local);
spin_unlock_irqrestore(&instance->hba_lock, flags);
while (!list_empty(&clist_local)) {
cmd = list_entry((&clist_local)->next,
struct megasas_cmd, list);
list_del_init(&cmd->list);
if (cmd->sync_cmd || cmd->scmd) {
printk(KERN_NOTICE "megaraid_sas: command %p, %p:%d"
"detected to be pending while HBA reset.\n",
cmd, cmd->scmd, cmd->sync_cmd);
cmd->retry_for_fw_reset++;
if (cmd->retry_for_fw_reset == 3) {
printk(KERN_NOTICE "megaraid_sas: cmd %p, %p:%d"
"was tried multiple times during reset."
"Shutting down the HBA\n",
cmd, cmd->scmd, cmd->sync_cmd);
megaraid_sas_kill_hba(instance);
instance->adprecovery =
MEGASAS_HW_CRITICAL_ERROR;
return;
}
}
if (cmd->sync_cmd == 1) {
if (cmd->scmd) {
printk(KERN_NOTICE "megaraid_sas: unexpected"
"cmd attached to internal command!\n");
}
printk(KERN_NOTICE "megasas: %p synchronous cmd"
"on the internal reset queue,"
"issue it again.\n", cmd);
cmd->cmd_status = ENODATA;
instance->instancet->fire_cmd(instance,
cmd->frame_phys_addr ,
0, instance->reg_set);
} else if (cmd->scmd) {
printk(KERN_NOTICE "megasas: %p scsi cmd [%02x]"
"detected on the internal queue, issue again.\n",
cmd, cmd->scmd->cmnd[0]);
atomic_inc(&instance->fw_outstanding);
instance->instancet->fire_cmd(instance,
cmd->frame_phys_addr,
cmd->frame_count-1, instance->reg_set);
} else {
printk(KERN_NOTICE "megasas: %p unexpected cmd on the"
"internal reset defer list while re-issue!!\n",
cmd);
}
}
if (instance->aen_cmd) {
printk(KERN_NOTICE "megaraid_sas: aen_cmd in def process\n");
megasas_return_cmd(instance, instance->aen_cmd);
instance->aen_cmd = NULL;
}
/*
* Initiate AEN (Asynchronous Event Notification)
*/
seq_num = instance->last_seq_num;
class_locale.members.reserved = 0;
class_locale.members.locale = MR_EVT_LOCALE_ALL;
class_locale.members.class = MR_EVT_CLASS_DEBUG;
megasas_register_aen(instance, seq_num, class_locale.word);
}
/**
* Move the internal reset pending commands to a deferred queue.
*
* We move the commands pending at internal reset time to a
* pending queue. This queue would be flushed after successful
* completion of the internal reset sequence. if the internal reset
* did not complete in time, the kernel reset handler would flush
* these commands.
**/
static void
megasas_internal_reset_defer_cmds(struct megasas_instance *instance)
{
struct megasas_cmd *cmd;
int i;
u32 max_cmd = instance->max_fw_cmds;
u32 defer_index;
unsigned long flags;
defer_index = 0;
spin_lock_irqsave(&instance->cmd_pool_lock, flags);
for (i = 0; i < max_cmd; i++) {
cmd = instance->cmd_list[i];
if (cmd->sync_cmd == 1 || cmd->scmd) {
printk(KERN_NOTICE "megasas: moving cmd[%d]:%p:%d:%p"
"on the defer queue as internal\n",
defer_index, cmd, cmd->sync_cmd, cmd->scmd);
if (!list_empty(&cmd->list)) {
printk(KERN_NOTICE "megaraid_sas: ERROR while"
" moving this cmd:%p, %d %p, it was"
"discovered on some list?\n",
cmd, cmd->sync_cmd, cmd->scmd);
list_del_init(&cmd->list);
}
defer_index++;
list_add_tail(&cmd->list,
&instance->internal_reset_pending_q);
}
}
spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
}
static void
process_fw_state_change_wq(struct work_struct *work)
{
struct megasas_instance *instance =
container_of(work, struct megasas_instance, work_init);
u32 wait;
unsigned long flags;
if (instance->adprecovery != MEGASAS_ADPRESET_SM_INFAULT) {
printk(KERN_NOTICE "megaraid_sas: error, recovery st %x \n",
instance->adprecovery);
return ;
}
if (instance->adprecovery == MEGASAS_ADPRESET_SM_INFAULT) {
printk(KERN_NOTICE "megaraid_sas: FW detected to be in fault"
"state, restarting it...\n");
instance->instancet->disable_intr(instance->reg_set);
atomic_set(&instance->fw_outstanding, 0);
atomic_set(&instance->fw_reset_no_pci_access, 1);
instance->instancet->adp_reset(instance, instance->reg_set);
atomic_set(&instance->fw_reset_no_pci_access, 0 );
printk(KERN_NOTICE "megaraid_sas: FW restarted successfully,"
"initiating next stage...\n");
printk(KERN_NOTICE "megaraid_sas: HBA recovery state machine,"
"state 2 starting...\n");
/*waitting for about 20 second before start the second init*/
for (wait = 0; wait < 30; wait++) {
msleep(1000);
}
if (megasas_transition_to_ready(instance)) {
printk(KERN_NOTICE "megaraid_sas:adapter not ready\n");
megaraid_sas_kill_hba(instance);
instance->adprecovery = MEGASAS_HW_CRITICAL_ERROR;
return ;
}
if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1064R) ||
(instance->pdev->device == PCI_DEVICE_ID_DELL_PERC5) ||
(instance->pdev->device == PCI_DEVICE_ID_LSI_VERDE_ZCR)
) {
*instance->consumer = *instance->producer;
} else {
*instance->consumer = 0;
*instance->producer = 0;
}
megasas_issue_init_mfi(instance);
spin_lock_irqsave(&instance->hba_lock, flags);
instance->adprecovery = MEGASAS_HBA_OPERATIONAL;
spin_unlock_irqrestore(&instance->hba_lock, flags);
instance->instancet->enable_intr(instance->reg_set);
megasas_issue_pending_cmds_again(instance);
instance->issuepend_done = 1;
}
return ;
}
/**
* megasas_deplete_reply_queue - Processes all completed commands
* @instance: Adapter soft state
* @alt_status: Alternate status to be returned to
* SCSI mid-layer instead of the status
* returned by the FW
* Note: this must be called with hba lock held
*/
static int
megasas_deplete_reply_queue(struct megasas_instance *instance,
u8 alt_status)
{
u32 mfiStatus;
u32 fw_state;
if ((mfiStatus = instance->instancet->check_reset(instance,
instance->reg_set)) == 1) {
return IRQ_HANDLED;
}
if ((mfiStatus = instance->instancet->clear_intr(
instance->reg_set)
) == 0) {
/* Hardware may not set outbound_intr_status in MSI-X mode */
if (!instance->msi_flag)
return IRQ_NONE;
}
instance->mfiStatus = mfiStatus;
if ((mfiStatus & MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE)) {
fw_state = instance->instancet->read_fw_status_reg(
instance->reg_set) & MFI_STATE_MASK;
if (fw_state != MFI_STATE_FAULT) {
printk(KERN_NOTICE "megaraid_sas: fw state:%x\n",
fw_state);
}
if ((fw_state == MFI_STATE_FAULT) &&
(instance->disableOnlineCtrlReset == 0)) {
printk(KERN_NOTICE "megaraid_sas: wait adp restart\n");
if ((instance->pdev->device ==
PCI_DEVICE_ID_LSI_SAS1064R) ||
(instance->pdev->device ==
PCI_DEVICE_ID_DELL_PERC5) ||
(instance->pdev->device ==
PCI_DEVICE_ID_LSI_VERDE_ZCR)) {
*instance->consumer =
MEGASAS_ADPRESET_INPROG_SIGN;
}
instance->instancet->disable_intr(instance->reg_set);
instance->adprecovery = MEGASAS_ADPRESET_SM_INFAULT;
instance->issuepend_done = 0;
atomic_set(&instance->fw_outstanding, 0);
megasas_internal_reset_defer_cmds(instance);
printk(KERN_NOTICE "megasas: fwState=%x, stage:%d\n",
fw_state, instance->adprecovery);
schedule_work(&instance->work_init);
return IRQ_HANDLED;
} else {
printk(KERN_NOTICE "megasas: fwstate:%x, dis_OCR=%x\n",
fw_state, instance->disableOnlineCtrlReset);
}
}
tasklet_schedule(&instance->isr_tasklet);
return IRQ_HANDLED;
}
/**
* megasas_isr - isr entry point
*/
static irqreturn_t megasas_isr(int irq, void *devp)
{
struct megasas_instance *instance;
unsigned long flags;
irqreturn_t rc;
if (atomic_read(
&(((struct megasas_instance *)devp)->fw_reset_no_pci_access)))
return IRQ_HANDLED;
instance = (struct megasas_instance *)devp;
spin_lock_irqsave(&instance->hba_lock, flags);
rc = megasas_deplete_reply_queue(instance, DID_OK);
spin_unlock_irqrestore(&instance->hba_lock, flags);
return rc;
}
/**
* megasas_transition_to_ready - Move the FW to READY state
* @instance: Adapter soft state
*
* During the initialization, FW passes can potentially be in any one of
* several possible states. If the FW in operational, waiting-for-handshake
* states, driver must take steps to bring it to ready state. Otherwise, it
* has to wait for the ready state.
