OpenCloudOS-Kernel/drivers/net/sfc/tx.c

1213 lines
33 KiB
C

/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2005-2010 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include <linux/pci.h>
#include <linux/tcp.h>
#include <linux/ip.h>
#include <linux/in.h>
#include <linux/ipv6.h>
#include <linux/slab.h>
#include <net/ipv6.h>
#include <linux/if_ether.h>
#include <linux/highmem.h>
#include "net_driver.h"
#include "efx.h"
#include "nic.h"
#include "workarounds.h"
/*
* TX descriptor ring full threshold
*
* The tx_queue descriptor ring fill-level must fall below this value
* before we restart the netif queue
*/
#define EFX_TXQ_THRESHOLD(_efx) ((_efx)->txq_entries / 2u)
static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
struct efx_tx_buffer *buffer)
{
if (buffer->unmap_len) {
struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
buffer->unmap_len);
if (buffer->unmap_single)
pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len,
PCI_DMA_TODEVICE);
else
pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len,
PCI_DMA_TODEVICE);
buffer->unmap_len = 0;
buffer->unmap_single = false;
}
if (buffer->skb) {
dev_kfree_skb_any((struct sk_buff *) buffer->skb);
buffer->skb = NULL;
netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
"TX queue %d transmission id %x complete\n",
tx_queue->queue, tx_queue->read_count);
}
}
/**
* struct efx_tso_header - a DMA mapped buffer for packet headers
* @next: Linked list of free ones.
* The list is protected by the TX queue lock.
* @dma_unmap_len: Length to unmap for an oversize buffer, or 0.
* @dma_addr: The DMA address of the header below.
*
* This controls the memory used for a TSO header. Use TSOH_DATA()
* to find the packet header data. Use TSOH_SIZE() to calculate the
* total size required for a given packet header length. TSO headers
* in the free list are exactly %TSOH_STD_SIZE bytes in size.
*/
struct efx_tso_header {
union {
struct efx_tso_header *next;
size_t unmap_len;
};
dma_addr_t dma_addr;
};
static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
struct sk_buff *skb);
static void efx_fini_tso(struct efx_tx_queue *tx_queue);
static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue,
struct efx_tso_header *tsoh);
static void efx_tsoh_free(struct efx_tx_queue *tx_queue,
struct efx_tx_buffer *buffer)
{
if (buffer->tsoh) {
if (likely(!buffer->tsoh->unmap_len)) {
buffer->tsoh->next = tx_queue->tso_headers_free;
tx_queue->tso_headers_free = buffer->tsoh;
} else {
efx_tsoh_heap_free(tx_queue, buffer->tsoh);
}
buffer->tsoh = NULL;
}
}
static inline unsigned
efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
{
/* Depending on the NIC revision, we can use descriptor
* lengths up to 8K or 8K-1. However, since PCI Express
* devices must split read requests at 4K boundaries, there is
* little benefit from using descriptors that cross those
* boundaries and we keep things simple by not doing so.
*/
unsigned len = (~dma_addr & 0xfff) + 1;
/* Work around hardware bug for unaligned buffers. */
if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
return len;
}
/*
* Add a socket buffer to a TX queue
*
* This maps all fragments of a socket buffer for DMA and adds them to
* the TX queue. The queue's insert pointer will be incremented by
* the number of fragments in the socket buffer.
*
* If any DMA mapping fails, any mapped fragments will be unmapped,
* the queue's insert pointer will be restored to its original value.
*
* This function is split out from efx_hard_start_xmit to allow the
* loopback test to direct packets via specific TX queues.
*
* Returns NETDEV_TX_OK or NETDEV_TX_BUSY
* You must hold netif_tx_lock() to call this function.
