OpenCloudOS-Kernel/drivers/media/cec/usb/pulse8/pulse8-cec.c

922 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Pulse Eight HDMI CEC driver
*
* Copyright 2016 Hans Verkuil <hverkuil@xs4all.nl
*/
/*
* Notes:
*
* - Devices with firmware version < 2 do not store their configuration in
* EEPROM.
*
* - In autonomous mode, only messages from a TV will be acknowledged, even
* polling messages. Upon receiving a message from a TV, the dongle will
* respond to messages from any logical address.
*
* - In autonomous mode, the dongle will by default reply Feature Abort
* [Unrecognized Opcode] when it receives Give Device Vendor ID. It will
* however observe vendor ID's reported by other devices and possibly
* alter this behavior. When TV's (and TV's only) report that their vendor ID
* is LG (0x00e091), the dongle will itself reply that it has the same vendor
* ID, and it will respond to at least one vendor specific command.
*
* - In autonomous mode, the dongle is known to attempt wakeup if it receives
* <User Control Pressed> ["Power On"], ["Power] or ["Power Toggle"], or if it
* receives <Set Stream Path> with its own physical address. It also does this
* if it receives <Vendor Specific Command> [0x03 0x00] from an LG TV.
*/
#include <linux/completion.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/workqueue.h>
#include <linux/serio.h>
#include <linux/slab.h>
#include <linux/time.h>
#include <linux/delay.h>
#include <media/cec.h>
MODULE_AUTHOR("Hans Verkuil <hverkuil@xs4all.nl>");
MODULE_DESCRIPTION("Pulse Eight HDMI CEC driver");
MODULE_LICENSE("GPL");
static int debug;
static int persistent_config;
module_param(debug, int, 0644);
module_param(persistent_config, int, 0644);
MODULE_PARM_DESC(debug, "debug level (0-2)");
MODULE_PARM_DESC(persistent_config, "read config from persistent memory (0-1)");
enum pulse8_msgcodes {
MSGCODE_NOTHING = 0,
MSGCODE_PING,
MSGCODE_TIMEOUT_ERROR,
MSGCODE_HIGH_ERROR,
MSGCODE_LOW_ERROR,
MSGCODE_FRAME_START,
MSGCODE_FRAME_DATA,
MSGCODE_RECEIVE_FAILED,
MSGCODE_COMMAND_ACCEPTED, /* 0x08 */
MSGCODE_COMMAND_REJECTED,
MSGCODE_SET_ACK_MASK,
MSGCODE_TRANSMIT,
MSGCODE_TRANSMIT_EOM,
MSGCODE_TRANSMIT_IDLETIME,
MSGCODE_TRANSMIT_ACK_POLARITY,
MSGCODE_TRANSMIT_LINE_TIMEOUT,
MSGCODE_TRANSMIT_SUCCEEDED, /* 0x10 */
MSGCODE_TRANSMIT_FAILED_LINE,
MSGCODE_TRANSMIT_FAILED_ACK,
MSGCODE_TRANSMIT_FAILED_TIMEOUT_DATA,
MSGCODE_TRANSMIT_FAILED_TIMEOUT_LINE,
MSGCODE_FIRMWARE_VERSION,
MSGCODE_START_BOOTLOADER,
MSGCODE_GET_BUILDDATE,
MSGCODE_SET_CONTROLLED, /* 0x18 */
MSGCODE_GET_AUTO_ENABLED,
MSGCODE_SET_AUTO_ENABLED,
MSGCODE_GET_DEFAULT_LOGICAL_ADDRESS,