*/
int
megasas_transition_to_ready(struct megasas_instance* instance)
{
int i;
u8 max_wait;
u32 fw_state;
u32 cur_state;
u32 abs_state, curr_abs_state;
fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) & MFI_STATE_MASK;
if (fw_state != MFI_STATE_READY)
printk(KERN_INFO "megasas: Waiting for FW to come to ready"
" state\n");
while (fw_state != MFI_STATE_READY) {
abs_state =
instance->instancet->read_fw_status_reg(instance->reg_set);
switch (fw_state) {
case MFI_STATE_FAULT:
printk(KERN_DEBUG "megasas: FW in FAULT state!!\n");
max_wait = MEGASAS_RESET_WAIT_TIME;
cur_state = MFI_STATE_FAULT;
break;
case MFI_STATE_WAIT_HANDSHAKE:
/*
* Set the CLR bit in inbound doorbell
*/
if ((instance->pdev->device ==
PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
(instance->pdev->device ==
PCI_DEVICE_ID_LSI_SAS0071SKINNY) ||
(instance->pdev->device ==
PCI_DEVICE_ID_LSI_FUSION)) {
writel(
MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG,
&instance->reg_set->doorbell);
} else {
writel(
MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG,
&instance->reg_set->inbound_doorbell);
}
max_wait = MEGASAS_RESET_WAIT_TIME;
cur_state = MFI_STATE_WAIT_HANDSHAKE;
break;
case MFI_STATE_BOOT_MESSAGE_PENDING:
if ((instance->pdev->device ==
PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
(instance->pdev->device ==
PCI_DEVICE_ID_LSI_SAS0071SKINNY) ||
(instance->pdev->device ==
PCI_DEVICE_ID_LSI_FUSION)) {
writel(MFI_INIT_HOTPLUG,
&instance->reg_set->doorbell);
} else
writel(MFI_INIT_HOTPLUG,
&instance->reg_set->inbound_doorbell);
max_wait = MEGASAS_RESET_WAIT_TIME;
cur_state = MFI_STATE_BOOT_MESSAGE_PENDING;
break;
case MFI_STATE_OPERATIONAL:
/*
* Bring it to READY state; assuming max wait 10 secs
*/
instance->instancet->disable_intr(instance->reg_set);
if ((instance->pdev->device ==
PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
(instance->pdev->device ==
PCI_DEVICE_ID_LSI_SAS0071SKINNY) ||
(instance->pdev->device
== PCI_DEVICE_ID_LSI_FUSION)) {
writel(MFI_RESET_FLAGS,
&instance->reg_set->doorbell);
if (instance->pdev->device ==
PCI_DEVICE_ID_LSI_FUSION) {
for (i = 0; i < (10 * 1000); i += 20) {
if (readl(
&instance->
reg_set->
doorbell) & 1)
msleep(20);
else
break;
}
}
} else
writel(MFI_RESET_FLAGS,
&instance->reg_set->inbound_doorbell);
max_wait = MEGASAS_RESET_WAIT_TIME;
cur_state = MFI_STATE_OPERATIONAL;
break;
case MFI_STATE_UNDEFINED:
/*
* This state should not last for more than 2 seconds
*/
max_wait = MEGASAS_RESET_WAIT_TIME;
cur_state = MFI_STATE_UNDEFINED;
break;
case MFI_STATE_BB_INIT:
max_wait = MEGASAS_RESET_WAIT_TIME;
cur_state = MFI_STATE_BB_INIT;
break;
case MFI_STATE_FW_INIT:
max_wait = MEGASAS_RESET_WAIT_TIME;
cur_state = MFI_STATE_FW_INIT;
break;
case MFI_STATE_FW_INIT_2:
max_wait = MEGASAS_RESET_WAIT_TIME;
cur_state = MFI_STATE_FW_INIT_2;
break;
case MFI_STATE_DEVICE_SCAN:
max_wait = MEGASAS_RESET_WAIT_TIME;
cur_state = MFI_STATE_DEVICE_SCAN;
break;
case MFI_STATE_FLUSH_CACHE:
max_wait = MEGASAS_RESET_WAIT_TIME;
cur_state = MFI_STATE_FLUSH_CACHE;
break;
default:
printk(KERN_DEBUG "megasas: Unknown state 0x%x\n",
fw_state);
return -ENODEV;
}
/*
* The cur_state should not last for more than max_wait secs
*/
for (i = 0; i < (max_wait * 1000); i++) {
fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) &
MFI_STATE_MASK ;
curr_abs_state =
instance->instancet->read_fw_status_reg(instance->reg_set);
if (abs_state == curr_abs_state) {
msleep(1);
} else
break;
}
/*
* Return error if fw_state hasn't changed after max_wait
*/
if (curr_abs_state == abs_state) {
printk(KERN_DEBUG "FW state [%d] hasn't changed "
"in %d secs\n", fw_state, max_wait);
return -ENODEV;
}
}
printk(KERN_INFO "megasas: FW now in Ready state\n");
return 0;
}
/**
* megasas_teardown_frame_pool - Destroy the cmd frame DMA pool
* @instance: Adapter soft state
*/
static void megasas_teardown_frame_pool(struct megasas_instance *instance)
{
int i;
u32 max_cmd = instance->max_mfi_cmds;
struct megasas_cmd *cmd;
if (!instance->frame_dma_pool)
return;
/*
* Return all frames to pool
*/
for (i = 0; i < max_cmd; i++) {
cmd = instance->cmd_list[i];
if (cmd->frame)
pci_pool_free(instance->frame_dma_pool, cmd->frame,
cmd->frame_phys_addr);
if (cmd->sense)
pci_pool_free(instance->sense_dma_pool, cmd->sense,
cmd->sense_phys_addr);
}
/*
* Now destroy the pool itself
*/
pci_pool_destroy(instance->frame_dma_pool);
pci_pool_destroy(instance->sense_dma_pool);
instance->frame_dma_pool = NULL;
instance->sense_dma_pool = NULL;
}
/**
* megasas_create_frame_pool - Creates DMA pool for cmd frames
* @instance: Adapter soft state
*
* Each command packet has an embedded DMA memory buffer that is used for
* filling MFI frame and the SG list that immediately follows the frame. This
* function creates those DMA memory buffers for each command packet by using
* PCI pool facility.
*/
static int megasas_create_frame_pool(struct megasas_instance *instance)
{
int i;
u32 max_cmd;
u32 sge_sz;
u32 sgl_sz;
u32 total_sz;
u32 frame_count;
struct megasas_cmd *cmd;
max_cmd = instance->max_mfi_cmds;
/*
* Size of our frame is 64 bytes for MFI frame, followed by max SG
* elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer
*/
sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
sizeof(struct megasas_sge32);
if (instance->flag_ieee) {
sge_sz = sizeof(struct megasas_sge_skinny);
}
/*
* Calculated the number of 64byte frames required for SGL
*/
sgl_sz = sge_sz * instance->max_num_sge;
frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE;
frame_count = 15;
/*
* We need one extra frame for the MFI command
*/
frame_count++;
total_sz = MEGAMFI_FRAME_SIZE * frame_count;
/*
* Use DMA pool facility provided by PCI layer
*/
instance->frame_dma_pool = pci_pool_create("megasas frame pool",
instance->pdev, total_sz, 64,
0);
if (!instance->frame_dma_pool) {
printk(KERN_DEBUG "megasas: failed to setup frame pool\n");
return -ENOMEM;
}
instance->sense_dma_pool = pci_pool_create("megasas sense pool",
instance->pdev, 128, 4, 0);
if (!instance->sense_dma_pool) {
printk(KERN_DEBUG "megasas: failed to setup sense pool\n");
pci_pool_destroy(instance->frame_dma_pool);
instance->frame_dma_pool = NULL;
return -ENOMEM;
}
/*
* Allocate and attach a frame to each of the commands in cmd_list.
* By making cmd->index as the context instead of the &cmd, we can
* always use 32bit context regardless of the architecture
*/
for (i = 0; i < max_cmd; i++) {
cmd = instance->cmd_list[i];
cmd->frame = pci_pool_alloc(instance->frame_dma_pool,
GFP_KERNEL, &cmd->frame_phys_addr);
cmd->sense = pci_pool_alloc(instance->sense_dma_pool,
GFP_KERNEL, &cmd->sense_phys_addr);
/*
* megasas_teardown_frame_pool() takes care of freeing
* whatever has been allocated
*/
if (!cmd->frame || !cmd->sense) {
printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n");
megasas_teardown_frame_pool(instance);
return -ENOMEM;
}
memset(cmd->frame, 0, total_sz);
cmd->frame->io.context = cmd->index;
cmd->frame->io.pad_0 = 0;
}
return 0;
}
/**
* megasas_free_cmds - Free all the cmds in the free cmd pool
* @instance: Adapter soft state
*/
void megasas_free_cmds(struct megasas_instance *instance)
{
int i;
/* First free the MFI frame pool */
megasas_teardown_frame_pool(instance);
/* Free all the commands in the cmd_list */
for (i = 0; i < instance->max_mfi_cmds; i++)
kfree(instance->cmd_list[i]);
/* Free the cmd_list buffer itself */
kfree(instance->cmd_list);
instance->cmd_list = NULL;
INIT_LIST_HEAD(&instance->cmd_pool);
}
/**
* megasas_alloc_cmds - Allocates the command packets
* @instance: Adapter soft state
*
* Each command that is issued to the FW, whether IO commands from the OS or
* internal commands like IOCTLs, are wrapped in local data structure called
* megasas_cmd. The frame embedded in this megasas_cmd is actually issued to
* the FW.
*
* Each frame has a 32-bit field called context (tag). This context is used
* to get back the megasas_cmd from the frame when a frame gets completed in
* the ISR. Typically the address of the megasas_cmd itself would be used as
* the context. But we wanted to keep the differences between 32 and 64 bit
* systems to the mininum. We always use 32 bit integers for the context. In
* this driver, the 32 bit values are the indices into an array cmd_list.
* This array is used only to look up the megasas_cmd given the context. The
* free commands themselves are maintained in a linked list called cmd_pool.
*/
int megasas_alloc_cmds(struct megasas_instance *instance)
{
int i;
int j;
u32 max_cmd;
struct megasas_cmd *cmd;
max_cmd = instance->max_mfi_cmds;
/*
* instance->cmd_list is an array of struct megasas_cmd pointers.
* Allocate the dynamic array first and then allocate individual
* commands.
*/
instance->cmd_list = kcalloc(max_cmd, sizeof(struct megasas_cmd*), GFP_KERNEL);
if (!instance->cmd_list) {
printk(KERN_DEBUG "megasas: out of memory\n");
return -ENOMEM;
}
memset(instance->cmd_list, 0, sizeof(struct megasas_cmd *) *max_cmd);
for (i = 0; i < max_cmd; i++) {
instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd),
GFP_KERNEL);
if (!instance->cmd_list[i]) {
for (j = 0; j < i; j++)
kfree(instance->cmd_list[j]);
kfree(instance->cmd_list);
instance->cmd_list = NULL;
return -ENOMEM;
}
}
/*
* Add all the commands to command pool (instance->cmd_pool)
*/
for (i = 0; i < max_cmd; i++) {
cmd = instance->cmd_list[i];
memset(cmd, 0, sizeof(struct megasas_cmd));
cmd->index = i;
cmd->scmd = NULL;
cmd->instance = instance;
list_add_tail(&cmd->list, &instance->cmd_pool);
}
/*
* Create a frame pool and assign one frame to each cmd
*/
if (megasas_create_frame_pool(instance)) {
printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n");
megasas_free_cmds(instance);
}
return 0;
}
/*
* megasas_get_pd_list_info - Returns FW's pd_list structure
* @instance: Adapter soft state
* @pd_list: pd_list structure
*
* Issues an internal command (DCMD) to get the FW's controller PD
* list structure. This information is mainly used to find out SYSTEM
* supported by the FW.