*/
netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
{
struct efx_nic *efx = tx_queue->efx;
struct pci_dev *pci_dev = efx->pci_dev;
struct efx_tx_buffer *buffer;
skb_frag_t *fragment;
struct page *page;
int page_offset;
unsigned int len, unmap_len = 0, fill_level, insert_ptr;
dma_addr_t dma_addr, unmap_addr = 0;
unsigned int dma_len;
bool unmap_single;
int q_space, i = 0;
netdev_tx_t rc = NETDEV_TX_OK;
EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
if (skb_shinfo(skb)->gso_size)
return efx_enqueue_skb_tso(tx_queue, skb);
/* Get size of the initial fragment */
len = skb_headlen(skb);
/* Pad if necessary */
if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
EFX_BUG_ON_PARANOID(skb->data_len);
len = 32 + 1;
if (skb_pad(skb, len - skb->len))
return NETDEV_TX_OK;
}
fill_level = tx_queue->insert_count - tx_queue->old_read_count;
q_space = efx->txq_entries - 1 - fill_level;
/* Map for DMA. Use pci_map_single rather than pci_map_page
* since this is more efficient on machines with sparse
* memory.
*/
unmap_single = true;
dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE);
/* Process all fragments */
while (1) {
if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr)))
goto pci_err;
/* Store fields for marking in the per-fragment final
* descriptor */
unmap_len = len;
unmap_addr = dma_addr;
/* Add to TX queue, splitting across DMA boundaries */
do {
if (unlikely(q_space-- <= 0)) {
/* It might be that completions have
* happened since the xmit path last
* checked. Update the xmit path's
* copy of read_count.
*/
netif_tx_stop_queue(tx_queue->core_txq);
/* This memory barrier protects the
* change of queue state from the access
* of read_count. */
smp_mb();
tx_queue->old_read_count =
ACCESS_ONCE(tx_queue->read_count);
fill_level = (tx_queue->insert_count
- tx_queue->old_read_count);
q_space = efx->txq_entries - 1 - fill_level;
if (unlikely(q_space-- <= 0)) {
rc = NETDEV_TX_BUSY;
goto unwind;
}
smp_mb();
if (likely(!efx->loopback_selftest))
netif_tx_start_queue(
tx_queue->core_txq);
}
insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
buffer = &tx_queue->buffer[insert_ptr];
efx_tsoh_free(tx_queue, buffer);
EFX_BUG_ON_PARANOID(buffer->tsoh);
EFX_BUG_ON_PARANOID(buffer->skb);
EFX_BUG_ON_PARANOID(buffer->len);
EFX_BUG_ON_PARANOID(!buffer->continuation);
EFX_BUG_ON_PARANOID(buffer->unmap_len);
dma_len = efx_max_tx_len(efx, dma_addr);
if (likely(dma_len >= len))
dma_len = len;
/* Fill out per descriptor fields */
buffer->len = dma_len;
buffer->dma_addr = dma_addr;
len -= dma_len;
dma_addr += dma_len;
++tx_queue->insert_count;
} while (len);
/* Transfer ownership of the unmapping to the final buffer */
buffer->unmap_single = unmap_single;
buffer->unmap_len = unmap_len;
unmap_len = 0;
/* Get address and size of next fragment */
if (i >= skb_shinfo(skb)->nr_frags)
break;
fragment = &skb_shinfo(skb)->frags[i];
len = fragment->size;
page = fragment->page;
page_offset = fragment->page_offset;
i++;
/* Map for DMA */
unmap_single = false;
dma_addr = pci_map_page(pci_dev, page, page_offset, len,
PCI_DMA_TODEVICE);
}
/* Transfer ownership of the skb to the final buffer */
buffer->skb = skb;
buffer->continuation = false;
/* Pass off to hardware */
efx_nic_push_buffers(tx_queue);
return NETDEV_TX_OK;
pci_err:
netif_err(efx, tx_err, efx->net_dev,
" TX queue %d could not map skb with %d bytes %d "
"fragments for DMA\n", tx_queue->queue, skb->len,
skb_shinfo(skb)->nr_frags + 1);
/* Mark the packet as transmitted, and free the SKB ourselves */
dev_kfree_skb_any(skb);
unwind:
/* Work backwards until we hit the original insert pointer value */
while (tx_queue->insert_count != tx_queue->write_count) {
--tx_queue->insert_count;
insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
buffer = &tx_queue->buffer[insert_ptr];
efx_dequeue_buffer(tx_queue, buffer);
buffer->len = 0;
}
/* Free the fragment we were mid-way through pushing */
if (unmap_len) {
if (unmap_single)
pci_unmap_single(pci_dev, unmap_addr, unmap_len,
PCI_DMA_TODEVICE);
else
pci_unmap_page(pci_dev, unmap_addr, unmap_len,
PCI_DMA_TODEVICE);
}
return rc;
}
/* Remove packets from the TX queue
*
* This removes packets from the TX queue, up to and including the
* specified index.