MSGCODE_SET_DEFAULT_LOGICAL_ADDRESS,
MSGCODE_GET_LOGICAL_ADDRESS_MASK,
MSGCODE_SET_LOGICAL_ADDRESS_MASK,
MSGCODE_GET_PHYSICAL_ADDRESS,
MSGCODE_SET_PHYSICAL_ADDRESS, /* 0x20 */
MSGCODE_GET_DEVICE_TYPE,
MSGCODE_SET_DEVICE_TYPE,
MSGCODE_GET_HDMI_VERSION, /* Removed in FW >= 10 */
MSGCODE_SET_HDMI_VERSION,
MSGCODE_GET_OSD_NAME,
MSGCODE_SET_OSD_NAME,
MSGCODE_WRITE_EEPROM,
MSGCODE_GET_ADAPTER_TYPE, /* 0x28 */
MSGCODE_SET_ACTIVE_SOURCE,
MSGCODE_GET_AUTO_POWER_ON, /* New for FW >= 10 */
MSGCODE_SET_AUTO_POWER_ON,
MSGCODE_FRAME_EOM = 0x80,
MSGCODE_FRAME_ACK = 0x40,
};
static const char * const pulse8_msgnames[] = {
"NOTHING",
"PING",
"TIMEOUT_ERROR",
"HIGH_ERROR",
"LOW_ERROR",
"FRAME_START",
"FRAME_DATA",
"RECEIVE_FAILED",
"COMMAND_ACCEPTED",
"COMMAND_REJECTED",
"SET_ACK_MASK",
"TRANSMIT",
"TRANSMIT_EOM",
"TRANSMIT_IDLETIME",
"TRANSMIT_ACK_POLARITY",
"TRANSMIT_LINE_TIMEOUT",
"TRANSMIT_SUCCEEDED",
"TRANSMIT_FAILED_LINE",
"TRANSMIT_FAILED_ACK",
"TRANSMIT_FAILED_TIMEOUT_DATA",
"TRANSMIT_FAILED_TIMEOUT_LINE",
"FIRMWARE_VERSION",
"START_BOOTLOADER",
"GET_BUILDDATE",
"SET_CONTROLLED",
"GET_AUTO_ENABLED",
"SET_AUTO_ENABLED",
"GET_DEFAULT_LOGICAL_ADDRESS",
"SET_DEFAULT_LOGICAL_ADDRESS",
"GET_LOGICAL_ADDRESS_MASK",
"SET_LOGICAL_ADDRESS_MASK",
"GET_PHYSICAL_ADDRESS",
"SET_PHYSICAL_ADDRESS",
"GET_DEVICE_TYPE",
"SET_DEVICE_TYPE",
"GET_HDMI_VERSION",
"SET_HDMI_VERSION",
"GET_OSD_NAME",
"SET_OSD_NAME",
"WRITE_EEPROM",
"GET_ADAPTER_TYPE",
"SET_ACTIVE_SOURCE",
"GET_AUTO_POWER_ON",
"SET_AUTO_POWER_ON",
};
static const char *pulse8_msgname(u8 cmd)
{
static char unknown_msg[5];
if ((cmd & 0x3f) < ARRAY_SIZE(pulse8_msgnames))
return pulse8_msgnames[cmd & 0x3f];
snprintf(unknown_msg, sizeof(unknown_msg), "0x%02x", cmd);
return unknown_msg;
}
#define MSGSTART 0xff
#define MSGEND 0xfe
#define MSGESC 0xfd
#define MSGOFFSET 3
#define DATA_SIZE 256
#define PING_PERIOD (15 * HZ)
#define NUM_MSGS 8
struct pulse8 {
struct device *dev;
struct serio *serio;
struct cec_adapter *adap;
unsigned int vers;
struct delayed_work ping_eeprom_work;
struct work_struct irq_work;
struct cec_msg rx_msg[NUM_MSGS];
unsigned int rx_msg_cur_idx, rx_msg_num;
/* protect rx_msg_cur_idx and rx_msg_num */
spinlock_t msg_lock;
u8 new_rx_msg[CEC_MAX_MSG_SIZE];
u8 new_rx_msg_len;
struct work_struct tx_work;
u32 tx_done_status;
u32 tx_signal_free_time;
struct cec_msg tx_msg;
bool tx_msg_is_bcast;
struct completion cmd_done;
u8 data[DATA_SIZE];
unsigned int len;
u8 buf[DATA_SIZE];
unsigned int idx;
bool escape;
bool started;
/* locks access to the adapter */
struct mutex lock;
bool config_pending;
bool restoring_config;
bool autonomous;
