OpenCloudOS-Kernel/drivers/gpu/drm/radeon/radeon_object.c

854 lines
22 KiB
C

/*
* Copyright 2009 Jerome Glisse.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
*/
/*
* Authors:
* Jerome Glisse <glisse@freedesktop.org>
* Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
* Dave Airlie
*/
#include <linux/list.h>
#include <linux/slab.h>
#include <drm/drmP.h>
#include <drm/radeon_drm.h>
#include "radeon.h"
#include "radeon_trace.h"
int radeon_ttm_init(struct radeon_device *rdev);
void radeon_ttm_fini(struct radeon_device *rdev);
static void radeon_bo_clear_surface_reg(struct radeon_bo *bo);
/*
* To exclude mutual BO access we rely on bo_reserve exclusion, as all
* function are calling it.
*/
static void radeon_update_memory_usage(struct radeon_bo *bo,
unsigned mem_type, int sign)
{
struct radeon_device *rdev = bo->rdev;
u64 size = (u64)bo->tbo.num_pages << PAGE_SHIFT;
switch (mem_type) {
case TTM_PL_TT:
if (sign > 0)
atomic64_add(size, &rdev->gtt_usage);
else
atomic64_sub(size, &rdev->gtt_usage);
break;
case TTM_PL_VRAM:
if (sign > 0)
atomic64_add(size, &rdev->vram_usage);
else
atomic64_sub(size, &rdev->vram_usage);
break;
}
}
static void radeon_ttm_bo_destroy(struct ttm_buffer_object *tbo)
{
struct radeon_bo *bo;
bo = container_of(tbo, struct radeon_bo, tbo);
radeon_update_memory_usage(bo, bo->tbo.mem.mem_type, -1);
radeon_mn_unregister(bo);
mutex_lock(&bo->rdev->gem.mutex);
list_del_init(&bo->list);
mutex_unlock(&bo->rdev->gem.mutex);
radeon_bo_clear_surface_reg(bo);
WARN_ON(!list_empty(&bo->va));
drm_gem_object_release(&bo->gem_base);
kfree(bo);
}
bool radeon_ttm_bo_is_radeon_bo(struct ttm_buffer_object *bo)
{
if (bo->destroy == &radeon_ttm_bo_destroy)
return true;
return false;
}
void radeon_ttm_placement_from_domain(struct radeon_bo *rbo, u32 domain)
{
u32 c = 0, i;
rbo->placement.placement = rbo->placements;
rbo->placement.busy_placement = rbo->placements;
if (domain & RADEON_GEM_DOMAIN_VRAM) {
/* Try placing BOs which don't need CPU access outside of the
* CPU accessible part of VRAM
*/
if ((rbo->flags & RADEON_GEM_NO_CPU_ACCESS) &&
rbo->rdev->mc.visible_vram_size < rbo->rdev->mc.real_vram_size) {
rbo->placements[c].fpfn =
rbo->rdev->mc.visible_vram_size >> PAGE_SHIFT;
rbo->placements[c++].flags = TTM_PL_FLAG_WC |
TTM_PL_FLAG_UNCACHED |
TTM_PL_FLAG_VRAM;
}
rbo->placements[c].fpfn = 0;
rbo->placements[c++].flags = TTM_PL_FLAG_WC |
TTM_PL_FLAG_UNCACHED |
TTM_PL_FLAG_VRAM;
}
if (domain & RADEON_GEM_DOMAIN_GTT) {
if (rbo->flags & RADEON_GEM_GTT_UC) {
rbo->placements[c].fpfn = 0;
rbo->placements[c++].flags = TTM_PL_FLAG_UNCACHED |
TTM_PL_FLAG_TT;
} else if ((rbo->flags & RADEON_GEM_GTT_WC) ||
(rbo->rdev->flags & RADEON_IS_AGP)) {
rbo->placements[c].fpfn = 0;