*/
static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
unsigned int index)
{
struct efx_nic *efx = tx_queue->efx;
unsigned int stop_index, read_ptr;
stop_index = (index + 1) & tx_queue->ptr_mask;
read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
while (read_ptr != stop_index) {
struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
if (unlikely(buffer->len == 0)) {
netif_err(efx, tx_err, efx->net_dev,
"TX queue %d spurious TX completion id %x\n",
tx_queue->queue, read_ptr);
efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
return;
}
efx_dequeue_buffer(tx_queue, buffer);
buffer->continuation = true;
buffer->len = 0;
++tx_queue->read_count;
read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
}
}
/* Initiate a packet transmission. We use one channel per CPU
* (sharing when we have more CPUs than channels). On Falcon, the TX
* completion events will be directed back to the CPU that transmitted
* the packet, which should be cache-efficient.
*
* Context: non-blocking.
* Note that returning anything other than NETDEV_TX_OK will cause the
* OS to free the skb.
*/
netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
struct net_device *net_dev)
{
struct efx_nic *efx = netdev_priv(net_dev);
struct efx_tx_queue *tx_queue;
unsigned index, type;
EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
index = skb_get_queue_mapping(skb);
type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
if (index >= efx->n_tx_channels) {
index -= efx->n_tx_channels;
type |= EFX_TXQ_TYPE_HIGHPRI;
}
tx_queue = efx_get_tx_queue(efx, index, type);
return efx_enqueue_skb(tx_queue, skb);
}
void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
{
struct efx_nic *efx = tx_queue->efx;
/* Must be inverse of queue lookup in efx_hard_start_xmit() */
tx_queue->core_txq =
netdev_get_tx_queue(efx->net_dev,
tx_queue->queue / EFX_TXQ_TYPES +
((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
efx->n_tx_channels : 0));
}
int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
{
struct efx_nic *efx = netdev_priv(net_dev);
struct efx_channel *channel;
struct efx_tx_queue *tx_queue;
unsigned tc;
int rc;
if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
return -EINVAL;
if (num_tc == net_dev->num_tc)
return 0;
for (tc = 0; tc < num_tc; tc++) {
net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
}
if (num_tc > net_dev->num_tc) {
/* Initialise high-priority queues as necessary */
efx_for_each_channel(channel, efx) {
efx_for_each_possible_channel_tx_queue(tx_queue,
channel) {
if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
continue;
if (!tx_queue->buffer) {
rc = efx_probe_tx_queue(tx_queue);
if (rc)
return rc;
}
if (!tx_queue->initialised)
efx_init_tx_queue(tx_queue);
efx_init_tx_queue_core_txq(tx_queue);
}
}
} else {
/* Reduce number of classes before number of queues */
net_dev->num_tc = num_tc;
}
rc = netif_set_real_num_tx_queues(net_dev,
max_t(int, num_tc, 1) *
efx->n_tx_channels);
if (rc)
return rc;
/* Do not destroy high-priority queues when they become
* unused. We would have to flush them first, and it is
* fairly difficult to flush a subset of TX queues. Leave
* it to efx_fini_channels().