};
static int pulse8_send(struct serio *serio, const u8 *command, u8 cmd_len)
{
int err = 0;
err = serio_write(serio, MSGSTART);
if (err)
return err;
for (; !err && cmd_len; command++, cmd_len--) {
if (*command >= MSGESC) {
err = serio_write(serio, MSGESC);
if (!err)
err = serio_write(serio, *command - MSGOFFSET);
} else {
err = serio_write(serio, *command);
}
}
if (!err)
err = serio_write(serio, MSGEND);
return err;
}
static int pulse8_send_and_wait_once(struct pulse8 *pulse8,
const u8 *cmd, u8 cmd_len,
u8 response, u8 size)
{
int err;
if (debug > 1)
dev_info(pulse8->dev, "transmit %s: %*ph\n",
pulse8_msgname(cmd[0]), cmd_len, cmd);
init_completion(&pulse8->cmd_done);
err = pulse8_send(pulse8->serio, cmd, cmd_len);
if (err)
return err;
if (!wait_for_completion_timeout(&pulse8->cmd_done, HZ))
return -ETIMEDOUT;
if ((pulse8->data[0] & 0x3f) == MSGCODE_COMMAND_REJECTED &&
cmd[0] != MSGCODE_SET_CONTROLLED &&
cmd[0] != MSGCODE_SET_AUTO_ENABLED &&
cmd[0] != MSGCODE_GET_BUILDDATE)
return -ENOTTY;
if (response &&
((pulse8->data[0] & 0x3f) != response || pulse8->len < size + 1)) {
dev_info(pulse8->dev, "transmit %s failed with %s\n",
pulse8_msgname(cmd[0]),
pulse8_msgname(pulse8->data[0]));
return -EIO;
}
return 0;
}
static int pulse8_send_and_wait(struct pulse8 *pulse8,
const u8 *cmd, u8 cmd_len, u8 response, u8 size)
{
u8 cmd_sc[2];
int err;
err = pulse8_send_and_wait_once(pulse8, cmd, cmd_len, response, size);
if (err != -ENOTTY)
return err;
cmd_sc[0] = MSGCODE_SET_CONTROLLED;
cmd_sc[1] = 1;
err = pulse8_send_and_wait_once(pulse8, cmd_sc, 2,
MSGCODE_COMMAND_ACCEPTED, 1);
if (!err)
err = pulse8_send_and_wait_once(pulse8, cmd, cmd_len,
response, size);
return err == -ENOTTY ? -EIO : err;
}
static void pulse8_tx_work_handler(struct work_struct *work)
{
struct pulse8 *pulse8 = container_of(work, struct pulse8, tx_work);
struct cec_msg *msg = &pulse8->tx_msg;
unsigned int i;
u8 cmd[2];
int err;
if (msg->len == 0)
return;
mutex_lock(&pulse8->lock);
cmd[0] = MSGCODE_TRANSMIT_IDLETIME;
cmd[1] = pulse8->tx_signal_free_time;
err = pulse8_send_and_wait(pulse8, cmd, 2,
MSGCODE_COMMAND_ACCEPTED, 1);
cmd[0] = MSGCODE_TRANSMIT_ACK_POLARITY;
cmd[1] = cec_msg_is_broadcast(msg);
pulse8->tx_msg_is_bcast = cec_msg_is_broadcast(msg);
if (!err)
err = pulse8_send_and_wait(pulse8, cmd, 2,
MSGCODE_COMMAND_ACCEPTED, 1);
cmd[0] = msg->len == 1 ? MSGCODE_TRANSMIT_EOM : MSGCODE_TRANSMIT;
cmd[1] = msg->msg[0];
if (!err)
err = pulse8_send_and_wait(pulse8, cmd, 2,
MSGCODE_COMMAND_ACCEPTED, 1);
if (!err && msg->len > 1) {
for (i = 1; !err && i < msg->len; i++) {
cmd[0] = ((i == msg->len - 1)) ?