rbo->placements[c++].flags = TTM_PL_FLAG_WC |
TTM_PL_FLAG_UNCACHED |
TTM_PL_FLAG_TT;
} else {
rbo->placements[c].fpfn = 0;
rbo->placements[c++].flags = TTM_PL_FLAG_CACHED |
TTM_PL_FLAG_TT;
}
}
if (domain & RADEON_GEM_DOMAIN_CPU) {
if (rbo->flags & RADEON_GEM_GTT_UC) {
rbo->placements[c].fpfn = 0;
rbo->placements[c++].flags = TTM_PL_FLAG_UNCACHED |
TTM_PL_FLAG_SYSTEM;
} else if ((rbo->flags & RADEON_GEM_GTT_WC) ||
rbo->rdev->flags & RADEON_IS_AGP) {
rbo->placements[c].fpfn = 0;
rbo->placements[c++].flags = TTM_PL_FLAG_WC |
TTM_PL_FLAG_UNCACHED |
TTM_PL_FLAG_SYSTEM;
} else {
rbo->placements[c].fpfn = 0;
rbo->placements[c++].flags = TTM_PL_FLAG_CACHED |
TTM_PL_FLAG_SYSTEM;
}
}
if (!c) {
rbo->placements[c].fpfn = 0;
rbo->placements[c++].flags = TTM_PL_MASK_CACHING |
TTM_PL_FLAG_SYSTEM;
}
rbo->placement.num_placement = c;
rbo->placement.num_busy_placement = c;
for (i = 0; i < c; ++i) {
if ((rbo->flags & RADEON_GEM_CPU_ACCESS) &&
(rbo->placements[i].flags & TTM_PL_FLAG_VRAM) &&
!rbo->placements[i].fpfn)
rbo->placements[i].lpfn =
rbo->rdev->mc.visible_vram_size >> PAGE_SHIFT;
else
rbo->placements[i].lpfn = 0;
}
/*
* Use two-ended allocation depending on the buffer size to
* improve fragmentation quality.
* 512kb was measured as the most optimal number.
*/
if (rbo->tbo.mem.size > 512 * 1024) {
for (i = 0; i < c; i++) {
rbo->placements[i].flags |= TTM_PL_FLAG_TOPDOWN;
}
}
}
int radeon_bo_create(struct radeon_device *rdev,
unsigned long size, int byte_align, bool kernel,
u32 domain, u32 flags, struct sg_table *sg,
struct reservation_object *resv,
struct radeon_bo **bo_ptr)
{
struct radeon_bo *bo;
enum ttm_bo_type type;
unsigned long page_align = roundup(byte_align, PAGE_SIZE) >> PAGE_SHIFT;
size_t acc_size;
int r;
size = ALIGN(size, PAGE_SIZE);
if (kernel) {
type = ttm_bo_type_kernel;
} else if (sg) {
type = ttm_bo_type_sg;
} else {
type = ttm_bo_type_device;
}
*bo_ptr = NULL;
acc_size = ttm_bo_dma_acc_size(&rdev->mman.bdev, size,
sizeof(struct radeon_bo));
bo = kzalloc(sizeof(struct radeon_bo), GFP_KERNEL);
if (bo == NULL)
return -ENOMEM;
r = drm_gem_object_init(rdev->ddev, &bo->gem_base, size);
if (unlikely(r)) {
kfree(bo);
return r;
}
bo->rdev = rdev;
bo->surface_reg = -1;
INIT_LIST_HEAD(&bo->list);
INIT_LIST_HEAD(&bo->va);
bo->initial_domain = domain & (RADEON_GEM_DOMAIN_VRAM |
RADEON_GEM_DOMAIN_GTT |
RADEON_GEM_DOMAIN_CPU);
bo->flags = flags;
/* PCI GART is always snooped */
if (!(rdev->flags & RADEON_IS_PCIE))
bo->flags &= ~(RADEON_GEM_GTT_WC | RADEON_GEM_GTT_UC);
#ifdef CONFIG_X86_32
/* XXX: Write-combined CPU mappings of GTT seem broken on 32-bit
* See https://bugs.freedesktop.org/show_bug.cgi?id=84627
*/
bo->flags &= ~RADEON_GEM_GTT_WC;
#endif
radeon_ttm_placement_from_domain(bo, domain);