*/
static int
megasas_get_pd_list(struct megasas_instance *instance)
{
int ret = 0, pd_index = 0;
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
struct MR_PD_LIST *ci;
struct MR_PD_ADDRESS *pd_addr;
dma_addr_t ci_h = 0;
cmd = megasas_get_cmd(instance);
if (!cmd) {
printk(KERN_DEBUG "megasas (get_pd_list): Failed to get cmd\n");
return -ENOMEM;
}
dcmd = &cmd->frame->dcmd;
ci = pci_alloc_consistent(instance->pdev,
MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST), &ci_h);
if (!ci) {
printk(KERN_DEBUG "Failed to alloc mem for pd_list\n");
megasas_return_cmd(instance, cmd);
return -ENOMEM;
}
memset(ci, 0, sizeof(*ci));
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->mbox.b[0] = MR_PD_QUERY_TYPE_EXPOSED_TO_HOST;
dcmd->mbox.b[1] = 0;
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = 0xFF;
dcmd->sge_count = 1;
dcmd->flags = MFI_FRAME_DIR_READ;
dcmd->timeout = 0;
dcmd->pad_0 = 0;
dcmd->data_xfer_len = MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST);
dcmd->opcode = MR_DCMD_PD_LIST_QUERY;
dcmd->sgl.sge32[0].phys_addr = ci_h;
dcmd->sgl.sge32[0].length = MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST);
if (!megasas_issue_polled(instance, cmd)) {
ret = 0;
} else {
ret = -1;
}
/*
* the following function will get the instance PD LIST.
*/
pd_addr = ci->addr;
if ( ret == 0 &&
(ci->count <
(MEGASAS_MAX_PD_CHANNELS * MEGASAS_MAX_DEV_PER_CHANNEL))) {
memset(instance->pd_list, 0,
MEGASAS_MAX_PD * sizeof(struct megasas_pd_list));
for (pd_index = 0; pd_index < ci->count; pd_index++) {
instance->pd_list[pd_addr->deviceId].tid =
pd_addr->deviceId;
instance->pd_list[pd_addr->deviceId].driveType =
pd_addr->scsiDevType;
instance->pd_list[pd_addr->deviceId].driveState =
MR_PD_STATE_SYSTEM;
pd_addr++;
}
}
pci_free_consistent(instance->pdev,
MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST),
ci, ci_h);
megasas_return_cmd(instance, cmd);
return ret;
}
/*
* megasas_get_ld_list_info - Returns FW's ld_list structure
* @instance: Adapter soft state
* @ld_list: ld_list structure
*
* Issues an internal command (DCMD) to get the FW's controller PD
* list structure. This information is mainly used to find out SYSTEM
* supported by the FW.
*/
static int
megasas_get_ld_list(struct megasas_instance *instance)
{
int ret = 0, ld_index = 0, ids = 0;
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
struct MR_LD_LIST *ci;
dma_addr_t ci_h = 0;
cmd = megasas_get_cmd(instance);
if (!cmd) {
printk(KERN_DEBUG "megasas_get_ld_list: Failed to get cmd\n");
return -ENOMEM;
}
dcmd = &cmd->frame->dcmd;
ci = pci_alloc_consistent(instance->pdev,
sizeof(struct MR_LD_LIST),
&ci_h);
if (!ci) {
printk(KERN_DEBUG "Failed to alloc mem in get_ld_list\n");
megasas_return_cmd(instance, cmd);
return -ENOMEM;
}
memset(ci, 0, sizeof(*ci));
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = 0xFF;
dcmd->sge_count = 1;
dcmd->flags = MFI_FRAME_DIR_READ;
dcmd->timeout = 0;
dcmd->data_xfer_len = sizeof(struct MR_LD_LIST);
dcmd->opcode = MR_DCMD_LD_GET_LIST;
dcmd->sgl.sge32[0].phys_addr = ci_h;
dcmd->sgl.sge32[0].length = sizeof(struct MR_LD_LIST);
dcmd->pad_0 = 0;
if (!megasas_issue_polled(instance, cmd)) {
ret = 0;
} else {
ret = -1;
}
/* the following function will get the instance PD LIST */
if ((ret == 0) && (ci->ldCount <= MAX_LOGICAL_DRIVES)) {
memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS);
for (ld_index = 0; ld_index < ci->ldCount; ld_index++) {
if (ci->ldList[ld_index].state != 0) {
ids = ci->ldList[ld_index].ref.targetId;
instance->ld_ids[ids] =
ci->ldList[ld_index].ref.targetId;
}
}
}
pci_free_consistent(instance->pdev,
sizeof(struct MR_LD_LIST),
ci,
ci_h);
megasas_return_cmd(instance, cmd);
return ret;
}
/**
* megasas_get_controller_info - Returns FW's controller structure
* @instance: Adapter soft state
* @ctrl_info: Controller information structure
*
* Issues an internal command (DCMD) to get the FW's controller structure.
* This information is mainly used to find out the maximum IO transfer per
* command supported by the FW.
*/
static int
megasas_get_ctrl_info(struct megasas_instance *instance,
struct megasas_ctrl_info *ctrl_info)
{
int ret = 0;
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
struct megasas_ctrl_info *ci;
dma_addr_t ci_h = 0;
cmd = megasas_get_cmd(instance);
if (!cmd) {
printk(KERN_DEBUG "megasas: Failed to get a free cmd\n");
return -ENOMEM;
}
dcmd = &cmd->frame->dcmd;
ci = pci_alloc_consistent(instance->pdev,
sizeof(struct megasas_ctrl_info), &ci_h);
if (!ci) {
printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n");
megasas_return_cmd(instance, cmd);
return -ENOMEM;
}
memset(ci, 0, sizeof(*ci));
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = 0xFF;
dcmd->sge_count = 1;
dcmd->flags = MFI_FRAME_DIR_READ;
dcmd->timeout = 0;
dcmd->pad_0 = 0;
dcmd->data_xfer_len = sizeof(struct megasas_ctrl_info);
dcmd->opcode = MR_DCMD_CTRL_GET_INFO;
dcmd->sgl.sge32[0].phys_addr = ci_h;
dcmd->sgl.sge32[0].length = sizeof(struct megasas_ctrl_info);
if (!megasas_issue_polled(instance, cmd)) {
ret = 0;
memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info));
} else {
ret = -1;
}
pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info),
ci, ci_h);
megasas_return_cmd(instance, cmd);
return ret;
}
/**
* megasas_issue_init_mfi - Initializes the FW
* @instance: Adapter soft state
*
* Issues the INIT MFI cmd
*/
static int
megasas_issue_init_mfi(struct megasas_instance *instance)
{
u32 context;
struct megasas_cmd *cmd;
struct megasas_init_frame *init_frame;
struct megasas_init_queue_info *initq_info;
dma_addr_t init_frame_h;
dma_addr_t initq_info_h;
/*
* Prepare a init frame. Note the init frame points to queue info
* structure. Each frame has SGL allocated after first 64 bytes. For
* this frame - since we don't need any SGL - we use SGL's space as
* queue info structure
*
* We will not get a NULL command below. We just created the pool.
*/
cmd = megasas_get_cmd(instance);
init_frame = (struct megasas_init_frame *)cmd->frame;
initq_info = (struct megasas_init_queue_info *)
((unsigned long)init_frame + 64);
init_frame_h = cmd->frame_phys_addr;
initq_info_h = init_frame_h + 64;
context = init_frame->context;
memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
memset(initq_info, 0, sizeof(struct megasas_init_queue_info));
init_frame->context = context;
initq_info->reply_queue_entries = instance->max_fw_cmds + 1;
initq_info->reply_queue_start_phys_addr_lo = instance->reply_queue_h;
initq_info->producer_index_phys_addr_lo = instance->producer_h;
initq_info->consumer_index_phys_addr_lo = instance->consumer_h;
init_frame->cmd = MFI_CMD_INIT;
init_frame->cmd_status = 0xFF;
init_frame->queue_info_new_phys_addr_lo = initq_info_h;
init_frame->data_xfer_len = sizeof(struct megasas_init_queue_info);
/*
* disable the intr before firing the init frame to FW
*/
instance->instancet->disable_intr(instance->reg_set);
/*
* Issue the init frame in polled mode
*/
if (megasas_issue_polled(instance, cmd)) {
printk(KERN_ERR "megasas: Failed to init firmware\n");
megasas_return_cmd(instance, cmd);
goto fail_fw_init;
}
megasas_return_cmd(instance, cmd);
return 0;
fail_fw_init:
return -EINVAL;
}
/**
* megasas_start_timer - Initializes a timer object
* @instance: Adapter soft state
* @timer: timer object to be initialized
* @fn: timer function
* @interval: time interval between timer function call
*/
static inline void
megasas_start_timer(struct megasas_instance *instance,
struct timer_list *timer,
void *fn, unsigned long interval)
{
init_timer(timer);
timer->expires = jiffies + interval;
timer->data = (unsigned long)instance;
timer->function = fn;
add_timer(timer);
}
/**
* megasas_io_completion_timer - Timer fn
* @instance_addr: Address of adapter soft state
*
* Schedules tasklet for cmd completion
* if poll_mode_io is set
*/
static void
megasas_io_completion_timer(unsigned long instance_addr)
{
struct megasas_instance *instance =
(struct megasas_instance *)instance_addr;
if (atomic_read(&instance->fw_outstanding))
tasklet_schedule(&instance->isr_tasklet);
/* Restart timer */
if (poll_mode_io)
mod_timer(&instance->io_completion_timer,
jiffies + MEGASAS_COMPLETION_TIMER_INTERVAL);
}
static u32
megasas_init_adapter_mfi(struct megasas_instance *instance)
{
struct megasas_register_set __iomem *reg_set;
u32 context_sz;
u32 reply_q_sz;
reg_set = instance->reg_set;
/*
* Get various operational parameters from status register
*/
instance->max_fw_cmds = instance->instancet->read_fw_status_reg(reg_set) & 0x00FFFF;
/*
* Reduce the max supported cmds by 1. This is to ensure that the
* reply_q_sz (1 more than the max cmd that driver may send)
* does not exceed max cmds that the FW can support
*/
instance->max_fw_cmds = instance->max_fw_cmds-1;
instance->max_mfi_cmds = instance->max_fw_cmds;
instance->max_num_sge = (instance->instancet->read_fw_status_reg(reg_set) & 0xFF0000) >>
0x10;
/*
* Create a pool of commands
*/
if (megasas_alloc_cmds(instance))
goto fail_alloc_cmds;
/*
* Allocate memory for reply queue. Length of reply queue should
* be _one_ more than the maximum commands handled by the firmware.
*
* Note: When FW completes commands, it places corresponding contex
* values in this circular reply queue. This circular queue is a fairly
* typical producer-consumer queue. FW is the producer (of completed
* commands) and the driver is the consumer.