MSGCODE_TRANSMIT_EOM : MSGCODE_TRANSMIT;
cmd[1] = msg->msg[i];
err = pulse8_send_and_wait(pulse8, cmd, 2,
MSGCODE_COMMAND_ACCEPTED, 1);
}
}
if (err && debug)
dev_info(pulse8->dev, "%s(0x%02x) failed with error %d for msg %*ph\n",
pulse8_msgname(cmd[0]), cmd[1],
err, msg->len, msg->msg);
msg->len = 0;
mutex_unlock(&pulse8->lock);
if (err)
cec_transmit_attempt_done(pulse8->adap, CEC_TX_STATUS_ERROR);
}
static void pulse8_irq_work_handler(struct work_struct *work)
{
struct pulse8 *pulse8 =
container_of(work, struct pulse8, irq_work);
unsigned long flags;
u32 status;
spin_lock_irqsave(&pulse8->msg_lock, flags);
while (pulse8->rx_msg_num) {
spin_unlock_irqrestore(&pulse8->msg_lock, flags);
if (debug)
dev_info(pulse8->dev, "adap received %*ph\n",
pulse8->rx_msg[pulse8->rx_msg_cur_idx].len,
pulse8->rx_msg[pulse8->rx_msg_cur_idx].msg);
cec_received_msg(pulse8->adap,
&pulse8->rx_msg[pulse8->rx_msg_cur_idx]);
spin_lock_irqsave(&pulse8->msg_lock, flags);
if (pulse8->rx_msg_num)
pulse8->rx_msg_num--;
pulse8->rx_msg_cur_idx =
(pulse8->rx_msg_cur_idx + 1) % NUM_MSGS;
}
spin_unlock_irqrestore(&pulse8->msg_lock, flags);
mutex_lock(&pulse8->lock);
status = pulse8->tx_done_status;
pulse8->tx_done_status = 0;
mutex_unlock(&pulse8->lock);
if (status)
cec_transmit_attempt_done(pulse8->adap, status);
}
static irqreturn_t pulse8_interrupt(struct serio *serio, unsigned char data,
unsigned int flags)
{
struct pulse8 *pulse8 = serio_get_drvdata(serio);
unsigned long irq_flags;
unsigned int idx;
if (!pulse8->started && data != MSGSTART)
return IRQ_HANDLED;
if (data == MSGESC) {
pulse8->escape = true;
return IRQ_HANDLED;
}
if (pulse8->escape) {
data += MSGOFFSET;
pulse8->escape = false;
} else if (data == MSGEND) {
u8 msgcode = pulse8->buf[0];
if (debug > 1)
dev_info(pulse8->dev, "received %s: %*ph\n",
pulse8_msgname(msgcode),
pulse8->idx, pulse8->buf);
switch (msgcode & 0x3f) {
case MSGCODE_FRAME_START:
/*
* Test if we are receiving a new msg when a previous
* message is still pending.
*/
if (!(msgcode & MSGCODE_FRAME_EOM)) {
pulse8->new_rx_msg_len = 1;
pulse8->new_rx_msg[0] = pulse8->buf[1];
break;
}
fallthrough;
case MSGCODE_FRAME_DATA:
if (pulse8->new_rx_msg_len < CEC_MAX_MSG_SIZE)
pulse8->new_rx_msg[pulse8->new_rx_msg_len++] =
pulse8->buf[1];
if (!(msgcode & MSGCODE_FRAME_EOM))
break;
spin_lock_irqsave(&pulse8->msg_lock, irq_flags);
idx = (pulse8->rx_msg_cur_idx + pulse8->rx_msg_num) %
NUM_MSGS;
if (pulse8->rx_msg_num == NUM_MSGS) {
dev_warn(pulse8->dev,
"message queue is full, dropping %*ph\n",
pulse8->new_rx_msg_len,
pulse8->new_rx_msg);
spin_unlock_irqrestore(&pulse8->msg_lock,
irq_flags);
pulse8->new_rx_msg_len = 0;
break;
}
pulse8->rx_msg_num++;
memcpy(pulse8->rx_msg[idx].msg, pulse8->new_rx_msg,
pulse8->new_rx_msg_len);
pulse8->rx_msg[idx].len = pulse8->new_rx_msg_len;
spin_unlock_irqrestore(&pulse8->msg_lock, irq_flags);
schedule_work(&pulse8->irq_work);
pulse8->new_rx_msg_len = 0;
break;
case MSGCODE_TRANSMIT_SUCCEEDED:
WARN_ON(pulse8->tx_done_status);
pulse8->tx_done_status = CEC_TX_STATUS_OK;
schedule_work(&pulse8->irq_work);
break;
case MSGCODE_TRANSMIT_FAILED_ACK:
/*
* A NACK for a broadcast message makes no sense, these
* seem to be spurious messages and are skipped.