*/
net_dev->num_tc = num_tc;
return 0;
}
void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
{
unsigned fill_level;
struct efx_nic *efx = tx_queue->efx;
EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
efx_dequeue_buffers(tx_queue, index);
/* See if we need to restart the netif queue. This barrier
* separates the update of read_count from the test of the
* queue state. */
smp_mb();
if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
likely(efx->port_enabled) &&
likely(netif_device_present(efx->net_dev))) {
fill_level = tx_queue->insert_count - tx_queue->read_count;
if (fill_level < EFX_TXQ_THRESHOLD(efx)) {
EFX_BUG_ON_PARANOID(!efx_dev_registered(efx));
netif_tx_wake_queue(tx_queue->core_txq);
}
}
/* Check whether the hardware queue is now empty */
if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
if (tx_queue->read_count == tx_queue->old_write_count) {
smp_mb();
tx_queue->empty_read_count =
tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
}
}
}
int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
{
struct efx_nic *efx = tx_queue->efx;
unsigned int entries;
int i, rc;
/* Create the smallest power-of-two aligned ring */
entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
tx_queue->ptr_mask = entries - 1;
netif_dbg(efx, probe, efx->net_dev,
"creating TX queue %d size %#x mask %#x\n",
tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
/* Allocate software ring */
tx_queue->buffer = kzalloc(entries * sizeof(*tx_queue->buffer),
GFP_KERNEL);
if (!tx_queue->buffer)
return -ENOMEM;
for (i = 0; i <= tx_queue->ptr_mask; ++i)
tx_queue->buffer[i].continuation = true;
/* Allocate hardware ring */
rc = efx_nic_probe_tx(tx_queue);
if (rc)
goto fail;
return 0;
fail:
kfree(tx_queue->buffer);
tx_queue->buffer = NULL;
return rc;
}
void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
{
netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
"initialising TX queue %d\n", tx_queue->queue);
tx_queue->insert_count = 0;
tx_queue->write_count = 0;
tx_queue->old_write_count = 0;
tx_queue->read_count = 0;
tx_queue->old_read_count = 0;
tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
/* Set up TX descriptor ring */
efx_nic_init_tx(tx_queue);
tx_queue->initialised = true;
}
void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
{
struct efx_tx_buffer *buffer;
if (!tx_queue->buffer)
return;
/* Free any buffers left in the ring */
while (tx_queue->read_count != tx_queue->write_count) {
buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
efx_dequeue_buffer(tx_queue, buffer);
buffer->continuation = true;
buffer->len = 0;
++tx_queue->read_count;
}
}
void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
{
if (!tx_queue->initialised)
return;
netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
"shutting down TX queue %d\n", tx_queue->queue);
tx_queue->initialised = false;
/* Flush TX queue, remove descriptor ring */
efx_nic_fini_tx(tx_queue);
efx_release_tx_buffers(tx_queue);
/* Free up TSO header cache */
efx_fini_tso(tx_queue);
}
void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
{
if (!tx_queue->buffer)
return;
netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
"destroying TX queue %d\n", tx_queue->queue);
efx_nic_remove_tx(tx_queue);
kfree(tx_queue->buffer);
tx_queue->buffer = NULL;
}
/* Efx TCP segmentation acceleration.
*
* Why? Because by doing it here in the driver we can go significantly
* faster than the GSO.
*
* Requires TX checksum offload support.
*/
/* Number of bytes inserted at the start of a TSO header buffer,
* similar to NET_IP_ALIGN.
*/
#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
#define TSOH_OFFSET 0
#else
#define TSOH_OFFSET NET_IP_ALIGN
#endif
#define TSOH_BUFFER(tsoh) ((u8 *)(tsoh + 1) + TSOH_OFFSET)
/* Total size of struct efx_tso_header, buffer and padding */
#define TSOH_SIZE(hdr_len) \
(sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len)
/* Size of blocks on free list. Larger blocks must be allocated from
* the heap.
*/
#define TSOH_STD_SIZE 128
#define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2))
#define ETH_HDR_LEN(skb) (skb_network_header(skb) - (skb)->data)
#define SKB_TCP_OFF(skb) PTR_DIFF(tcp_hdr(skb), (skb)->data)
#define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data)
#define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data)
/**
* struct tso_state - TSO state for an SKB
* @out_len: Remaining length in current segment
* @seqnum: Current sequence number
* @ipv4_id: Current IPv4 ID, host endian
* @packet_space: Remaining space in current packet
* @dma_addr: DMA address of current position
* @in_len: Remaining length in current SKB fragment
* @unmap_len: Length of SKB fragment
* @unmap_addr: DMA address of SKB fragment
* @unmap_single: DMA single vs page mapping flag
* @protocol: Network protocol (after any VLAN header)
* @header_len: Number of bytes of header
* @full_packet_size: Number of bytes to put in each outgoing segment
*
* The state used during segmentation. It is put into this data structure
* just to make it easy to pass into inline functions.