*/
context_sz = sizeof(u32);
reply_q_sz = context_sz * (instance->max_fw_cmds + 1);
instance->reply_queue = pci_alloc_consistent(instance->pdev,
reply_q_sz,
&instance->reply_queue_h);
if (!instance->reply_queue) {
printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n");
goto fail_reply_queue;
}
if (megasas_issue_init_mfi(instance))
goto fail_fw_init;
instance->fw_support_ieee = 0;
instance->fw_support_ieee =
(instance->instancet->read_fw_status_reg(reg_set) &
0x04000000);
printk(KERN_NOTICE "megasas_init_mfi: fw_support_ieee=%d",
instance->fw_support_ieee);
if (instance->fw_support_ieee)
instance->flag_ieee = 1;
return 0;
fail_fw_init:
pci_free_consistent(instance->pdev, reply_q_sz,
instance->reply_queue, instance->reply_queue_h);
fail_reply_queue:
megasas_free_cmds(instance);
fail_alloc_cmds:
return 1;
}
/**
* megasas_init_fw - Initializes the FW
* @instance: Adapter soft state
*
* This is the main function for initializing firmware
*/
static int megasas_init_fw(struct megasas_instance *instance)
{
u32 max_sectors_1;
u32 max_sectors_2;
u32 tmp_sectors;
struct megasas_register_set __iomem *reg_set;
struct megasas_ctrl_info *ctrl_info;
unsigned long bar_list;
/* Find first memory bar */
bar_list = pci_select_bars(instance->pdev, IORESOURCE_MEM);
instance->bar = find_first_bit(&bar_list, sizeof(unsigned long));
instance->base_addr = pci_resource_start(instance->pdev, instance->bar);
if (pci_request_selected_regions(instance->pdev, instance->bar,
"megasas: LSI")) {
printk(KERN_DEBUG "megasas: IO memory region busy!\n");
return -EBUSY;
}
instance->reg_set = ioremap_nocache(instance->base_addr, 8192);
if (!instance->reg_set) {
printk(KERN_DEBUG "megasas: Failed to map IO mem\n");
goto fail_ioremap;
}
reg_set = instance->reg_set;
switch (instance->pdev->device) {
case PCI_DEVICE_ID_LSI_FUSION:
instance->instancet = &megasas_instance_template_fusion;
break;
case PCI_DEVICE_ID_LSI_SAS1078R:
case PCI_DEVICE_ID_LSI_SAS1078DE:
instance->instancet = &megasas_instance_template_ppc;
break;
case PCI_DEVICE_ID_LSI_SAS1078GEN2:
case PCI_DEVICE_ID_LSI_SAS0079GEN2:
instance->instancet = &megasas_instance_template_gen2;
break;
case PCI_DEVICE_ID_LSI_SAS0073SKINNY:
case PCI_DEVICE_ID_LSI_SAS0071SKINNY:
instance->instancet = &megasas_instance_template_skinny;
break;
case PCI_DEVICE_ID_LSI_SAS1064R:
case PCI_DEVICE_ID_DELL_PERC5:
default:
instance->instancet = &megasas_instance_template_xscale;
break;
}
/*
* We expect the FW state to be READY
*/
if (megasas_transition_to_ready(instance))
goto fail_ready_state;
/* Get operational params, sge flags, send init cmd to controller */
if (instance->instancet->init_adapter(instance))
goto fail_init_adapter;
printk(KERN_ERR "megasas: INIT adapter done\n");
/** for passthrough
* the following function will get the PD LIST.
*/
memset(instance->pd_list, 0 ,
(MEGASAS_MAX_PD * sizeof(struct megasas_pd_list)));
megasas_get_pd_list(instance);
memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS);
megasas_get_ld_list(instance);
ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL);
/*
* Compute the max allowed sectors per IO: The controller info has two
* limits on max sectors. Driver should use the minimum of these two.
*
* 1 << stripe_sz_ops.min = max sectors per strip
*
* Note that older firmwares ( < FW ver 30) didn't report information
* to calculate max_sectors_1. So the number ended up as zero always.
*/
tmp_sectors = 0;
if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) {
max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) *
ctrl_info->max_strips_per_io;
max_sectors_2 = ctrl_info->max_request_size;
tmp_sectors = min_t(u32, max_sectors_1 , max_sectors_2);
instance->disableOnlineCtrlReset =
ctrl_info->properties.OnOffProperties.disableOnlineCtrlReset;
}
instance->max_sectors_per_req = instance->max_num_sge *
PAGE_SIZE / 512;
if (tmp_sectors && (instance->max_sectors_per_req > tmp_sectors))
instance->max_sectors_per_req = tmp_sectors;
kfree(ctrl_info);
/*
* Setup tasklet for cmd completion
*/
tasklet_init(&instance->isr_tasklet, instance->instancet->tasklet,
(unsigned long)instance);
/* Initialize the cmd completion timer */
if (poll_mode_io)
megasas_start_timer(instance, &instance->io_completion_timer,
megasas_io_completion_timer,
MEGASAS_COMPLETION_TIMER_INTERVAL);
return 0;
fail_init_adapter:
fail_ready_state:
iounmap(instance->reg_set);
fail_ioremap:
pci_release_selected_regions(instance->pdev, instance->bar);
return -EINVAL;
}
/**
* megasas_release_mfi - Reverses the FW initialization
* @intance: Adapter soft state
*/
static void megasas_release_mfi(struct megasas_instance *instance)
{
u32 reply_q_sz = sizeof(u32) *(instance->max_mfi_cmds + 1);
if (instance->reply_queue)
pci_free_consistent(instance->pdev, reply_q_sz,
instance->reply_queue, instance->reply_queue_h);
megasas_free_cmds(instance);
iounmap(instance->reg_set);
pci_release_selected_regions(instance->pdev, instance->bar);
}
/**
* megasas_get_seq_num - Gets latest event sequence numbers
* @instance: Adapter soft state
* @eli: FW event log sequence numbers information
*
* FW maintains a log of all events in a non-volatile area. Upper layers would
* usually find out the latest sequence number of the events, the seq number at
* the boot etc. They would "read" all the events below the latest seq number
* by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq
* number), they would subsribe to AEN (asynchronous event notification) and
* wait for the events to happen.
*/
static int
megasas_get_seq_num(struct megasas_instance *instance,
struct megasas_evt_log_info *eli)
{
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
struct megasas_evt_log_info *el_info;
dma_addr_t el_info_h = 0;
cmd = megasas_get_cmd(instance);
if (!cmd) {
return -ENOMEM;
}
dcmd = &cmd->frame->dcmd;
el_info = pci_alloc_consistent(instance->pdev,
sizeof(struct megasas_evt_log_info),
&el_info_h);
if (!el_info) {
megasas_return_cmd(instance, cmd);
return -ENOMEM;
}
memset(el_info, 0, sizeof(*el_info));
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = 0x0;
dcmd->sge_count = 1;
dcmd->flags = MFI_FRAME_DIR_READ;
dcmd->timeout = 0;
dcmd->pad_0 = 0;
dcmd->data_xfer_len = sizeof(struct megasas_evt_log_info);
dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
dcmd->sgl.sge32[0].phys_addr = el_info_h;
dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_log_info);
megasas_issue_blocked_cmd(instance, cmd);
/*
* Copy the data back into callers buffer
*/
memcpy(eli, el_info, sizeof(struct megasas_evt_log_info));
pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info),
el_info, el_info_h);
megasas_return_cmd(instance, cmd);
return 0;
}
/**
* megasas_register_aen - Registers for asynchronous event notification
* @instance: Adapter soft state
* @seq_num: The starting sequence number
* @class_locale: Class of the event
*
* This function subscribes for AEN for events beyond the @seq_num. It requests
* to be notified if and only if the event is of type @class_locale
*/
static int
megasas_register_aen(struct megasas_instance *instance, u32 seq_num,
u32 class_locale_word)
{
int ret_val;
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
union megasas_evt_class_locale curr_aen;
union megasas_evt_class_locale prev_aen;
/*
* If there an AEN pending already (aen_cmd), check if the
* class_locale of that pending AEN is inclusive of the new
* AEN request we currently have. If it is, then we don't have
* to do anything. In other words, whichever events the current
* AEN request is subscribing to, have already been subscribed
* to.
*
* If the old_cmd is _not_ inclusive, then we have to abort
* that command, form a class_locale that is superset of both
* old and current and re-issue to the FW
*/
curr_aen.word = class_locale_word;
if (instance->aen_cmd) {
prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
/*
* A class whose enum value is smaller is inclusive of all
* higher values. If a PROGRESS (= -1) was previously
* registered, then a new registration requests for higher
* classes need not be sent to FW. They are automatically
* included.
*
* Locale numbers don't have such hierarchy. They are bitmap
* values
*/
if ((prev_aen.members.class <= curr_aen.members.class) &&
!((prev_aen.members.locale & curr_aen.members.locale) ^
curr_aen.members.locale)) {
/*
* Previously issued event registration includes
* current request. Nothing to do.