/* Kernel allocation are uninterruptible */
down_read(&rdev->pm.mclk_lock);
r = ttm_bo_init(&rdev->mman.bdev, &bo->tbo, size, type,
&bo->placement, page_align, !kernel, NULL,
acc_size, sg, resv, &radeon_ttm_bo_destroy);
up_read(&rdev->pm.mclk_lock);
if (unlikely(r != 0)) {
return r;
}
*bo_ptr = bo;
trace_radeon_bo_create(bo);
return 0;
}
int radeon_bo_kmap(struct radeon_bo *bo, void **ptr)
{
bool is_iomem;
int r;
if (bo->kptr) {
if (ptr) {
*ptr = bo->kptr;
}
return 0;
}
r = ttm_bo_kmap(&bo->tbo, 0, bo->tbo.num_pages, &bo->kmap);
if (r) {
return r;
}
bo->kptr = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem);
if (ptr) {
*ptr = bo->kptr;
}
radeon_bo_check_tiling(bo, 0, 0);
return 0;
}
void radeon_bo_kunmap(struct radeon_bo *bo)
{
if (bo->kptr == NULL)
return;
bo->kptr = NULL;
radeon_bo_check_tiling(bo, 0, 0);
ttm_bo_kunmap(&bo->kmap);
}
struct radeon_bo *radeon_bo_ref(struct radeon_bo *bo)
{
if (bo == NULL)
return NULL;
ttm_bo_reference(&bo->tbo);
return bo;
}
void radeon_bo_unref(struct radeon_bo **bo)
{
struct ttm_buffer_object *tbo;
struct radeon_device *rdev;
if ((*bo) == NULL)
return;
rdev = (*bo)->rdev;
tbo = &((*bo)->tbo);
ttm_bo_unref(&tbo);
if (tbo == NULL)
*bo = NULL;
}
int radeon_bo_pin_restricted(struct radeon_bo *bo, u32 domain, u64 max_offset,
u64 *gpu_addr)
{
int r, i;
if (radeon_ttm_tt_has_userptr(bo->tbo.ttm))
return -EPERM;
if (bo->pin_count) {
bo->pin_count++;
if (gpu_addr)
*gpu_addr = radeon_bo_gpu_offset(bo);
if (max_offset != 0) {
u64 domain_start;
if (domain == RADEON_GEM_DOMAIN_VRAM)
domain_start = bo->rdev->mc.vram_start;
else
domain_start = bo->rdev->mc.gtt_start;
WARN_ON_ONCE(max_offset <
(radeon_bo_gpu_offset(bo) - domain_start));
}
return 0;
}
radeon_ttm_placement_from_domain(bo, domain);
for (i = 0; i < bo->placement.num_placement; i++) {
/* force to pin into visible video ram */
if ((bo->placements[i].flags & TTM_PL_FLAG_VRAM) &&
!(bo->flags & RADEON_GEM_NO_CPU_ACCESS) &&
(!max_offset || max_offset > bo->rdev->mc.visible_vram_size))
bo->placements[i].lpfn =
bo->rdev->mc.visible_vram_size >> PAGE_SHIFT;
else
bo->placements[i].lpfn = max_offset >> PAGE_SHIFT;
bo->placements[i].flags |= TTM_PL_FLAG_NO_EVICT;
}
r = ttm_bo_validate(&bo->tbo, &bo->placement, false, false);
if (likely(r == 0)) {
bo->pin_count = 1;
if (gpu_addr != NULL)
*gpu_addr = radeon_bo_gpu_offset(bo);
if (domain == RADEON_GEM_DOMAIN_VRAM)
bo->rdev->vram_pin_size += radeon_bo_size(bo);
else
bo->rdev->gart_pin_size += radeon_bo_size(bo);
} else {
dev_err(bo->rdev->dev, "%p pin failed\n", bo);
}
return r;
}
int radeon_bo_pin(struct radeon_bo *bo, u32 domain, u64 *gpu_addr)
{
return radeon_bo_pin_restricted(bo, domain, 0, gpu_addr);
}