*/
if (pulse8->tx_msg_is_bcast)
break;
WARN_ON(pulse8->tx_done_status);
pulse8->tx_done_status = CEC_TX_STATUS_NACK;
schedule_work(&pulse8->irq_work);
break;
case MSGCODE_TRANSMIT_FAILED_LINE:
case MSGCODE_TRANSMIT_FAILED_TIMEOUT_DATA:
case MSGCODE_TRANSMIT_FAILED_TIMEOUT_LINE:
WARN_ON(pulse8->tx_done_status);
pulse8->tx_done_status = CEC_TX_STATUS_ERROR;
schedule_work(&pulse8->irq_work);
break;
case MSGCODE_HIGH_ERROR:
case MSGCODE_LOW_ERROR:
case MSGCODE_RECEIVE_FAILED:
case MSGCODE_TIMEOUT_ERROR:
pulse8->new_rx_msg_len = 0;
break;
case MSGCODE_COMMAND_ACCEPTED:
case MSGCODE_COMMAND_REJECTED:
default:
if (pulse8->idx == 0)
break;
memcpy(pulse8->data, pulse8->buf, pulse8->idx);
pulse8->len = pulse8->idx;
complete(&pulse8->cmd_done);
break;
}
pulse8->idx = 0;
pulse8->started = false;
return IRQ_HANDLED;
} else if (data == MSGSTART) {
pulse8->idx = 0;
pulse8->started = true;
return IRQ_HANDLED;
}
if (pulse8->idx >= DATA_SIZE) {
dev_dbg(pulse8->dev,
"throwing away %d bytes of garbage\n", pulse8->idx);
pulse8->idx = 0;
}
pulse8->buf[pulse8->idx++] = data;
return IRQ_HANDLED;
}
static int pulse8_cec_adap_enable(struct cec_adapter *adap, bool enable)
{
struct pulse8 *pulse8 = cec_get_drvdata(adap);
u8 cmd[16];
int err;
mutex_lock(&pulse8->lock);
cmd[0] = MSGCODE_SET_CONTROLLED;
cmd[1] = enable;
err = pulse8_send_and_wait(pulse8, cmd, 2,
MSGCODE_COMMAND_ACCEPTED, 1);
if (!enable) {
pulse8->rx_msg_num = 0;
pulse8->tx_done_status = 0;
}
mutex_unlock(&pulse8->lock);
return enable ? err : 0;
}
static int pulse8_cec_adap_log_addr(struct cec_adapter *adap, u8 log_addr)
{
struct pulse8 *pulse8 = cec_get_drvdata(adap);
u16 mask = 0;
u16 pa = adap->phys_addr;
u8 cmd[16];
int err = 0;
mutex_lock(&pulse8->lock);
if (log_addr != CEC_LOG_ADDR_INVALID)
mask = 1 << log_addr;
cmd[0] = MSGCODE_SET_ACK_MASK;
cmd[1] = mask >> 8;
cmd[2] = mask & 0xff;
err = pulse8_send_and_wait(pulse8, cmd, 3,
MSGCODE_COMMAND_ACCEPTED, 0);
if ((err && mask != 0) || pulse8->restoring_config)
goto unlock;
cmd[0] = MSGCODE_SET_AUTO_ENABLED;
cmd[1] = log_addr == CEC_LOG_ADDR_INVALID ? 0 : 1;
err = pulse8_send_and_wait(pulse8, cmd, 2,
MSGCODE_COMMAND_ACCEPTED, 0);
if (err)
goto unlock;
pulse8->autonomous = cmd[1];
if (log_addr == CEC_LOG_ADDR_INVALID)
goto unlock;
cmd[0] = MSGCODE_SET_DEVICE_TYPE;
cmd[1] = adap->log_addrs.primary_device_type[0];
err = pulse8_send_and_wait(pulse8, cmd, 2,
MSGCODE_COMMAND_ACCEPTED, 0);
if (err)
goto unlock;
switch (adap->log_addrs.primary_device_type[0]) {
case CEC_OP_PRIM_DEVTYPE_TV:
mask = CEC_LOG_ADDR_MASK_TV;
break;
case CEC_OP_PRIM_DEVTYPE_RECORD:
mask = CEC_LOG_ADDR_MASK_RECORD;
break;
case CEC_OP_PRIM_DEVTYPE_TUNER:
mask = CEC_LOG_ADDR_MASK_TUNER;
break;
case CEC_OP_PRIM_DEVTYPE_PLAYBACK:
mask = CEC_LOG_ADDR_MASK_PLAYBACK;
break;
case CEC_OP_PRIM_DEVTYPE_AUDIOSYSTEM:
mask = CEC_LOG_ADDR_MASK_AUDIOSYSTEM;
break;
case CEC_OP_PRIM_DEVTYPE_SWITCH:
mask = CEC_LOG_ADDR_MASK_UNREGISTERED;
break;
case CEC_OP_PRIM_DEVTYPE_PROCESSOR:
mask = CEC_LOG_ADDR_MASK_SPECIFIC;
break;
default:
mask = 0;
break;
}
cmd[0] = MSGCODE_SET_LOGICAL_ADDRESS_MASK;
