OpenCloudOS-Kernel/include/asm-sh/pgtable_64.h

313 lines
11 KiB
C

#ifndef __ASM_SH_PGTABLE_64_H
#define __ASM_SH_PGTABLE_64_H
/*
* include/asm-sh/pgtable_64.h
*
* This file contains the functions and defines necessary to modify and use
* the SuperH page table tree.
*
* Copyright (C) 2000, 2001 Paolo Alberelli
* Copyright (C) 2003, 2004 Paul Mundt
* Copyright (C) 2003, 2004 Richard Curnow
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#include <linux/threads.h>
#include <asm/processor.h>
#include <asm/page.h>
/*
* Error outputs.
*/
#define pte_ERROR(e) \
printk("%s:%d: bad pte %016Lx.\n", __FILE__, __LINE__, pte_val(e))
#define pgd_ERROR(e) \
printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
/*
* Table setting routines. Used within arch/mm only.
*/
#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
static __inline__ void set_pte(pte_t *pteptr, pte_t pteval)
{
unsigned long long x = ((unsigned long long) pteval.pte_low);
unsigned long long *xp = (unsigned long long *) pteptr;
/*
* Sign-extend based on NPHYS.
*/
*(xp) = (x & NPHYS_SIGN) ? (x | NPHYS_MASK) : x;
}
#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
static __inline__ void pmd_set(pmd_t *pmdp,pte_t *ptep)
{
pmd_val(*pmdp) = (unsigned long) ptep;
}
/*
* PGD defines. Top level.
*/
/* To find an entry in a generic PGD. */
#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
#define __pgd_offset(address) pgd_index(address)
#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
/* To find an entry in a kernel PGD. */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
/*
* PMD level access routines. Same notes as above.
*/
#define _PMD_EMPTY 0x0
/* Either the PMD is empty or present, it's not paged out */
#define pmd_present(pmd_entry) (pmd_val(pmd_entry) & _PAGE_PRESENT)
#define pmd_clear(pmd_entry_p) (set_pmd((pmd_entry_p), __pmd(_PMD_EMPTY)))
#define pmd_none(pmd_entry) (pmd_val((pmd_entry)) == _PMD_EMPTY)
#define pmd_bad(pmd_entry) ((pmd_val(pmd_entry) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
#define pmd_page_vaddr(pmd_entry) \
((unsigned long) __va(pmd_val(pmd_entry) & PAGE_MASK))
#define pmd_page(pmd) \
(virt_to_page(pmd_val(pmd)))
/* PMD to PTE dereferencing */
#define pte_index(address) \
((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
#define pte_offset_kernel(dir, addr) \
((pte_t *) ((pmd_val(*(dir))) & PAGE_MASK) + pte_index((addr)))
#define pte_offset_map(dir,addr) pte_offset_kernel(dir, addr)
#define pte_offset_map_nested(dir,addr) pte_offset_kernel(dir, addr)
#define pte_unmap(pte) do { } while (0)
#define pte_unmap_nested(pte) do { } while (0)
#ifndef __ASSEMBLY__
#define IOBASE_VADDR 0xff000000
#define IOBASE_END 0xffffffff
/*
* PTEL coherent flags.
* See Chapter 17 ST50 CPU Core Volume 1, Architecture.
*/
/* The bits that are required in the SH-5 TLB are placed in the h/w-defined
positions, to avoid expensive bit shuffling on every refill. The remaining
bits are used for s/w purposes and masked out on each refill.