int radeon_bo_unpin(struct radeon_bo *bo)
{
int r, i;
if (!bo->pin_count) {
dev_warn(bo->rdev->dev, "%p unpin not necessary\n", bo);
return 0;
}
bo->pin_count--;
if (bo->pin_count)
return 0;
for (i = 0; i < bo->placement.num_placement; i++) {
bo->placements[i].lpfn = 0;
bo->placements[i].flags &= ~TTM_PL_FLAG_NO_EVICT;
}
r = ttm_bo_validate(&bo->tbo, &bo->placement, false, false);
if (likely(r == 0)) {
if (bo->tbo.mem.mem_type == TTM_PL_VRAM)
bo->rdev->vram_pin_size -= radeon_bo_size(bo);
else
bo->rdev->gart_pin_size -= radeon_bo_size(bo);
} else {
dev_err(bo->rdev->dev, "%p validate failed for unpin\n", bo);
}
return r;
}
int radeon_bo_evict_vram(struct radeon_device *rdev)
{
/* late 2.6.33 fix IGP hibernate - we need pm ops to do this correct */
if (0 && (rdev->flags & RADEON_IS_IGP)) {
if (rdev->mc.igp_sideport_enabled == false)
/* Useless to evict on IGP chips */
return 0;
}
return ttm_bo_evict_mm(&rdev->mman.bdev, TTM_PL_VRAM);
}
void radeon_bo_force_delete(struct radeon_device *rdev)
{
struct radeon_bo *bo, *n;
if (list_empty(&rdev->gem.objects)) {
return;
}
dev_err(rdev->dev, "Userspace still has active objects !\n");
list_for_each_entry_safe(bo, n, &rdev->gem.objects, list) {
mutex_lock(&rdev->ddev->struct_mutex);
dev_err(rdev->dev, "%p %p %lu %lu force free\n",
&bo->gem_base, bo, (unsigned long)bo->gem_base.size,
*((unsigned long *)&bo->gem_base.refcount));
mutex_lock(&bo->rdev->gem.mutex);
list_del_init(&bo->list);
mutex_unlock(&bo->rdev->gem.mutex);
/* this should unref the ttm bo */
drm_gem_object_unreference(&bo->gem_base);
mutex_unlock(&rdev->ddev->struct_mutex);
}
}
int radeon_bo_init(struct radeon_device *rdev)
{
/* Add an MTRR for the VRAM */
if (!rdev->fastfb_working) {
rdev->mc.vram_mtrr = arch_phys_wc_add(rdev->mc.aper_base,
rdev->mc.aper_size);
}
DRM_INFO("Detected VRAM RAM=%lluM, BAR=%lluM\n",
rdev->mc.mc_vram_size >> 20,
(unsigned long long)rdev->mc.aper_size >> 20);
DRM_INFO("RAM width %dbits %cDR\n",
rdev->mc.vram_width, rdev->mc.vram_is_ddr ? 'D' : 'S');
return radeon_ttm_init(rdev);
}
void radeon_bo_fini(struct radeon_device *rdev)
{
radeon_ttm_fini(rdev);
arch_phys_wc_del(rdev->mc.vram_mtrr);
}
/* Returns how many bytes TTM can move per IB.
*/
static u64 radeon_bo_get_threshold_for_moves(struct radeon_device *rdev)
{
u64 real_vram_size = rdev->mc.real_vram_size;
u64 vram_usage = atomic64_read(&rdev->vram_usage);
/* This function is based on the current VRAM usage.
*
* - If all of VRAM is free, allow relocating the number of bytes that
* is equal to 1/4 of the size of VRAM for this IB.
* - If more than one half of VRAM is occupied, only allow relocating
* 1 MB of data for this IB.
*
* - From 0 to one half of used VRAM, the threshold decreases
* linearly.