cmd[1] = mask >> 8;
cmd[2] = mask & 0xff;
err = pulse8_send_and_wait(pulse8, cmd, 3,
MSGCODE_COMMAND_ACCEPTED, 0);
if (err)
goto unlock;
cmd[0] = MSGCODE_SET_DEFAULT_LOGICAL_ADDRESS;
cmd[1] = log_addr;
err = pulse8_send_and_wait(pulse8, cmd, 2,
MSGCODE_COMMAND_ACCEPTED, 0);
if (err)
goto unlock;
cmd[0] = MSGCODE_SET_PHYSICAL_ADDRESS;
cmd[1] = pa >> 8;
cmd[2] = pa & 0xff;
err = pulse8_send_and_wait(pulse8, cmd, 3,
MSGCODE_COMMAND_ACCEPTED, 0);
if (err)
goto unlock;
if (pulse8->vers < 10) {
cmd[0] = MSGCODE_SET_HDMI_VERSION;
cmd[1] = adap->log_addrs.cec_version;
err = pulse8_send_and_wait(pulse8, cmd, 2,
MSGCODE_COMMAND_ACCEPTED, 0);
if (err)
goto unlock;
}
if (adap->log_addrs.osd_name[0]) {
size_t osd_len = strlen(adap->log_addrs.osd_name);
char *osd_str = cmd + 1;
cmd[0] = MSGCODE_SET_OSD_NAME;
strscpy(cmd + 1, adap->log_addrs.osd_name, sizeof(cmd) - 1);
if (osd_len < 4) {
memset(osd_str + osd_len, ' ', 4 - osd_len);
osd_len = 4;
osd_str[osd_len] = '\0';
strscpy(adap->log_addrs.osd_name, osd_str,
sizeof(adap->log_addrs.osd_name));
}
err = pulse8_send_and_wait(pulse8, cmd, 1 + osd_len,
MSGCODE_COMMAND_ACCEPTED, 0);
if (err)
goto unlock;
}
unlock:
if (pulse8->restoring_config)
pulse8->restoring_config = false;
else
pulse8->config_pending = true;
mutex_unlock(&pulse8->lock);
return log_addr == CEC_LOG_ADDR_INVALID ? 0 : err;
}
static int pulse8_cec_adap_transmit(struct cec_adapter *adap, u8 attempts,
u32 signal_free_time, struct cec_msg *msg)
{
struct pulse8 *pulse8 = cec_get_drvdata(adap);
pulse8->tx_msg = *msg;
if (debug)
dev_info(pulse8->dev, "adap transmit %*ph\n",
msg->len, msg->msg);
pulse8->tx_signal_free_time = signal_free_time;
schedule_work(&pulse8->tx_work);
return 0;
}
static void pulse8_cec_adap_free(struct cec_adapter *adap)
{
struct pulse8 *pulse8 = cec_get_drvdata(adap);
cancel_delayed_work_sync(&pulse8->ping_eeprom_work);
cancel_work_sync(&pulse8->irq_work);
cancel_work_sync(&pulse8->tx_work);
kfree(pulse8);
}
static const struct cec_adap_ops pulse8_cec_adap_ops = {
.adap_enable = pulse8_cec_adap_enable,
.adap_log_addr = pulse8_cec_adap_log_addr,
.adap_transmit = pulse8_cec_adap_transmit,
.adap_free = pulse8_cec_adap_free,
};
static void pulse8_disconnect(struct serio *serio)
{
struct pulse8 *pulse8 = serio_get_drvdata(serio);
cec_unregister_adapter(pulse8->adap);
serio_set_drvdata(serio, NULL);
serio_close(serio);
}
static int pulse8_setup(struct pulse8 *pulse8, struct serio *serio,
struct cec_log_addrs *log_addrs, u16 *pa)
{
u8 *data = pulse8->data + 1;
u8 cmd[2];
int err;
time64_t date;
pulse8->vers = 0;
cmd[0] = MSGCODE_FIRMWARE_VERSION;
err = pulse8_send_and_wait(pulse8, cmd, 1, cmd[0], 2);
if (err)
return err;
pulse8->vers = (data[0] << 8) | data[1];
dev_info(pulse8->dev, "Firmware version %04x\n", pulse8->vers);
if (pulse8->vers < 2) {
*pa = CEC_PHYS_ADDR_INVALID;
return 0;
}
cmd[0] = MSGCODE_GET_BUILDDATE;
err = pulse8_send_and_wait(pulse8, cmd, 1, cmd[0], 4);
if (err)
return err;
date = (data[0] << 24) | (data[1] << 16) | (data[2] << 8) | data[3];
dev_info(pulse8->dev, "Firmware build date %ptT\n", &date);