*/
return 0;
} else {
curr_aen.members.locale |= prev_aen.members.locale;
if (prev_aen.members.class < curr_aen.members.class)
curr_aen.members.class = prev_aen.members.class;
instance->aen_cmd->abort_aen = 1;
ret_val = megasas_issue_blocked_abort_cmd(instance,
instance->
aen_cmd);
if (ret_val) {
printk(KERN_DEBUG "megasas: Failed to abort "
"previous AEN command\n");
return ret_val;
}
}
}
cmd = megasas_get_cmd(instance);
if (!cmd)
return -ENOMEM;
dcmd = &cmd->frame->dcmd;
memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail));
/*
* Prepare DCMD for aen registration
*/
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = 0x0;
dcmd->sge_count = 1;
dcmd->flags = MFI_FRAME_DIR_READ;
dcmd->timeout = 0;
dcmd->pad_0 = 0;
instance->last_seq_num = seq_num;
dcmd->data_xfer_len = sizeof(struct megasas_evt_detail);
dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
dcmd->mbox.w[0] = seq_num;
dcmd->mbox.w[1] = curr_aen.word;
dcmd->sgl.sge32[0].phys_addr = (u32) instance->evt_detail_h;
dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_detail);
if (instance->aen_cmd != NULL) {
megasas_return_cmd(instance, cmd);
return 0;
}
/*
* Store reference to the cmd used to register for AEN. When an
* application wants us to register for AEN, we have to abort this
* cmd and re-register with a new EVENT LOCALE supplied by that app
*/
instance->aen_cmd = cmd;
/*
* Issue the aen registration frame
*/
instance->instancet->issue_dcmd(instance, cmd);
return 0;
}
/**
* megasas_start_aen - Subscribes to AEN during driver load time
* @instance: Adapter soft state
*/
static int megasas_start_aen(struct megasas_instance *instance)
{
struct megasas_evt_log_info eli;
union megasas_evt_class_locale class_locale;
/*
* Get the latest sequence number from FW
*/
memset(&eli, 0, sizeof(eli));
if (megasas_get_seq_num(instance, &eli))
return -1;
/*
* Register AEN with FW for latest sequence number plus 1
*/
class_locale.members.reserved = 0;
class_locale.members.locale = MR_EVT_LOCALE_ALL;
class_locale.members.class = MR_EVT_CLASS_DEBUG;
return megasas_register_aen(instance, eli.newest_seq_num + 1,
class_locale.word);
}
/**
* megasas_io_attach - Attaches this driver to SCSI mid-layer
* @instance: Adapter soft state
*/
static int megasas_io_attach(struct megasas_instance *instance)
{
struct Scsi_Host *host = instance->host;
/*
* Export parameters required by SCSI mid-layer
*/
host->irq = instance->pdev->irq;
host->unique_id = instance->unique_id;
if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
(instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY)) {
host->can_queue =
instance->max_fw_cmds - MEGASAS_SKINNY_INT_CMDS;
} else
host->can_queue =
instance->max_fw_cmds - MEGASAS_INT_CMDS;
host->this_id = instance->init_id;
host->sg_tablesize = instance->max_num_sge;
if (instance->fw_support_ieee)
instance->max_sectors_per_req = MEGASAS_MAX_SECTORS_IEEE;
/*
* Check if the module parameter value for max_sectors can be used
*/
if (max_sectors && max_sectors < instance->max_sectors_per_req)
instance->max_sectors_per_req = max_sectors;
else {
if (max_sectors) {
if (((instance->pdev->device ==
PCI_DEVICE_ID_LSI_SAS1078GEN2) ||
(instance->pdev->device ==
PCI_DEVICE_ID_LSI_SAS0079GEN2)) &&
(max_sectors <= MEGASAS_MAX_SECTORS)) {
instance->max_sectors_per_req = max_sectors;
} else {
printk(KERN_INFO "megasas: max_sectors should be > 0"
"and <= %d (or < 1MB for GEN2 controller)\n",
instance->max_sectors_per_req);
}
}
}
host->max_sectors = instance->max_sectors_per_req;
host->cmd_per_lun = MEGASAS_DEFAULT_CMD_PER_LUN;
host->max_channel = MEGASAS_MAX_CHANNELS - 1;
host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL;
host->max_lun = MEGASAS_MAX_LUN;
host->max_cmd_len = 16;
/* Fusion only supports host reset */
if (instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) {
host->hostt->eh_device_reset_handler = NULL;
host->hostt->eh_bus_reset_handler = NULL;
}
/*
* Notify the mid-layer about the new controller
*/
if (scsi_add_host(host, &instance->pdev->dev)) {
printk(KERN_DEBUG "megasas: scsi_add_host failed\n");
return -ENODEV;
}
/*
* Trigger SCSI to scan our drives
*/
scsi_scan_host(host);
return 0;
}
static int
megasas_set_dma_mask(struct pci_dev *pdev)
{
/*
* All our contollers are capable of performing 64-bit DMA
*/
if (IS_DMA64) {
if (pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) != 0) {
if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0)
goto fail_set_dma_mask;
}
} else {
if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0)
goto fail_set_dma_mask;
}
return 0;
fail_set_dma_mask:
return 1;
}
/**
* megasas_probe_one - PCI hotplug entry point
* @pdev: PCI device structure
* @id: PCI ids of supported hotplugged adapter
*/
static int __devinit
megasas_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
{
int rval, pos;
struct Scsi_Host *host;
struct megasas_instance *instance;
u16 control = 0;
/* Reset MSI-X in the kdump kernel */
if (reset_devices) {
pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
if (pos) {
pci_read_config_word(pdev, msi_control_reg(pos),
&control);
if (control & PCI_MSIX_FLAGS_ENABLE) {
dev_info(&pdev->dev, "resetting MSI-X\n");
pci_write_config_word(pdev,
msi_control_reg(pos),
control &
~PCI_MSIX_FLAGS_ENABLE);
}
}
}
/*
* Announce PCI information
*/
printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ",
pdev->vendor, pdev->device, pdev->subsystem_vendor,
pdev->subsystem_device);
printk("bus %d:slot %d:func %d\n",
pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
/*
* PCI prepping: enable device set bus mastering and dma mask
*/
rval = pci_enable_device_mem(pdev);
if (rval) {
return rval;
}
pci_set_master(pdev);
if (megasas_set_dma_mask(pdev))
goto fail_set_dma_mask;
host = scsi_host_alloc(&megasas_template,
sizeof(struct megasas_instance));
if (!host) {
printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n");
goto fail_alloc_instance;
}
instance = (struct megasas_instance *)host->hostdata;
memset(instance, 0, sizeof(*instance));
atomic_set( &instance->fw_reset_no_pci_access, 0 );
instance->pdev = pdev;
switch (instance->pdev->device) {
case PCI_DEVICE_ID_LSI_FUSION:
{
struct fusion_context *fusion;
instance->ctrl_context =
kzalloc(sizeof(struct fusion_context), GFP_KERNEL);
if (!instance->ctrl_context) {
printk(KERN_DEBUG "megasas: Failed to allocate "
"memory for Fusion context info\n");
goto fail_alloc_dma_buf;
}
fusion = instance->ctrl_context;
INIT_LIST_HEAD(&fusion->cmd_pool);
spin_lock_init(&fusion->cmd_pool_lock);
}
break;
default: /* For all other supported controllers */
instance->producer =
pci_alloc_consistent(pdev, sizeof(u32),
&instance->producer_h);
instance->consumer =
pci_alloc_consistent(pdev, sizeof(u32),
&instance->consumer_h);
if (!instance->producer || !instance->consumer) {
printk(KERN_DEBUG "megasas: Failed to allocate"
"memory for producer, consumer\n");
goto fail_alloc_dma_buf;
}
*instance->producer = 0;
*instance->consumer = 0;
break;
}
megasas_poll_wait_aen = 0;
instance->flag_ieee = 0;
instance->ev = NULL;
instance->issuepend_done = 1;
instance->adprecovery = MEGASAS_HBA_OPERATIONAL;
megasas_poll_wait_aen = 0;
instance->evt_detail = pci_alloc_consistent(pdev,
sizeof(struct
megasas_evt_detail),
&instance->evt_detail_h);
if (!instance->evt_detail) {
printk(KERN_DEBUG "megasas: Failed to allocate memory for "
"event detail structure\n");
goto fail_alloc_dma_buf;
}
/*
* Initialize locks and queues
*/
INIT_LIST_HEAD(&instance->cmd_pool);
INIT_LIST_HEAD(&instance->internal_reset_pending_q);
atomic_set(&instance->fw_outstanding,0);
init_waitqueue_head(&instance->int_cmd_wait_q);
init_waitqueue_head(&instance->abort_cmd_wait_q);
spin_lock_init(&instance->cmd_pool_lock);
spin_lock_init(&instance->hba_lock);
spin_lock_init(&instance->completion_lock);
spin_lock_init(&poll_aen_lock);
mutex_init(&instance->aen_mutex);
mutex_init(&instance->reset_mutex);
/*
* Initialize PCI related and misc parameters
*/
instance->host = host;
instance->unique_id = pdev->bus->number << 8 | pdev->devfn;
instance->init_id = MEGASAS_DEFAULT_INIT_ID;
if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
(instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY)) {
instance->flag_ieee = 1;
sema_init(&instance->ioctl_sem, MEGASAS_SKINNY_INT_CMDS);
} else
sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS);
megasas_dbg_lvl = 0;
instance->flag = 0;
instance->unload = 1;
instance->last_time = 0;
instance->disableOnlineCtrlReset = 1;
if (instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION)
INIT_WORK(&instance->work_init, megasas_fusion_ocr_wq);
else
INIT_WORK(&instance->work_init, process_fw_state_change_wq);
/* Try to enable MSI-X */
if ((instance->pdev->device != PCI_DEVICE_ID_LSI_SAS1078R) &&
(instance->pdev->device != PCI_DEVICE_ID_LSI_SAS1078DE) &&
(instance->pdev->device != PCI_DEVICE_ID_LSI_VERDE_ZCR) &&
!msix_disable && !pci_enable_msix(instance->pdev,
&instance->msixentry, 1))
instance->msi_flag = 1;
/*
* Initialize MFI Firmware
*/
if (megasas_init_fw(instance))
goto fail_init_mfi;
/*
* Register IRQ
*/
if (request_irq(instance->msi_flag ? instance->msixentry.vector :
pdev->irq, instance->instancet->service_isr,
IRQF_SHARED, "megasas", instance)) {
printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
goto fail_irq;
}
instance->instancet->enable_intr(instance->reg_set);
/*
* Store instance in PCI softstate
*/
pci_set_drvdata(pdev, instance);
/*
* Add this controller to megasas_mgmt_info structure so that it
* can be exported to management applications
*/
megasas_mgmt_info.count++;
megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance;
megasas_mgmt_info.max_index++;
/*
* Initiate AEN (Asynchronous Event Notification)
*/
if (megasas_start_aen(instance)) {
printk(KERN_DEBUG "megasas: start aen failed\n");
goto fail_start_aen;
}
/*
* Register with SCSI mid-layer
*/
if (megasas_io_attach(instance))
goto fail_io_attach;
instance->unload = 0;
return 0;
fail_start_aen:
fail_io_attach:
megasas_mgmt_info.count--;
megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL;
megasas_mgmt_info.max_index--;
pci_set_drvdata(pdev, NULL);
instance->instancet->disable_intr(instance->reg_set);
free_irq(instance->msi_flag ? instance->msixentry.vector :
instance->pdev->irq, instance);
fail_irq:
if (instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION)
megasas_release_fusion(instance);
else
megasas_release_mfi(instance);
fail_init_mfi:
if (instance->msi_flag)
pci_disable_msix(instance->pdev);
fail_alloc_dma_buf:
if (instance->evt_detail)
pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
instance->evt_detail,
instance->evt_detail_h);
if (instance->producer)
pci_free_consistent(pdev, sizeof(u32), instance->producer,
instance->producer_h);