* __________________
* 1/4 of -|\ |
* VRAM | \ |
* | \ |
* | \ |
* | \ |
* | \ |
* | \ |
* | \________|1 MB
* |----------------|
* VRAM 0 % 100 %
* used used
*
* Note: It's a threshold, not a limit. The threshold must be crossed
* for buffer relocations to stop, so any buffer of an arbitrary size
* can be moved as long as the threshold isn't crossed before
* the relocation takes place. We don't want to disable buffer
* relocations completely.
*
* The idea is that buffers should be placed in VRAM at creation time
* and TTM should only do a minimum number of relocations during
* command submission. In practice, you need to submit at least
* a dozen IBs to move all buffers to VRAM if they are in GTT.
*
* Also, things can get pretty crazy under memory pressure and actual
* VRAM usage can change a lot, so playing safe even at 50% does
* consistently increase performance.
*/
u64 half_vram = real_vram_size >> 1;
u64 half_free_vram = vram_usage >= half_vram ? 0 : half_vram - vram_usage;
u64 bytes_moved_threshold = half_free_vram >> 1;
return max(bytes_moved_threshold, 1024*1024ull);
}
int radeon_bo_list_validate(struct radeon_device *rdev,
struct ww_acquire_ctx *ticket,
struct list_head *head, int ring)
{
struct radeon_bo_list *lobj;
struct list_head duplicates;
int r;
u64 bytes_moved = 0, initial_bytes_moved;
u64 bytes_moved_threshold = radeon_bo_get_threshold_for_moves(rdev);
INIT_LIST_HEAD(&duplicates);
r = ttm_eu_reserve_buffers(ticket, head, true, &duplicates);
if (unlikely(r != 0)) {
return r;
}
list_for_each_entry(lobj, head, tv.head) {
struct radeon_bo *bo = lobj->robj;
if (!bo->pin_count) {
u32 domain = lobj->prefered_domains;
u32 allowed = lobj->allowed_domains;
u32 current_domain =
radeon_mem_type_to_domain(bo->tbo.mem.mem_type);
/* Check if this buffer will be moved and don't move it
* if we have moved too many buffers for this IB already.
*
* Note that this allows moving at least one buffer of
* any size, because it doesn't take the current "bo"
* into account. We don't want to disallow buffer moves
* completely.
*/
if ((allowed & current_domain) != 0 &&
(domain & current_domain) == 0 && /* will be moved */
bytes_moved > bytes_moved_threshold) {
/* don't move it */
domain = current_domain;
}
retry:
radeon_ttm_placement_from_domain(bo, domain);
if (ring == R600_RING_TYPE_UVD_INDEX)
radeon_uvd_force_into_uvd_segment(bo, allowed);
initial_bytes_moved = atomic64_read(&rdev->num_bytes_moved);
r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
bytes_moved += atomic64_read(&rdev->num_bytes_moved) -
initial_bytes_moved;
if (unlikely(r)) {
if (r != -ERESTARTSYS &&
domain != lobj->allowed_domains) {
domain = lobj->allowed_domains;
goto retry;
}
ttm_eu_backoff_reservation(ticket, head);
return r;
}
}
lobj->gpu_offset = radeon_bo_gpu_offset(bo);
lobj->tiling_flags = bo->tiling_flags;
}
list_for_each_entry(lobj, &duplicates, tv.head) {
lobj->gpu_offset = radeon_bo_gpu_offset(lobj->robj);
lobj->tiling_flags = lobj->robj->tiling_flags;