dev_dbg(pulse8->dev, "Persistent config:\n");
cmd[0] = MSGCODE_GET_AUTO_ENABLED;
err = pulse8_send_and_wait(pulse8, cmd, 1, cmd[0], 1);
if (err)
return err;
pulse8->autonomous = data[0];
dev_dbg(pulse8->dev, "Autonomous mode: %s",
data[0] ? "on" : "off");
if (pulse8->vers >= 10) {
cmd[0] = MSGCODE_GET_AUTO_POWER_ON;
err = pulse8_send_and_wait(pulse8, cmd, 1, cmd[0], 1);
if (!err)
dev_dbg(pulse8->dev, "Auto Power On: %s",
data[0] ? "on" : "off");
}
cmd[0] = MSGCODE_GET_DEVICE_TYPE;
err = pulse8_send_and_wait(pulse8, cmd, 1, cmd[0], 1);
if (err)
return err;
log_addrs->primary_device_type[0] = data[0];
dev_dbg(pulse8->dev, "Primary device type: %d\n", data[0]);
switch (log_addrs->primary_device_type[0]) {
case CEC_OP_PRIM_DEVTYPE_TV:
log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_TV;
log_addrs->all_device_types[0] = CEC_OP_ALL_DEVTYPE_TV;
break;
case CEC_OP_PRIM_DEVTYPE_RECORD:
log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_RECORD;
log_addrs->all_device_types[0] = CEC_OP_ALL_DEVTYPE_RECORD;
break;
case CEC_OP_PRIM_DEVTYPE_TUNER:
log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_TUNER;
log_addrs->all_device_types[0] = CEC_OP_ALL_DEVTYPE_TUNER;
break;
case CEC_OP_PRIM_DEVTYPE_PLAYBACK:
log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_PLAYBACK;
log_addrs->all_device_types[0] = CEC_OP_ALL_DEVTYPE_PLAYBACK;
break;
case CEC_OP_PRIM_DEVTYPE_AUDIOSYSTEM:
log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_PLAYBACK;
log_addrs->all_device_types[0] = CEC_OP_ALL_DEVTYPE_AUDIOSYSTEM;
break;
case CEC_OP_PRIM_DEVTYPE_SWITCH:
log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED;
log_addrs->all_device_types[0] = CEC_OP_ALL_DEVTYPE_SWITCH;
break;
case CEC_OP_PRIM_DEVTYPE_PROCESSOR:
log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_SPECIFIC;
log_addrs->all_device_types[0] = CEC_OP_ALL_DEVTYPE_SWITCH;
break;
default:
log_addrs->log_addr_type[0] = CEC_LOG_ADDR_TYPE_UNREGISTERED;
log_addrs->all_device_types[0] = CEC_OP_ALL_DEVTYPE_SWITCH;
dev_info(pulse8->dev, "Unknown Primary Device Type: %d\n",
log_addrs->primary_device_type[0]);
break;
}
cmd[0] = MSGCODE_GET_LOGICAL_ADDRESS_MASK;
err = pulse8_send_and_wait(pulse8, cmd, 1, cmd[0], 2);
if (err)
return err;
log_addrs->log_addr_mask = (data[0] << 8) | data[1];
dev_dbg(pulse8->dev, "Logical address ACK mask: %x\n",
log_addrs->log_addr_mask);
if (log_addrs->log_addr_mask)
log_addrs->num_log_addrs = 1;
cmd[0] = MSGCODE_GET_PHYSICAL_ADDRESS;
err = pulse8_send_and_wait(pulse8, cmd, 1, cmd[0], 1);
if (err)
return err;
*pa = (data[0] << 8) | data[1];
dev_dbg(pulse8->dev, "Physical address: %x.%x.%x.%x\n",
cec_phys_addr_exp(*pa));
log_addrs->cec_version = CEC_OP_CEC_VERSION_1_4;
if (pulse8->vers < 10) {
cmd[0] = MSGCODE_GET_HDMI_VERSION;
err = pulse8_send_and_wait(pulse8, cmd, 1, cmd[0], 1);
if (err)
return err;
log_addrs->cec_version = data[0];
dev_dbg(pulse8->dev, "CEC version: %d\n", log_addrs->cec_version);
}
cmd[0] = MSGCODE_GET_OSD_NAME;
err = pulse8_send_and_wait(pulse8, cmd, 1, cmd[0], 0);
if (err)
return err;
strscpy(log_addrs->osd_name, data, sizeof(log_addrs->osd_name));