*/
struct tso_state {
/* Output position */
unsigned out_len;
unsigned seqnum;
unsigned ipv4_id;
unsigned packet_space;
/* Input position */
dma_addr_t dma_addr;
unsigned in_len;
unsigned unmap_len;
dma_addr_t unmap_addr;
bool unmap_single;
__be16 protocol;
unsigned header_len;
int full_packet_size;
};
/*
* Verify that our various assumptions about sk_buffs and the conditions
* under which TSO will be attempted hold true. Return the protocol number.
*/
static __be16 efx_tso_check_protocol(struct sk_buff *skb)
{
__be16 protocol = skb->protocol;
EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
protocol);
if (protocol == htons(ETH_P_8021Q)) {
/* Find the encapsulated protocol; reset network header
* and transport header based on that. */
struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
protocol = veh->h_vlan_encapsulated_proto;
skb_set_network_header(skb, sizeof(*veh));
if (protocol == htons(ETH_P_IP))
skb_set_transport_header(skb, sizeof(*veh) +
4 * ip_hdr(skb)->ihl);
else if (protocol == htons(ETH_P_IPV6))
skb_set_transport_header(skb, sizeof(*veh) +
sizeof(struct ipv6hdr));
}
if (protocol == htons(ETH_P_IP)) {
EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
} else {
EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
}
EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
+ (tcp_hdr(skb)->doff << 2u)) >
skb_headlen(skb));
return protocol;
}
/*
* Allocate a page worth of efx_tso_header structures, and string them
* into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM.
*/
static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue)
{
struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
struct efx_tso_header *tsoh;
dma_addr_t dma_addr;
u8 *base_kva, *kva;
base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr);
if (base_kva == NULL) {
netif_err(tx_queue->efx, tx_err, tx_queue->efx->net_dev,
"Unable to allocate page for TSO headers\n");
return -ENOMEM;
}
/* pci_alloc_consistent() allocates pages. */
EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u));
for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) {
tsoh = (struct efx_tso_header *)kva;
tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva);
tsoh->next = tx_queue->tso_headers_free;
tx_queue->tso_headers_free = tsoh;
}
return 0;
}
/* Free up a TSO header, and all others in the same page. */
static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue,
struct efx_tso_header *tsoh,
struct pci_dev *pci_dev)
{
struct efx_tso_header **p;
unsigned long base_kva;
dma_addr_t base_dma;
base_kva = (unsigned long)tsoh & PAGE_MASK;
base_dma = tsoh->dma_addr & PAGE_MASK;
p = &tx_queue->tso_headers_free;
while (*p != NULL) {
if (((unsigned long)*p & PAGE_MASK) == base_kva)
*p = (*p)->next;
else
p = &(*p)->next;
}
pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma);
}
static struct efx_tso_header *
efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len)
{
struct efx_tso_header *tsoh;
tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA);
if (unlikely(!tsoh))
return NULL;
tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev,
TSOH_BUFFER(tsoh), header_len,
PCI_DMA_TODEVICE);
if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev,
tsoh->dma_addr))) {
kfree(tsoh);
return NULL;
}
tsoh->unmap_len = header_len;
return tsoh;
}
static void
efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh)
{
pci_unmap_single(tx_queue->efx->pci_dev,
tsoh->dma_addr, tsoh->unmap_len,
PCI_DMA_TODEVICE);
kfree(tsoh);
}
/**
* efx_tx_queue_insert - push descriptors onto the TX queue
* @tx_queue: Efx TX queue
* @dma_addr: DMA address of fragment
* @len: Length of fragment
* @final_buffer: The final buffer inserted into the queue
*
* Push descriptors onto the TX queue. Return 0 on success or 1 if
* @tx_queue full.
*/
static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
dma_addr_t dma_addr, unsigned len,
struct efx_tx_buffer **final_buffer)
{
struct efx_tx_buffer *buffer;
struct efx_nic *efx = tx_queue->efx;
unsigned dma_len, fill_level, insert_ptr;
int q_space;
EFX_BUG_ON_PARANOID(len <= 0);
fill_level = tx_queue->insert_count - tx_queue->old_read_count;
/* -1 as there is no way to represent all descriptors used */
q_space = efx->txq_entries - 1 - fill_level;
while (1) {
if (unlikely(q_space-- <= 0)) {
/* It might be that completions have happened
* since the xmit path last checked. Update
* the xmit path's copy of read_count.