if (instance->consumer)
pci_free_consistent(pdev, sizeof(u32), instance->consumer,
instance->consumer_h);
scsi_host_put(host);
fail_alloc_instance:
fail_set_dma_mask:
pci_disable_device(pdev);
return -ENODEV;
}
/**
* megasas_flush_cache - Requests FW to flush all its caches
* @instance: Adapter soft state
*/
static void megasas_flush_cache(struct megasas_instance *instance)
{
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR)
return;
cmd = megasas_get_cmd(instance);
if (!cmd)
return;
dcmd = &cmd->frame->dcmd;
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = 0x0;
dcmd->sge_count = 0;
dcmd->flags = MFI_FRAME_DIR_NONE;
dcmd->timeout = 0;
dcmd->pad_0 = 0;
dcmd->data_xfer_len = 0;
dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH;
dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
megasas_issue_blocked_cmd(instance, cmd);
megasas_return_cmd(instance, cmd);
return;
}
/**
* megasas_shutdown_controller - Instructs FW to shutdown the controller
* @instance: Adapter soft state
* @opcode: Shutdown/Hibernate
*/
static void megasas_shutdown_controller(struct megasas_instance *instance,
u32 opcode)
{
struct megasas_cmd *cmd;
struct megasas_dcmd_frame *dcmd;
if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR)
return;
cmd = megasas_get_cmd(instance);
if (!cmd)
return;
if (instance->aen_cmd)
megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd);
if (instance->map_update_cmd)
megasas_issue_blocked_abort_cmd(instance,
instance->map_update_cmd);
dcmd = &cmd->frame->dcmd;
memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
dcmd->cmd = MFI_CMD_DCMD;
dcmd->cmd_status = 0x0;
dcmd->sge_count = 0;
dcmd->flags = MFI_FRAME_DIR_NONE;
dcmd->timeout = 0;
dcmd->pad_0 = 0;
dcmd->data_xfer_len = 0;
dcmd->opcode = opcode;
megasas_issue_blocked_cmd(instance, cmd);
megasas_return_cmd(instance, cmd);
return;
}
#ifdef CONFIG_PM
/**
* megasas_suspend - driver suspend entry point
* @pdev: PCI device structure
* @state: PCI power state to suspend routine
*/
static int
megasas_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct Scsi_Host *host;
struct megasas_instance *instance;
instance = pci_get_drvdata(pdev);
host = instance->host;
instance->unload = 1;
if (poll_mode_io)
del_timer_sync(&instance->io_completion_timer);
megasas_flush_cache(instance);
megasas_shutdown_controller(instance, MR_DCMD_HIBERNATE_SHUTDOWN);
/* cancel the delayed work if this work still in queue */
if (instance->ev != NULL) {
struct megasas_aen_event *ev = instance->ev;
cancel_delayed_work_sync(
(struct delayed_work *)&ev->hotplug_work);
instance->ev = NULL;
}
tasklet_kill(&instance->isr_tasklet);
pci_set_drvdata(instance->pdev, instance);
instance->instancet->disable_intr(instance->reg_set);
free_irq(instance->msi_flag ? instance->msixentry.vector :
instance->pdev->irq, instance);
if (instance->msi_flag)
pci_disable_msix(instance->pdev);
pci_save_state(pdev);
pci_disable_device(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
/**
* megasas_resume- driver resume entry point
* @pdev: PCI device structure
*/
static int
megasas_resume(struct pci_dev *pdev)
{
int rval;
struct Scsi_Host *host;
struct megasas_instance *instance;
instance = pci_get_drvdata(pdev);
host = instance->host;
pci_set_power_state(pdev, PCI_D0);
pci_enable_wake(pdev, PCI_D0, 0);
pci_restore_state(pdev);
/*
* PCI prepping: enable device set bus mastering and dma mask
*/
rval = pci_enable_device_mem(pdev);
if (rval) {
printk(KERN_ERR "megasas: Enable device failed\n");
return rval;
}
pci_set_master(pdev);
if (megasas_set_dma_mask(pdev))
goto fail_set_dma_mask;
/* Now re-enable MSI-X */
if (instance->msi_flag)
pci_enable_msix(instance->pdev, &instance->msixentry, 1);
/*
* Initialize MFI Firmware
*/
atomic_set(&instance->fw_outstanding, 0);
/*
* We expect the FW state to be READY
*/
if (megasas_transition_to_ready(instance))
goto fail_ready_state;
switch (instance->pdev->device) {
case PCI_DEVICE_ID_LSI_FUSION:
{
megasas_reset_reply_desc(instance);
if (megasas_ioc_init_fusion(instance)) {
megasas_free_cmds(instance);
megasas_free_cmds_fusion(instance);
goto fail_init_mfi;
}
if (!megasas_get_map_info(instance))
megasas_sync_map_info(instance);
}
break;
default:
*instance->producer = 0;
*instance->consumer = 0;
if (megasas_issue_init_mfi(instance))
goto fail_init_mfi;
break;
}
tasklet_init(&instance->isr_tasklet, instance->instancet->tasklet,
(unsigned long)instance);
/*
* Register IRQ
*/
if (request_irq(instance->msi_flag ? instance->msixentry.vector :
pdev->irq, instance->instancet->service_isr,
IRQF_SHARED, "megasas", instance)) {
printk(KERN_ERR "megasas: Failed to register IRQ\n");
goto fail_irq;
}
instance->instancet->enable_intr(instance->reg_set);
/*
* Initiate AEN (Asynchronous Event Notification)
*/
if (megasas_start_aen(instance))
printk(KERN_ERR "megasas: Start AEN failed\n");
/* Initialize the cmd completion timer */
if (poll_mode_io)
megasas_start_timer(instance, &instance->io_completion_timer,
megasas_io_completion_timer,
MEGASAS_COMPLETION_TIMER_INTERVAL);
instance->unload = 0;
return 0;
fail_irq:
fail_init_mfi:
if (instance->evt_detail)
pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
instance->evt_detail,
instance->evt_detail_h);
if (instance->producer)
pci_free_consistent(pdev, sizeof(u32), instance->producer,
instance->producer_h);
if (instance->consumer)
pci_free_consistent(pdev, sizeof(u32), instance->consumer,
instance->consumer_h);
scsi_host_put(host);
fail_set_dma_mask:
fail_ready_state:
pci_disable_device(pdev);
return -ENODEV;
}
#else
#define megasas_suspend NULL
#define megasas_resume NULL
#endif
/**
* megasas_detach_one - PCI hot"un"plug entry point
* @pdev: PCI device structure
*/
static void __devexit megasas_detach_one(struct pci_dev *pdev)
{
int i;
struct Scsi_Host *host;
struct megasas_instance *instance;
struct fusion_context *fusion;
instance = pci_get_drvdata(pdev);
instance->unload = 1;
host = instance->host;
fusion = instance->ctrl_context;
if (poll_mode_io)
del_timer_sync(&instance->io_completion_timer);
scsi_remove_host(instance->host);
megasas_flush_cache(instance);
megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN);
/* cancel the delayed work if this work still in queue*/
if (instance->ev != NULL) {
struct megasas_aen_event *ev = instance->ev;
cancel_delayed_work_sync(
(struct delayed_work *)&ev->hotplug_work);
instance->ev = NULL;
}
tasklet_kill(&instance->isr_tasklet);
/*
* Take the instance off the instance array. Note that we will not
* decrement the max_index. We let this array be sparse array
*/
for (i = 0; i < megasas_mgmt_info.max_index; i++) {
if (megasas_mgmt_info.instance[i] == instance) {
megasas_mgmt_info.count--;
megasas_mgmt_info.instance[i] = NULL;
break;
}
}
pci_set_drvdata(instance->pdev, NULL);
instance->instancet->disable_intr(instance->reg_set);
free_irq(instance->msi_flag ? instance->msixentry.vector :
instance->pdev->irq, instance);
if (instance->msi_flag)
pci_disable_msix(instance->pdev);
switch (instance->pdev->device) {
case PCI_DEVICE_ID_LSI_FUSION:
megasas_release_fusion(instance);
for (i = 0; i < 2 ; i++)
if (fusion->ld_map[i])
dma_free_coherent(&instance->pdev->dev,
fusion->map_sz,
fusion->ld_map[i],
fusion->
ld_map_phys[i]);
kfree(instance->ctrl_context);
break;
default:
megasas_release_mfi(instance);
pci_free_consistent(pdev,
sizeof(struct megasas_evt_detail),
instance->evt_detail,
instance->evt_detail_h);
pci_free_consistent(pdev, sizeof(u32),
instance->producer,
instance->producer_h);
pci_free_consistent(pdev, sizeof(u32),
instance->consumer,
instance->consumer_h);
break;
}
scsi_host_put(host);
pci_set_drvdata(pdev, NULL);
pci_disable_device(pdev);
return;
}
/**
* megasas_shutdown - Shutdown entry point
* @device: Generic device structure
*/
static void megasas_shutdown(struct pci_dev *pdev)
{
struct megasas_instance *instance = pci_get_drvdata(pdev);
instance->unload = 1;
megasas_flush_cache(instance);
megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN);
}
/**
* megasas_mgmt_open - char node "open" entry point
*/
static int megasas_mgmt_open(struct inode *inode, struct file *filep)
{
/*
* Allow only those users with admin rights
*/
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
return 0;
}
/**
* megasas_mgmt_fasync - Async notifier registration from applications
*
* This function adds the calling process to a driver global queue. When an
* event occurs, SIGIO will be sent to all processes in this queue.
*/
static int megasas_mgmt_fasync(int fd, struct file *filep, int mode)
{
int rc;
mutex_lock(&megasas_async_queue_mutex);
rc = fasync_helper(fd, filep, mode, &megasas_async_queue);
mutex_unlock(&megasas_async_queue_mutex);
if (rc >= 0) {
/* For sanity check when we get ioctl */
filep->private_data = filep;
return 0;
}
printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc);
return rc;
}
/**
* megasas_mgmt_poll - char node "poll" entry point
* */
static unsigned int megasas_mgmt_poll(struct file *file, poll_table *wait)
{
unsigned int mask;
unsigned long flags;
poll_wait(file, &megasas_poll_wait, wait);
spin_lock_irqsave(&poll_aen_lock, flags);
if (megasas_poll_wait_aen)
mask = (POLLIN | POLLRDNORM);
else
mask = 0;
spin_unlock_irqrestore(&poll_aen_lock, flags);
return mask;
}
/**
* megasas_mgmt_fw_ioctl - Issues management ioctls to FW
* @instance: Adapter soft state
* @argp: User's ioctl packet
*/
static int
megasas_mgmt_fw_ioctl(struct megasas_instance *instance,
struct megasas_iocpacket __user * user_ioc,
struct megasas_iocpacket *ioc)
{
struct megasas_sge32 *kern_sge32;
struct megasas_cmd *cmd;
void *kbuff_arr[MAX_IOCTL_SGE];
dma_addr_t buf_handle = 0;
int error = 0, i;
void *sense = NULL;
dma_addr_t sense_handle;
unsigned long *sense_ptr;
memset(kbuff_arr, 0, sizeof(kbuff_arr));
if (ioc->sge_count > MAX_IOCTL_SGE) {
printk(KERN_DEBUG "megasas: SGE count [%d] > max limit [%d]\n",
ioc->sge_count, MAX_IOCTL_SGE);
return -EINVAL;
}
cmd = megasas_get_cmd(instance);
if (!cmd) {
printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n");
return -ENOMEM;
}
/*
* User's IOCTL packet has 2 frames (maximum). Copy those two
* frames into our cmd's frames. cmd->frame's context will get
* overwritten when we copy from user's frames. So set that value
* alone separately
*/
memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE);
cmd->frame->hdr.context = cmd->index;
cmd->frame->hdr.pad_0 = 0;
/*
* The management interface between applications and the fw uses
* MFI frames. E.g, RAID configuration changes, LD property changes
* etc are accomplishes through different kinds of MFI frames. The
* driver needs to care only about substituting user buffers with
* kernel buffers in SGLs. The location of SGL is embedded in the
* struct iocpacket itself.