}
return 0;
}
int radeon_bo_fbdev_mmap(struct radeon_bo *bo,
struct vm_area_struct *vma)
{
return ttm_fbdev_mmap(vma, &bo->tbo);
}
int radeon_bo_get_surface_reg(struct radeon_bo *bo)
{
struct radeon_device *rdev = bo->rdev;
struct radeon_surface_reg *reg;
struct radeon_bo *old_object;
int steal;
int i;
lockdep_assert_held(&bo->tbo.resv->lock.base);
if (!bo->tiling_flags)
return 0;
if (bo->surface_reg >= 0) {
reg = &rdev->surface_regs[bo->surface_reg];
i = bo->surface_reg;
goto out;
}
steal = -1;
for (i = 0; i < RADEON_GEM_MAX_SURFACES; i++) {
reg = &rdev->surface_regs[i];
if (!reg->bo)
break;
old_object = reg->bo;
if (old_object->pin_count == 0)
steal = i;
}
/* if we are all out */
if (i == RADEON_GEM_MAX_SURFACES) {
if (steal == -1)
return -ENOMEM;
/* find someone with a surface reg and nuke their BO */
reg = &rdev->surface_regs[steal];
old_object = reg->bo;
/* blow away the mapping */
DRM_DEBUG("stealing surface reg %d from %p\n", steal, old_object);
ttm_bo_unmap_virtual(&old_object->tbo);
old_object->surface_reg = -1;
i = steal;
}
bo->surface_reg = i;
reg->bo = bo;
out:
radeon_set_surface_reg(rdev, i, bo->tiling_flags, bo->pitch,
bo->tbo.mem.start << PAGE_SHIFT,
bo->tbo.num_pages << PAGE_SHIFT);
return 0;
}
static void radeon_bo_clear_surface_reg(struct radeon_bo *bo)
{
struct radeon_device *rdev = bo->rdev;
struct radeon_surface_reg *reg;
if (bo->surface_reg == -1)
return;
reg = &rdev->surface_regs[bo->surface_reg];
radeon_clear_surface_reg(rdev, bo->surface_reg);
reg->bo = NULL;
bo->surface_reg = -1;
}
int radeon_bo_set_tiling_flags(struct radeon_bo *bo,
uint32_t tiling_flags, uint32_t pitch)
{
struct radeon_device *rdev = bo->rdev;
int r;
if (rdev->family >= CHIP_CEDAR) {
unsigned bankw, bankh, mtaspect, tilesplit, stilesplit;
bankw = (tiling_flags >> RADEON_TILING_EG_BANKW_SHIFT) & RADEON_TILING_EG_BANKW_MASK;
bankh = (tiling_flags >> RADEON_TILING_EG_BANKH_SHIFT) & RADEON_TILING_EG_BANKH_MASK;
mtaspect = (tiling_flags >> RADEON_TILING_EG_MACRO_TILE_ASPECT_SHIFT) & RADEON_TILING_EG_MACRO_TILE_ASPECT_MASK;
tilesplit = (tiling_flags >> RADEON_TILING_EG_TILE_SPLIT_SHIFT) & RADEON_TILING_EG_TILE_SPLIT_MASK;
stilesplit = (tiling_flags >> RADEON_TILING_EG_STENCIL_TILE_SPLIT_SHIFT) & RADEON_TILING_EG_STENCIL_TILE_SPLIT_MASK;
switch (bankw) {
case 0:
case 1:
case 2:
case 4:
case 8:
break;
default:
return -EINVAL;
}
switch (bankh) {
case 0:
case 1:
case 2:
case 4:
case 8:
break;
default:
return -EINVAL;
}
switch (mtaspect) {
case 0:
case 1:
case 2:
case 4:
case 8:
break;
default:
return -EINVAL;
}
if (tilesplit > 6) {
return -EINVAL;
}
if (stilesplit > 6) {
return -EINVAL;
}
}
r = radeon_bo_reserve(bo, false);
if (unlikely(r != 0))
return r;
bo->tiling_flags = tiling_flags;
bo->pitch = pitch;
radeon_bo_unreserve(bo);
return 0;
}
void radeon_bo_get_tiling_flags(struct radeon_bo *bo,
uint32_t *tiling_flags,
uint32_t *pitch)
{
lockdep_assert_held(&bo->tbo.resv->lock.base);
if (tiling_flags)
*tiling_flags = bo->tiling_flags;