*/
netif_tx_stop_queue(tx_queue->core_txq);
/* This memory barrier protects the change of
* queue state from the access of read_count. */
smp_mb();
tx_queue->old_read_count =
ACCESS_ONCE(tx_queue->read_count);
fill_level = (tx_queue->insert_count
- tx_queue->old_read_count);
q_space = efx->txq_entries - 1 - fill_level;
if (unlikely(q_space-- <= 0)) {
*final_buffer = NULL;
return 1;
}
smp_mb();
netif_tx_start_queue(tx_queue->core_txq);
}
insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
buffer = &tx_queue->buffer[insert_ptr];
++tx_queue->insert_count;
EFX_BUG_ON_PARANOID(tx_queue->insert_count -
tx_queue->read_count >=
efx->txq_entries);
efx_tsoh_free(tx_queue, buffer);
EFX_BUG_ON_PARANOID(buffer->len);
EFX_BUG_ON_PARANOID(buffer->unmap_len);
EFX_BUG_ON_PARANOID(buffer->skb);
EFX_BUG_ON_PARANOID(!buffer->continuation);
EFX_BUG_ON_PARANOID(buffer->tsoh);
buffer->dma_addr = dma_addr;
dma_len = efx_max_tx_len(efx, dma_addr);
/* If there is enough space to send then do so */
if (dma_len >= len)
break;
buffer->len = dma_len; /* Don't set the other members */
dma_addr += dma_len;
len -= dma_len;
}
EFX_BUG_ON_PARANOID(!len);
buffer->len = len;
*final_buffer = buffer;
return 0;
}
/*
* Put a TSO header into the TX queue.
*
* This is special-cased because we know that it is small enough to fit in
* a single fragment, and we know it doesn't cross a page boundary. It
* also allows us to not worry about end-of-packet etc.
*/
static void efx_tso_put_header(struct efx_tx_queue *tx_queue,
struct efx_tso_header *tsoh, unsigned len)
{
struct efx_tx_buffer *buffer;
buffer = &tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask];
efx_tsoh_free(tx_queue, buffer);
EFX_BUG_ON_PARANOID(buffer->len);
EFX_BUG_ON_PARANOID(buffer->unmap_len);
EFX_BUG_ON_PARANOID(buffer->skb);
EFX_BUG_ON_PARANOID(!buffer->continuation);
EFX_BUG_ON_PARANOID(buffer->tsoh);
buffer->len = len;
buffer->dma_addr = tsoh->dma_addr;
buffer->tsoh = tsoh;
++tx_queue->insert_count;
}
/* Remove descriptors put into a tx_queue. */
static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
{
struct efx_tx_buffer *buffer;
dma_addr_t unmap_addr;
/* Work backwards until we hit the original insert pointer value */
while (tx_queue->insert_count != tx_queue->write_count) {
--tx_queue->insert_count;
buffer = &tx_queue->buffer[tx_queue->insert_count &
tx_queue->ptr_mask];
efx_tsoh_free(tx_queue, buffer);
EFX_BUG_ON_PARANOID(buffer->skb);
if (buffer->unmap_len) {
unmap_addr = (buffer->dma_addr + buffer->len -
buffer->unmap_len);
if (buffer->unmap_single)
pci_unmap_single(tx_queue->efx->pci_dev,
unmap_addr, buffer->unmap_len,
PCI_DMA_TODEVICE);
else
pci_unmap_page(tx_queue->efx->pci_dev,
unmap_addr, buffer->unmap_len,
PCI_DMA_TODEVICE);
buffer->unmap_len = 0;
}
buffer->len = 0;
buffer->continuation = true;
}
}
/* Parse the SKB header and initialise state. */
static void tso_start(struct tso_state *st, const struct sk_buff *skb)
{
/* All ethernet/IP/TCP headers combined size is TCP header size
* plus offset of TCP header relative to start of packet.