*/
kern_sge32 = (struct megasas_sge32 *)
((unsigned long)cmd->frame + ioc->sgl_off);
/*
* For each user buffer, create a mirror buffer and copy in
*/
for (i = 0; i < ioc->sge_count; i++) {
if (!ioc->sgl[i].iov_len)
continue;
kbuff_arr[i] = dma_alloc_coherent(&instance->pdev->dev,
ioc->sgl[i].iov_len,
&buf_handle, GFP_KERNEL);
if (!kbuff_arr[i]) {
printk(KERN_DEBUG "megasas: Failed to alloc "
"kernel SGL buffer for IOCTL \n");
error = -ENOMEM;
goto out;
}
/*
* We don't change the dma_coherent_mask, so
* pci_alloc_consistent only returns 32bit addresses
*/
kern_sge32[i].phys_addr = (u32) buf_handle;
kern_sge32[i].length = ioc->sgl[i].iov_len;
/*
* We created a kernel buffer corresponding to the
* user buffer. Now copy in from the user buffer
*/
if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base,
(u32) (ioc->sgl[i].iov_len))) {
error = -EFAULT;
goto out;
}
}
if (ioc->sense_len) {
sense = dma_alloc_coherent(&instance->pdev->dev, ioc->sense_len,
&sense_handle, GFP_KERNEL);
if (!sense) {
error = -ENOMEM;
goto out;
}
sense_ptr =
(unsigned long *) ((unsigned long)cmd->frame + ioc->sense_off);
*sense_ptr = sense_handle;
}
/*
* Set the sync_cmd flag so that the ISR knows not to complete this
* cmd to the SCSI mid-layer
*/
cmd->sync_cmd = 1;
megasas_issue_blocked_cmd(instance, cmd);
cmd->sync_cmd = 0;
/*
* copy out the kernel buffers to user buffers
*/
for (i = 0; i < ioc->sge_count; i++) {
if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i],
ioc->sgl[i].iov_len)) {
error = -EFAULT;
goto out;
}
}
/*
* copy out the sense
*/
if (ioc->sense_len) {
/*
* sense_ptr points to the location that has the user
* sense buffer address
*/
sense_ptr = (unsigned long *) ((unsigned long)ioc->frame.raw +
ioc->sense_off);
if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)),
sense, ioc->sense_len)) {
printk(KERN_ERR "megasas: Failed to copy out to user "
"sense data\n");
error = -EFAULT;
goto out;
}
}
/*
* copy the status codes returned by the fw
*/
if (copy_to_user(&user_ioc->frame.hdr.cmd_status,
&cmd->frame->hdr.cmd_status, sizeof(u8))) {
printk(KERN_DEBUG "megasas: Error copying out cmd_status\n");
error = -EFAULT;
}
out:
if (sense) {
dma_free_coherent(&instance->pdev->dev, ioc->sense_len,
sense, sense_handle);
}
for (i = 0; i < ioc->sge_count && kbuff_arr[i]; i++) {
dma_free_coherent(&instance->pdev->dev,
kern_sge32[i].length,
kbuff_arr[i], kern_sge32[i].phys_addr);
}
megasas_return_cmd(instance, cmd);
return error;
}
static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg)
{
struct megasas_iocpacket __user *user_ioc =
(struct megasas_iocpacket __user *)arg;
struct megasas_iocpacket *ioc;
struct megasas_instance *instance;
int error;
int i;
unsigned long flags;
u32 wait_time = MEGASAS_RESET_WAIT_TIME;
ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
if (!ioc)
return -ENOMEM;
if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) {
error = -EFAULT;
goto out_kfree_ioc;
}
instance = megasas_lookup_instance(ioc->host_no);
if (!instance) {
error = -ENODEV;
goto out_kfree_ioc;
}
if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) {
printk(KERN_ERR "Controller in crit error\n");
error = -ENODEV;
goto out_kfree_ioc;
}
if (instance->unload == 1) {
error = -ENODEV;
goto out_kfree_ioc;
}
/*
* We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds
*/
if (down_interruptible(&instance->ioctl_sem)) {
error = -ERESTARTSYS;
goto out_kfree_ioc;
}
for (i = 0; i < wait_time; i++) {
spin_lock_irqsave(&instance->hba_lock, flags);
if (instance->adprecovery == MEGASAS_HBA_OPERATIONAL) {
spin_unlock_irqrestore(&instance->hba_lock, flags);
break;
}
spin_unlock_irqrestore(&instance->hba_lock, flags);
if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
printk(KERN_NOTICE "megasas: waiting"
"for controller reset to finish\n");
}
msleep(1000);
}
spin_lock_irqsave(&instance->hba_lock, flags);
if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) {
spin_unlock_irqrestore(&instance->hba_lock, flags);
printk(KERN_ERR "megaraid_sas: timed out while"
"waiting for HBA to recover\n");
error = -ENODEV;
goto out_kfree_ioc;
}
spin_unlock_irqrestore(&instance->hba_lock, flags);
error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc);
up(&instance->ioctl_sem);
out_kfree_ioc:
kfree(ioc);
return error;
}
static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg)
{
struct megasas_instance *instance;
struct megasas_aen aen;
int error;
int i;
unsigned long flags;
u32 wait_time = MEGASAS_RESET_WAIT_TIME;
if (file->private_data != file) {
printk(KERN_DEBUG "megasas: fasync_helper was not "
"called first\n");
return -EINVAL;
}
if (copy_from_user(&aen, (void __user *)arg, sizeof(aen)))
return -EFAULT;
instance = megasas_lookup_instance(aen.host_no);
if (!instance)
return -ENODEV;
if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) {
return -ENODEV;
}
if (instance->unload == 1) {
return -ENODEV;
}
for (i = 0; i < wait_time; i++) {
spin_lock_irqsave(&instance->hba_lock, flags);
if (instance->adprecovery == MEGASAS_HBA_OPERATIONAL) {
spin_unlock_irqrestore(&instance->hba_lock,
flags);
break;
}
spin_unlock_irqrestore(&instance->hba_lock, flags);
if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
printk(KERN_NOTICE "megasas: waiting for"
"controller reset to finish\n");
}
msleep(1000);
}
spin_lock_irqsave(&instance->hba_lock, flags);
if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) {
spin_unlock_irqrestore(&instance->hba_lock, flags);
printk(KERN_ERR "megaraid_sas: timed out while waiting"
"for HBA to recover.\n");
return -ENODEV;
}
spin_unlock_irqrestore(&instance->hba_lock, flags);
mutex_lock(&instance->aen_mutex);
error = megasas_register_aen(instance, aen.seq_num,
aen.class_locale_word);
mutex_unlock(&instance->aen_mutex);
return error;
}
/**
* megasas_mgmt_ioctl - char node ioctl entry point
*/
static long
megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
switch (cmd) {
case MEGASAS_IOC_FIRMWARE:
return megasas_mgmt_ioctl_fw(file, arg);
case MEGASAS_IOC_GET_AEN:
return megasas_mgmt_ioctl_aen(file, arg);
}
return -ENOTTY;
}
#ifdef CONFIG_COMPAT
static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg)
{
struct compat_megasas_iocpacket __user *cioc =
(struct compat_megasas_iocpacket __user *)arg;
struct megasas_iocpacket __user *ioc =
compat_alloc_user_space(sizeof(struct megasas_iocpacket));
int i;
int error = 0;
compat_uptr_t ptr;
if (clear_user(ioc, sizeof(*ioc)))
return -EFAULT;
if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) ||
copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) ||
copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) ||
copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) ||
copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) ||
copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32)))
return -EFAULT;
/*
* The sense_ptr is used in megasas_mgmt_fw_ioctl only when
* sense_len is not null, so prepare the 64bit value under
* the same condition.