if (pitch)
*pitch = bo->pitch;
}
int radeon_bo_check_tiling(struct radeon_bo *bo, bool has_moved,
bool force_drop)
{
if (!force_drop)
lockdep_assert_held(&bo->tbo.resv->lock.base);
if (!(bo->tiling_flags & RADEON_TILING_SURFACE))
return 0;
if (force_drop) {
radeon_bo_clear_surface_reg(bo);
return 0;
}
if (bo->tbo.mem.mem_type != TTM_PL_VRAM) {
if (!has_moved)
return 0;
if (bo->surface_reg >= 0)
radeon_bo_clear_surface_reg(bo);
return 0;
}
if ((bo->surface_reg >= 0) && !has_moved)
return 0;
return radeon_bo_get_surface_reg(bo);
}
void radeon_bo_move_notify(struct ttm_buffer_object *bo,
struct ttm_mem_reg *new_mem)
{
struct radeon_bo *rbo;
if (!radeon_ttm_bo_is_radeon_bo(bo))
return;
rbo = container_of(bo, struct radeon_bo, tbo);
radeon_bo_check_tiling(rbo, 0, 1);
radeon_vm_bo_invalidate(rbo->rdev, rbo);
/* update statistics */
if (!new_mem)
return;
radeon_update_memory_usage(rbo, bo->mem.mem_type, -1);
radeon_update_memory_usage(rbo, new_mem->mem_type, 1);
}
int radeon_bo_fault_reserve_notify(struct ttm_buffer_object *bo)
{
struct radeon_device *rdev;
struct radeon_bo *rbo;
unsigned long offset, size, lpfn;
int i, r;
if (!radeon_ttm_bo_is_radeon_bo(bo))
return 0;
rbo = container_of(bo, struct radeon_bo, tbo);
radeon_bo_check_tiling(rbo, 0, 0);
rdev = rbo->rdev;
if (bo->mem.mem_type != TTM_PL_VRAM)
return 0;
size = bo->mem.num_pages << PAGE_SHIFT;
offset = bo->mem.start << PAGE_SHIFT;
if ((offset + size) <= rdev->mc.visible_vram_size)
return 0;
/* hurrah the memory is not visible ! */
radeon_ttm_placement_from_domain(rbo, RADEON_GEM_DOMAIN_VRAM);
lpfn = rdev->mc.visible_vram_size >> PAGE_SHIFT;
for (i = 0; i < rbo->placement.num_placement; i++) {
/* Force into visible VRAM */
if ((rbo->placements[i].flags & TTM_PL_FLAG_VRAM) &&
(!rbo->placements[i].lpfn || rbo->placements[i].lpfn > lpfn))
rbo->placements[i].lpfn = lpfn;
}
r = ttm_bo_validate(bo, &rbo->placement, false, false);
if (unlikely(r == -ENOMEM)) {
radeon_ttm_placement_from_domain(rbo, RADEON_GEM_DOMAIN_GTT);
return ttm_bo_validate(bo, &rbo->placement, false, false);
} else if (unlikely(r != 0)) {
return r;
}
offset = bo->mem.start << PAGE_SHIFT;
/* this should never happen */
if ((offset + size) > rdev->mc.visible_vram_size)
return -EINVAL;
return 0;
}
int radeon_bo_wait(struct radeon_bo *bo, u32 *mem_type, bool no_wait)
{
int r;
r = ttm_bo_reserve(&bo->tbo, true, no_wait, false, NULL);
if (unlikely(r != 0))
return r;
if (mem_type)
*mem_type = bo->tbo.mem.mem_type;
r = ttm_bo_wait(&bo->tbo, true, true, no_wait);
ttm_bo_unreserve(&bo->tbo);
return r;
}
/**
* radeon_bo_fence - add fence to buffer object
*
* @bo: buffer object in question
* @fence: fence to add
* @shared: true if fence should be added shared
*
*/
void radeon_bo_fence(struct radeon_bo *bo, struct radeon_fence *fence,
bool shared)
{
struct reservation_object *resv = bo->tbo.resv;
if (shared)
reservation_object_add_shared_fence(resv, &fence->base);
else
reservation_object_add_excl_fence(resv, &fence->base);
}