*/
st->header_len = ((tcp_hdr(skb)->doff << 2u)
+ PTR_DIFF(tcp_hdr(skb), skb->data));
st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size;
if (st->protocol == htons(ETH_P_IP))
st->ipv4_id = ntohs(ip_hdr(skb)->id);
else
st->ipv4_id = 0;
st->seqnum = ntohl(tcp_hdr(skb)->seq);
EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
st->packet_space = st->full_packet_size;
st->out_len = skb->len - st->header_len;
st->unmap_len = 0;
st->unmap_single = false;
}
static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
skb_frag_t *frag)
{
st->unmap_addr = pci_map_page(efx->pci_dev, frag->page,
frag->page_offset, frag->size,
PCI_DMA_TODEVICE);
if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
st->unmap_single = false;
st->unmap_len = frag->size;
st->in_len = frag->size;
st->dma_addr = st->unmap_addr;
return 0;
}
return -ENOMEM;
}
static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
const struct sk_buff *skb)
{
int hl = st->header_len;
int len = skb_headlen(skb) - hl;
st->unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl,
len, PCI_DMA_TODEVICE);
if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
st->unmap_single = true;
st->unmap_len = len;
st->in_len = len;
st->dma_addr = st->unmap_addr;
return 0;
}
return -ENOMEM;
}
/**
* tso_fill_packet_with_fragment - form descriptors for the current fragment
* @tx_queue: Efx TX queue
* @skb: Socket buffer
* @st: TSO state
*
* Form descriptors for the current fragment, until we reach the end
* of fragment or end-of-packet. Return 0 on success, 1 if not enough
* space in @tx_queue.
*/
static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
const struct sk_buff *skb,
struct tso_state *st)
{
struct efx_tx_buffer *buffer;
int n, end_of_packet, rc;
if (st->in_len == 0)
return 0;
if (st->packet_space == 0)
return 0;
EFX_BUG_ON_PARANOID(st->in_len <= 0);
EFX_BUG_ON_PARANOID(st->packet_space <= 0);
n = min(st->in_len, st->packet_space);
st->packet_space -= n;
st->out_len -= n;
st->in_len -= n;
rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
if (likely(rc == 0)) {
if (st->out_len == 0)
/* Transfer ownership of the skb */
buffer->skb = skb;
end_of_packet = st->out_len == 0 || st->packet_space == 0;
buffer->continuation = !end_of_packet;
if (st->in_len == 0) {
/* Transfer ownership of the pci mapping */
buffer->unmap_len = st->unmap_len;
buffer->unmap_single = st->unmap_single;
st->unmap_len = 0;
}
}
st->dma_addr += n;
return rc;
}
/**
* tso_start_new_packet - generate a new header and prepare for the new packet
* @tx_queue: Efx TX queue
* @skb: Socket buffer
* @st: TSO state
*
* Generate a new header and prepare for the new packet. Return 0 on
* success, or -1 if failed to alloc header.
*/
static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
const struct sk_buff *skb,
struct tso_state *st)
{
struct efx_tso_header *tsoh;
struct tcphdr *tsoh_th;
unsigned ip_length;
u8 *header;
/* Allocate a DMA-mapped header buffer. */
if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) {
if (tx_queue->tso_headers_free == NULL) {
if (efx_tsoh_block_alloc(tx_queue))
return -1;
}
EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free);
tsoh = tx_queue->tso_headers_free;
tx_queue->tso_headers_free = tsoh->next;
tsoh->unmap_len = 0;
} else {
tx_queue->tso_long_headers++;
tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len);
if (unlikely(!tsoh))
return -1;
}
header = TSOH_BUFFER(tsoh);
tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb));
/* Copy and update the headers. */
memcpy(header, skb->data, st->header_len);
tsoh_th->seq = htonl(st->seqnum);
st->seqnum += skb_shinfo(skb)->gso_size;
if (st->out_len > skb_shinfo(skb)->gso_size) {
/* This packet will not finish the TSO burst. */
ip_length = st->full_packet_size - ETH_HDR_LEN(skb);
tsoh_th->fin = 0;
tsoh_th->psh = 0;
} else {
/* This packet will be the last in the TSO burst. */
ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len;
tsoh_th->fin = tcp_hdr(skb)->fin;
tsoh_th->psh = tcp_hdr(skb)->psh;
}
if (st->protocol == htons(ETH_P_IP)) {
struct iphdr *tsoh_iph =
(struct iphdr *)(header + SKB_IPV4_OFF(skb));
tsoh_iph->tot_len = htons(ip_length);
/* Linux leaves suitable gaps in the IP ID space for us to fill. */
tsoh_iph->id = htons(st->ipv4_id);
st->ipv4_id++;
} else {
struct ipv6hdr *tsoh_iph =
(struct ipv6hdr *)(header + SKB_IPV6_OFF(skb));
tsoh_iph->payload_len = htons(ip_length - sizeof(*tsoh_iph));
}
st->packet_space = skb_shinfo(skb)->gso_size;
++tx_queue->tso_packets;
/* Form a descriptor for this header. */
efx_tso_put_header(tx_queue, tsoh, st->header_len);
return 0;
}
/**
* efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
* @tx_queue: Efx TX queue
* @skb: Socket buffer
*
* Context: You must hold netif_tx_lock() to call this function.