*/
if (ioc->sense_len) {
void __user **sense_ioc_ptr =
(void __user **)(ioc->frame.raw + ioc->sense_off);
compat_uptr_t *sense_cioc_ptr =
(compat_uptr_t *)(cioc->frame.raw + cioc->sense_off);
if (get_user(ptr, sense_cioc_ptr) ||
put_user(compat_ptr(ptr), sense_ioc_ptr))
return -EFAULT;
}
for (i = 0; i < MAX_IOCTL_SGE; i++) {
if (get_user(ptr, &cioc->sgl[i].iov_base) ||
put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) ||
copy_in_user(&ioc->sgl[i].iov_len,
&cioc->sgl[i].iov_len, sizeof(compat_size_t)))
return -EFAULT;
}
error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc);
if (copy_in_user(&cioc->frame.hdr.cmd_status,
&ioc->frame.hdr.cmd_status, sizeof(u8))) {
printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n");
return -EFAULT;
}
return error;
}
static long
megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
switch (cmd) {
case MEGASAS_IOC_FIRMWARE32:
return megasas_mgmt_compat_ioctl_fw(file, arg);
case MEGASAS_IOC_GET_AEN:
return megasas_mgmt_ioctl_aen(file, arg);
}
return -ENOTTY;
}
#endif
/*
* File operations structure for management interface
*/
static const struct file_operations megasas_mgmt_fops = {
.owner = THIS_MODULE,
.open = megasas_mgmt_open,
.fasync = megasas_mgmt_fasync,
.unlocked_ioctl = megasas_mgmt_ioctl,
.poll = megasas_mgmt_poll,
#ifdef CONFIG_COMPAT
.compat_ioctl = megasas_mgmt_compat_ioctl,
#endif
.llseek = noop_llseek,
};
/*
* PCI hotplug support registration structure
*/
static struct pci_driver megasas_pci_driver = {
.name = "megaraid_sas",
.id_table = megasas_pci_table,
.probe = megasas_probe_one,
.remove = __devexit_p(megasas_detach_one),
.suspend = megasas_suspend,
.resume = megasas_resume,
.shutdown = megasas_shutdown,
};
/*
* Sysfs driver attributes
*/
static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf)
{
return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n",
MEGASAS_VERSION);
}
static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL);
static ssize_t
megasas_sysfs_show_release_date(struct device_driver *dd, char *buf)
{
return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n",
MEGASAS_RELDATE);
}
static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date,
NULL);
static ssize_t
megasas_sysfs_show_support_poll_for_event(struct device_driver *dd, char *buf)
{
return sprintf(buf, "%u\n", support_poll_for_event);
}
static DRIVER_ATTR(support_poll_for_event, S_IRUGO,
megasas_sysfs_show_support_poll_for_event, NULL);
static ssize_t
megasas_sysfs_show_support_device_change(struct device_driver *dd, char *buf)
{
return sprintf(buf, "%u\n", support_device_change);
}
static DRIVER_ATTR(support_device_change, S_IRUGO,
megasas_sysfs_show_support_device_change, NULL);
static ssize_t
megasas_sysfs_show_dbg_lvl(struct device_driver *dd, char *buf)
{
return sprintf(buf, "%u\n", megasas_dbg_lvl);
}
static ssize_t
megasas_sysfs_set_dbg_lvl(struct device_driver *dd, const char *buf, size_t count)
{
int retval = count;
if(sscanf(buf,"%u",&megasas_dbg_lvl)<1){
printk(KERN_ERR "megasas: could not set dbg_lvl\n");
retval = -EINVAL;
}
return retval;
}
static DRIVER_ATTR(dbg_lvl, S_IRUGO|S_IWUSR, megasas_sysfs_show_dbg_lvl,
megasas_sysfs_set_dbg_lvl);
static ssize_t
megasas_sysfs_show_poll_mode_io(struct device_driver *dd, char *buf)
{
return sprintf(buf, "%u\n", poll_mode_io);
}
static ssize_t
megasas_sysfs_set_poll_mode_io(struct device_driver *dd,
const char *buf, size_t count)
{
int retval = count;
int tmp = poll_mode_io;
int i;
struct megasas_instance *instance;
if (sscanf(buf, "%u", &poll_mode_io) < 1) {
printk(KERN_ERR "megasas: could not set poll_mode_io\n");
retval = -EINVAL;
}
/*
* Check if poll_mode_io is already set or is same as previous value
*/
if ((tmp && poll_mode_io) || (tmp == poll_mode_io))
goto out;
if (poll_mode_io) {
/*
* Start timers for all adapters
*/
for (i = 0; i < megasas_mgmt_info.max_index; i++) {
instance = megasas_mgmt_info.instance[i];
if (instance) {
megasas_start_timer(instance,
&instance->io_completion_timer,
megasas_io_completion_timer,
MEGASAS_COMPLETION_TIMER_INTERVAL);
}
}
} else {
/*
* Delete timers for all adapters
*/
for (i = 0; i < megasas_mgmt_info.max_index; i++) {
instance = megasas_mgmt_info.instance[i];
if (instance)
del_timer_sync(&instance->io_completion_timer);
}
}
out:
return retval;
}
static void
megasas_aen_polling(struct work_struct *work)
{
struct megasas_aen_event *ev =
container_of(work, struct megasas_aen_event, hotplug_work);
struct megasas_instance *instance = ev->instance;
union megasas_evt_class_locale class_locale;
struct Scsi_Host *host;
struct scsi_device *sdev1;
u16 pd_index = 0;
u16 ld_index = 0;
int i, j, doscan = 0;
u32 seq_num;
int error;
if (!instance) {
printk(KERN_ERR "invalid instance!\n");
kfree(ev);
return;
}
instance->ev = NULL;
host = instance->host;
if (instance->evt_detail) {
switch (instance->evt_detail->code) {
case MR_EVT_PD_INSERTED:
if (megasas_get_pd_list(instance) == 0) {
for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) {
for (j = 0;
j < MEGASAS_MAX_DEV_PER_CHANNEL;
j++) {
pd_index =
(i * MEGASAS_MAX_DEV_PER_CHANNEL) + j;
sdev1 =
scsi_device_lookup(host, i, j, 0);
if (instance->pd_list[pd_index].driveState
== MR_PD_STATE_SYSTEM) {
if (!sdev1) {
scsi_add_device(host, i, j, 0);
}
if (sdev1)
scsi_device_put(sdev1);
}
}
}
}
doscan = 0;
break;
case MR_EVT_PD_REMOVED:
if (megasas_get_pd_list(instance) == 0) {
megasas_get_pd_list(instance);
for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) {
for (j = 0;
j < MEGASAS_MAX_DEV_PER_CHANNEL;
j++) {
pd_index =
(i * MEGASAS_MAX_DEV_PER_CHANNEL) + j;
sdev1 =
scsi_device_lookup(host, i, j, 0);
if (instance->pd_list[pd_index].driveState
== MR_PD_STATE_SYSTEM) {
if (sdev1) {
scsi_device_put(sdev1);
}
} else {
if (sdev1) {
scsi_remove_device(sdev1);
scsi_device_put(sdev1);
}
}
}
}
}
doscan = 0;
break;
case MR_EVT_LD_OFFLINE:
case MR_EVT_CFG_CLEARED:
case MR_EVT_LD_DELETED:
megasas_get_ld_list(instance);
for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) {
for (j = 0;
j < MEGASAS_MAX_DEV_PER_CHANNEL;
j++) {
ld_index =
(i * MEGASAS_MAX_DEV_PER_CHANNEL) + j;
sdev1 = scsi_device_lookup(host,
i + MEGASAS_MAX_LD_CHANNELS,
j,
0);
if (instance->ld_ids[ld_index] != 0xff) {
if (sdev1) {
scsi_device_put(sdev1);
}
} else {
if (sdev1) {
scsi_remove_device(sdev1);
scsi_device_put(sdev1);
}
}
}
}
doscan = 0;
break;
case MR_EVT_LD_CREATED:
megasas_get_ld_list(instance);
for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) {
for (j = 0;
j < MEGASAS_MAX_DEV_PER_CHANNEL;
j++) {
ld_index =
(i * MEGASAS_MAX_DEV_PER_CHANNEL) + j;
sdev1 = scsi_device_lookup(host,
i+MEGASAS_MAX_LD_CHANNELS,
j, 0);
if (instance->ld_ids[ld_index] !=
0xff) {
if (!sdev1) {
scsi_add_device(host,
i + 2,
j, 0);
}
}
if (sdev1) {
scsi_device_put(sdev1);
}
}
}
doscan = 0;
break;
case MR_EVT_CTRL_HOST_BUS_SCAN_REQUESTED:
case MR_EVT_FOREIGN_CFG_IMPORTED:
case MR_EVT_LD_STATE_CHANGE:
doscan = 1;
break;
default:
doscan = 0;
break;
}
} else {
printk(KERN_ERR "invalid evt_detail!\n");
kfree(ev);
return;
}
if (doscan) {
printk(KERN_INFO "scanning ...\n");
megasas_get_pd_list(instance);
for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) {
for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL; j++) {
pd_index = i*MEGASAS_MAX_DEV_PER_CHANNEL + j;
sdev1 = scsi_device_lookup(host, i, j, 0);
if (instance->pd_list[pd_index].driveState ==
MR_PD_STATE_SYSTEM) {
if (!sdev1) {
scsi_add_device(host, i, j, 0);
}
if (sdev1)
scsi_device_put(sdev1);
} else {
if (sdev1) {
scsi_remove_device(sdev1);
scsi_device_put(sdev1);
}
}
}
}
megasas_get_ld_list(instance);
for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) {
for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL; j++) {
ld_index =
(i * MEGASAS_MAX_DEV_PER_CHANNEL) + j;
sdev1 = scsi_device_lookup(host,
i+MEGASAS_MAX_LD_CHANNELS, j, 0);
if (instance->ld_ids[ld_index] != 0xff) {
if (!sdev1) {
scsi_add_device(host,
i+2,
j, 0);
} else {
scsi_device_put(sdev1);
}
} else {
if (sdev1) {
scsi_remove_device(sdev1);
scsi_device_put(sdev1);
}
}
}
}
}
if ( instance->aen_cmd != NULL ) {
kfree(ev);
return ;
}
seq_num = instance->evt_detail->seq_num + 1;
/* Register AEN with FW for latest sequence number plus 1 */
class_locale.members.reserved = 0;
class_locale.members.locale = MR_EVT_LOCALE_ALL;
class_locale.members.class = MR_EVT_CLASS_DEBUG;
mutex_lock(&instance->aen_mutex);
error = megasas_register_aen(instance, seq_num,
class_locale.word);
mutex_unlock(&instance->aen_mutex);
if (error)
printk(KERN_ERR "register aen failed error %x\n", error);
kfree(ev);
}
static DRIVER_ATTR(poll_mode_io, S_IRUGO|S_IWUSR,
megasas_sysfs_show_poll_mode_io,
megasas_sysfs_set_poll_mode_io);
/**
* megasas_init - Driver load entry point
*/
static int __init megasas_init(void)
{
int rval;
/*
* Announce driver version and other information
*/
printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION,
MEGASAS_EXT_VERSION);
support_poll_for_event = 2;
support_device_change = 1;
memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info));
/*
* Register character device node
*/
rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops);
if (rval < 0) {
printk(KERN_DEBUG "megasas: failed to open device node\n");
return rval;
}
megasas_mgmt_majorno = rval;
/*
* Register ourselves as PCI hotplug module
*/
rval = pci_register_driver(&megasas_pci_driver);
if (rval) {
printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n");
goto err_pcidrv;
}
rval = driver_create_file(&megasas_pci_driver.driver,
&driver_attr_version);
if (rval)
goto err_dcf_attr_ver;
rval = driver_create_file(&megasas_pci_driver.driver,
&driver_attr_release_date);
if (rval)
goto err_dcf_rel_date;
rval = driver_create_file(&megasas_pci_driver.driver,
&driver_attr_support_poll_for_event);
if (rval)
goto err_dcf_support_poll_for_event;
rval = driver_create_file(&megasas_pci_driver.driver,
&driver_attr_dbg_lvl);
if (rval)
goto err_dcf_dbg_lvl;
rval = driver_create_file(&megasas_pci_driver.driver,
&driver_attr_poll_mode_io);
if (rval)
goto err_dcf_poll_mode_io;
rval = driver_create_file(&megasas_pci_driver.driver,
&driver_attr_support_device_change);
if (rval)
goto err_dcf_support_device_change;
return rval;
err_dcf_support_device_change:
driver_remove_file(&megasas_pci_driver.driver,
&driver_attr_poll_mode_io);
err_dcf_poll_mode_io:
driver_remove_file(&megasas_pci_driver.driver,
&driver_attr_dbg_lvl);
err_dcf_dbg_lvl:
driver_remove_file(&megasas_pci_driver.driver,
&driver_attr_support_poll_for_event);
err_dcf_support_poll_for_event:
driver_remove_file(&megasas_pci_driver.driver,
&driver_attr_release_date);
err_dcf_rel_date:
driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
err_dcf_attr_ver:
pci_unregister_driver(&megasas_pci_driver);
err_pcidrv:
unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
return rval;
}
/**
* megasas_exit - Driver unload entry point
*/
static void __exit megasas_exit(void)
{
driver_remove_file(&megasas_pci_driver.driver,
&driver_attr_poll_mode_io);
driver_remove_file(&megasas_pci_driver.driver,
&driver_attr_dbg_lvl);
driver_remove_file(&megasas_pci_driver.driver,
&driver_attr_support_poll_for_event);
driver_remove_file(&megasas_pci_driver.driver,
&driver_attr_support_device_change);
driver_remove_file(&megasas_pci_driver.driver,
&driver_attr_release_date);
driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
pci_unregister_driver(&megasas_pci_driver);
unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
}
module_init(megasas_init);
module_exit(megasas_exit);