Note, the PTE slots are used to hold data of type swp_entry_t when a page is
swapped out. Only the _PAGE_PRESENT flag is significant when the page is
swapped out, and it must be placed so that it doesn't overlap either the
type or offset fields of swp_entry_t. For x86, offset is at [31:8] and type
at [6:1], with _PAGE_PRESENT at bit 0 for both pte_t and swp_entry_t. This
scheme doesn't map to SH-5 because bit [0] controls cacheability. So bit
[2] is used for _PAGE_PRESENT and the type field of swp_entry_t is split
into 2 pieces. That is handled by SWP_ENTRY and SWP_TYPE below. */
#define _PAGE_WT 0x001 /* CB0: if cacheable, 1->write-thru, 0->write-back */
#define _PAGE_DEVICE 0x001 /* CB0: if uncacheable, 1->device (i.e. no write-combining or reordering at bus level) */
#define _PAGE_CACHABLE 0x002 /* CB1: uncachable/cachable */
#define _PAGE_PRESENT 0x004 /* software: page referenced */
#define _PAGE_FILE 0x004 /* software: only when !present */
#define _PAGE_SIZE0 0x008 /* SZ0-bit : size of page */
#define _PAGE_SIZE1 0x010 /* SZ1-bit : size of page */
#define _PAGE_SHARED 0x020 /* software: reflects PTEH's SH */
#define _PAGE_READ 0x040 /* PR0-bit : read access allowed */
#define _PAGE_EXECUTE 0x080 /* PR1-bit : execute access allowed */
#define _PAGE_WRITE 0x100 /* PR2-bit : write access allowed */
#define _PAGE_USER 0x200 /* PR3-bit : user space access allowed */
#define _PAGE_DIRTY 0x400 /* software: page accessed in write */
#define _PAGE_ACCESSED 0x800 /* software: page referenced */
/* Mask which drops software flags */
#define _PAGE_FLAGS_HARDWARE_MASK 0xfffffffffffff3dbLL
/*
* HugeTLB support
*/
#if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
#define _PAGE_SZHUGE (_PAGE_SIZE0)
#elif defined(CONFIG_HUGETLB_PAGE_SIZE_1MB)
#define _PAGE_SZHUGE (_PAGE_SIZE1)
#elif defined(CONFIG_HUGETLB_PAGE_SIZE_512MB)
#define _PAGE_SZHUGE (_PAGE_SIZE0 | _PAGE_SIZE1)
#endif
/*
* Stub out _PAGE_SZHUGE if we don't have a good definition for it,
* to make pte_mkhuge() happy.
*/
#ifndef _PAGE_SZHUGE
# define _PAGE_SZHUGE (0)
#endif
/*
* Default flags for a Kernel page.
* This is fundametally also SHARED because the main use of this define
* (other than for PGD/PMD entries) is for the VMALLOC pool which is
* contextless.
*
* _PAGE_EXECUTE is required for modules
*
*/
#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
_PAGE_EXECUTE | \
_PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_DIRTY | \
_PAGE_SHARED)
/* Default flags for a User page */
#define _PAGE_TABLE (_KERNPG_TABLE | _PAGE_USER)
#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
/*
* We have full permissions (Read/Write/Execute/Shared).
*/
#define _PAGE_COMMON (_PAGE_PRESENT | _PAGE_USER | \
_PAGE_CACHABLE | _PAGE_ACCESSED)
#define PAGE_NONE __pgprot(_PAGE_CACHABLE | _PAGE_ACCESSED)
#define PAGE_SHARED __pgprot(_PAGE_COMMON | _PAGE_READ | _PAGE_WRITE | \
_PAGE_SHARED)
#define PAGE_EXECREAD __pgprot(_PAGE_COMMON | _PAGE_READ | _PAGE_EXECUTE)
/*
* We need to include PAGE_EXECUTE in PAGE_COPY because it is the default
* protection mode for the stack.
*/
#define PAGE_COPY PAGE_EXECREAD
#define PAGE_READONLY __pgprot(_PAGE_COMMON | _PAGE_READ)
#define PAGE_WRITEONLY __pgprot(_PAGE_COMMON | _PAGE_WRITE)
#define PAGE_RWX __pgprot(_PAGE_COMMON | _PAGE_READ | \
_PAGE_WRITE | _PAGE_EXECUTE)
#define PAGE_KERNEL __pgprot(_KERNPG_TABLE)
#define PAGE_KERNEL_NOCACHE \
__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
_PAGE_EXECUTE | _PAGE_ACCESSED | \
_PAGE_DIRTY | _PAGE_SHARED)
/* Make it a device mapping for maximum safety (e.g. for mapping device
registers into user-space via /dev/map). */
#define pgprot_noncached(x) __pgprot(((x).pgprot & ~(_PAGE_CACHABLE)) | _PAGE_DEVICE)
#define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~_PAGE_CACHABLE)
/*
* Handling allocation failures during page table setup.