*
* Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
* @skb was not enqueued. In all cases @skb is consumed. Return
* %NETDEV_TX_OK or %NETDEV_TX_BUSY.
*/
static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
struct sk_buff *skb)
{
struct efx_nic *efx = tx_queue->efx;
int frag_i, rc, rc2 = NETDEV_TX_OK;
struct tso_state state;
/* Find the packet protocol and sanity-check it */
state.protocol = efx_tso_check_protocol(skb);
EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
tso_start(&state, skb);
/* Assume that skb header area contains exactly the headers, and
* all payload is in the frag list.
*/
if (skb_headlen(skb) == state.header_len) {
/* Grab the first payload fragment. */
EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
frag_i = 0;
rc = tso_get_fragment(&state, efx,
skb_shinfo(skb)->frags + frag_i);
if (rc)
goto mem_err;
} else {
rc = tso_get_head_fragment(&state, efx, skb);
if (rc)
goto mem_err;
frag_i = -1;
}
if (tso_start_new_packet(tx_queue, skb, &state) < 0)
goto mem_err;
while (1) {
rc = tso_fill_packet_with_fragment(tx_queue, skb, &state);
if (unlikely(rc)) {
rc2 = NETDEV_TX_BUSY;
goto unwind;
}
/* Move onto the next fragment? */
if (state.in_len == 0) {
if (++frag_i >= skb_shinfo(skb)->nr_frags)
/* End of payload reached. */
break;
rc = tso_get_fragment(&state, efx,
skb_shinfo(skb)->frags + frag_i);
if (rc)
goto mem_err;
}
/* Start at new packet? */
if (state.packet_space == 0 &&
tso_start_new_packet(tx_queue, skb, &state) < 0)
goto mem_err;
}
/* Pass off to hardware */
efx_nic_push_buffers(tx_queue);
tx_queue->tso_bursts++;
return NETDEV_TX_OK;
mem_err:
netif_err(efx, tx_err, efx->net_dev,
"Out of memory for TSO headers, or PCI mapping error\n");
dev_kfree_skb_any(skb);
unwind:
/* Free the DMA mapping we were in the process of writing out */
if (state.unmap_len) {
if (state.unmap_single)
pci_unmap_single(efx->pci_dev, state.unmap_addr,
state.unmap_len, PCI_DMA_TODEVICE);
else
pci_unmap_page(efx->pci_dev, state.unmap_addr,
state.unmap_len, PCI_DMA_TODEVICE);
}
efx_enqueue_unwind(tx_queue);
return rc2;
}
/*
* Free up all TSO datastructures associated with tx_queue. This
* routine should be called only once the tx_queue is both empty and
* will no longer be used.
*/
static void efx_fini_tso(struct efx_tx_queue *tx_queue)
{
unsigned i;
if (tx_queue->buffer) {
for (i = 0; i <= tx_queue->ptr_mask; ++i)
efx_tsoh_free(tx_queue, &tx_queue->buffer[i]);
}
while (tx_queue->tso_headers_free != NULL)
efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free,
tx_queue->efx->pci_dev);
}