dev_dbg(pulse8->dev, "OSD name: %s\n", log_addrs->osd_name);
return 0;
}
static int pulse8_apply_persistent_config(struct pulse8 *pulse8,
struct cec_log_addrs *log_addrs,
u16 pa)
{
int err;
err = cec_s_log_addrs(pulse8->adap, log_addrs, false);
if (err)
return err;
cec_s_phys_addr(pulse8->adap, pa, false);
return 0;
}
static void pulse8_ping_eeprom_work_handler(struct work_struct *work)
{
struct pulse8 *pulse8 =
container_of(work, struct pulse8, ping_eeprom_work.work);
u8 cmd;
mutex_lock(&pulse8->lock);
cmd = MSGCODE_PING;
pulse8_send_and_wait(pulse8, &cmd, 1,
MSGCODE_COMMAND_ACCEPTED, 0);
if (pulse8->vers < 2)
goto unlock;
if (pulse8->config_pending && persistent_config) {
dev_dbg(pulse8->dev, "writing pending config to EEPROM\n");
cmd = MSGCODE_WRITE_EEPROM;
if (pulse8_send_and_wait(pulse8, &cmd, 1,
MSGCODE_COMMAND_ACCEPTED, 0))
dev_info(pulse8->dev, "failed to write pending config to EEPROM\n");
else
pulse8->config_pending = false;
}
unlock:
schedule_delayed_work(&pulse8->ping_eeprom_work, PING_PERIOD);
mutex_unlock(&pulse8->lock);
}
static int pulse8_connect(struct serio *serio, struct serio_driver *drv)
{
u32 caps = CEC_CAP_DEFAULTS | CEC_CAP_PHYS_ADDR | CEC_CAP_MONITOR_ALL;
struct pulse8 *pulse8;
int err = -ENOMEM;
struct cec_log_addrs log_addrs = {};
u16 pa = CEC_PHYS_ADDR_INVALID;
pulse8 = kzalloc(sizeof(*pulse8), GFP_KERNEL);
if (!pulse8)
return -ENOMEM;
pulse8->serio = serio;
pulse8->adap = cec_allocate_adapter(&pulse8_cec_adap_ops, pulse8,
dev_name(&serio->dev), caps, 1);
err = PTR_ERR_OR_ZERO(pulse8->adap);
if (err < 0) {
kfree(pulse8);
return err;
}
pulse8->dev = &serio->dev;
serio_set_drvdata(serio, pulse8);
INIT_WORK(&pulse8->irq_work, pulse8_irq_work_handler);
INIT_WORK(&pulse8->tx_work, pulse8_tx_work_handler);
INIT_DELAYED_WORK(&pulse8->ping_eeprom_work,
pulse8_ping_eeprom_work_handler);
mutex_init(&pulse8->lock);
spin_lock_init(&pulse8->msg_lock);
pulse8->config_pending = false;
err = serio_open(serio, drv);
if (err)
goto delete_adap;
err = pulse8_setup(pulse8, serio, &log_addrs, &pa);
if (err)
goto close_serio;
err = cec_register_adapter(pulse8->adap, &serio->dev);
if (err < 0)
goto close_serio;
pulse8->dev = &pulse8->adap->devnode.dev;
if (persistent_config && pulse8->autonomous) {
err = pulse8_apply_persistent_config(pulse8, &log_addrs, pa);
if (err)
goto close_serio;
pulse8->restoring_config = true;
}
schedule_delayed_work(&pulse8->ping_eeprom_work, PING_PERIOD);
return 0;
close_serio:
pulse8->serio = NULL;
serio_set_drvdata(serio, NULL);
serio_close(serio);
delete_adap:
cec_delete_adapter(pulse8->adap);
return err;
}
static const struct serio_device_id pulse8_serio_ids[] = {
{
.type = SERIO_RS232,
.proto = SERIO_PULSE8_CEC,
.id = SERIO_ANY,
.extra = SERIO_ANY,
},
{ 0 }
};
MODULE_DEVICE_TABLE(serio, pulse8_serio_ids);
static struct serio_driver pulse8_drv = {
.driver = {
.name = "pulse8-cec",
},
.description = "Pulse Eight HDMI CEC driver",
.id_table = pulse8_serio_ids,
.interrupt = pulse8_interrupt,
.connect = pulse8_connect,
.disconnect = pulse8_disconnect,
};
module_serio_driver(pulse8_drv);