*/
extern void __handle_bad_pmd_kernel(pmd_t * pmd);
#define __handle_bad_pmd(x) __handle_bad_pmd_kernel(x)
/*
* PTE level access routines.
*
* Note1:
* It's the tree walk leaf. This is physical address to be stored.
*
* Note 2:
* Regarding the choice of _PTE_EMPTY:
We must choose a bit pattern that cannot be valid, whether or not the page
is present. bit[2]==1 => present, bit[2]==0 => swapped out. If swapped
out, bits [31:8], [6:3], [1:0] are under swapper control, so only bit[7] is
left for us to select. If we force bit[7]==0 when swapped out, we could use
the combination bit[7,2]=2'b10 to indicate an empty PTE. Alternatively, if
we force bit[7]==1 when swapped out, we can use all zeroes to indicate
empty. This is convenient, because the page tables get cleared to zero
when they are allocated.
*/
#define _PTE_EMPTY 0x0
#define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
#define pte_clear(mm,addr,xp) (set_pte_at(mm, addr, xp, __pte(_PTE_EMPTY)))
#define pte_none(x) (pte_val(x) == _PTE_EMPTY)
/*
* Some definitions to translate between mem_map, PTEs, and page
* addresses:
*/
/*
* Given a PTE, return the index of the mem_map[] entry corresponding
* to the page frame the PTE. Get the absolute physical address, make
* a relative physical address and translate it to an index.
*/
#define pte_pagenr(x) (((unsigned long) (pte_val(x)) - \
__MEMORY_START) >> PAGE_SHIFT)
/*
* Given a PTE, return the "struct page *".
*/
#define pte_page(x) (mem_map + pte_pagenr(x))
/*
* Return number of (down rounded) MB corresponding to x pages.
*/
#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
/*
* The following have defined behavior only work if pte_present() is true.
*/
static inline int pte_dirty(pte_t pte){ return pte_val(pte) & _PAGE_DIRTY; }
static inline int pte_young(pte_t pte){ return pte_val(pte) & _PAGE_ACCESSED; }
static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
static inline int pte_write(pte_t pte){ return pte_val(pte) & _PAGE_WRITE; }
static inline pte_t pte_wrprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_WRITE)); return pte; }
static inline pte_t pte_mkclean(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY)); return pte; }
static inline pte_t pte_mkold(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED)); return pte; }
static inline pte_t pte_mkwrite(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_WRITE)); return pte; }
static inline pte_t pte_mkdirty(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY)); return pte; }
static inline pte_t pte_mkyoung(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED)); return pte; }
static inline pte_t pte_mkhuge(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_SZHUGE)); return pte; }
/*
* Conversion functions: convert a page and protection to a page entry.
*
* extern pte_t mk_pte(struct page *page, pgprot_t pgprot)
*/
#define mk_pte(page,pgprot) \
({ \
pte_t __pte; \
\
set_pte(&__pte, __pte((((page)-mem_map) << PAGE_SHIFT) | \
__MEMORY_START | pgprot_val((pgprot)))); \
__pte; \
})
/*
* This takes a (absolute) physical page address that is used
* by the remapping functions
*/
#define mk_pte_phys(physpage, pgprot) \
({ pte_t __pte; set_pte(&__pte, __pte(physpage | pgprot_val(pgprot))); __pte; })
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{ set_pte(&pte, __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))); return pte; }
/* Encode and decode a swap entry */
#define __swp_type(x) (((x).val & 3) + (((x).val >> 1) & 0x3c))
#define __swp_offset(x) ((x).val >> 8)
#define __swp_entry(type, offset) ((swp_entry_t) { ((offset << 8) + ((type & 0x3c) << 1) + (type & 3)) })
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
/* Encode and decode a nonlinear file mapping entry */
#define PTE_FILE_MAX_BITS 29
#define pte_to_pgoff(pte) (pte_val(pte))
#define pgoff_to_pte(off) ((pte_t) { (off) | _PAGE_FILE })
#endif /* !__ASSEMBLY__ */
#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
#define pfn_pmd(pfn, prot) __pmd(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
#endif /* __ASM_SH_PGTABLE_64_H */