OpenCloudOS-Kernel/arch/blackfin/kernel/cplb-nompu/cplbinit.c

438 lines
9.9 KiB
C

/*
* Blackfin CPLB initialization
*
* Copyright 2004-2007 Analog Devices Inc.
*
* Bugs: Enter bugs at http://blackfin.uclinux.org/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see the file COPYING, or write
* to the Free Software Foundation, Inc.,
* 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <linux/module.h>
#include <asm/blackfin.h>
#include <asm/cplb.h>
#include <asm/cplbinit.h>
u_long icplb_table[MAX_CPLBS + 1];
u_long dcplb_table[MAX_CPLBS + 1];
#ifdef CONFIG_CPLB_SWITCH_TAB_L1
# define PDT_ATTR __attribute__((l1_data))
#else
# define PDT_ATTR
#endif
u_long ipdt_table[MAX_SWITCH_I_CPLBS + 1] PDT_ATTR;
u_long dpdt_table[MAX_SWITCH_D_CPLBS + 1] PDT_ATTR;
#ifdef CONFIG_CPLB_INFO
u_long ipdt_swapcount_table[MAX_SWITCH_I_CPLBS] PDT_ATTR;
u_long dpdt_swapcount_table[MAX_SWITCH_D_CPLBS] PDT_ATTR;
#endif
struct s_cplb {
struct cplb_tab init_i;
struct cplb_tab init_d;
struct cplb_tab switch_i;
struct cplb_tab switch_d;
};
#if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
static struct cplb_desc cplb_data[] = {
{
.start = 0,
.end = SIZE_1K,
.psize = SIZE_1K,
.attr = INITIAL_T | SWITCH_T | I_CPLB | D_CPLB,
.i_conf = SDRAM_OOPS,
.d_conf = SDRAM_OOPS,
#if defined(CONFIG_DEBUG_HUNT_FOR_ZERO)
.valid = 1,
#else
.valid = 0,
#endif
.name = "Zero Pointer Guard Page",
},
{
.start = L1_CODE_START,
.end = L1_CODE_START + L1_CODE_LENGTH,
.psize = SIZE_4M,
.attr = INITIAL_T | SWITCH_T | I_CPLB,
.i_conf = L1_IMEMORY,
.d_conf = 0,
.valid = 1,
.name = "L1 I-Memory",
},
{
.start = L1_DATA_A_START,
.end = L1_DATA_B_START + L1_DATA_B_LENGTH,
.psize = SIZE_4M,
.attr = INITIAL_T | SWITCH_T | D_CPLB,
.i_conf = 0,
.d_conf = L1_DMEMORY,
#if ((L1_DATA_A_LENGTH > 0) || (L1_DATA_B_LENGTH > 0))
.valid = 1,
#else
.valid = 0,
#endif
.name = "L1 D-Memory",
},
{
.start = 0,
.end = 0, /* dynamic */
.psize = 0,
.attr = INITIAL_T | SWITCH_T | I_CPLB | D_CPLB,
.i_conf = SDRAM_IGENERIC,
.d_conf = SDRAM_DGENERIC,
.valid = 1,
.name = "Kernel Memory",
},
{
.start = 0, /* dynamic */
.end = 0, /* dynamic */
.psize = 0,
.attr = INITIAL_T | SWITCH_T | D_CPLB,
.i_conf = SDRAM_IGENERIC,
.d_conf = SDRAM_DNON_CHBL,
.valid = 1,
.name = "uClinux MTD Memory",
},
{
.start = 0, /* dynamic */
.end = 0, /* dynamic */
.psize = SIZE_1M,
.attr = INITIAL_T | SWITCH_T | D_CPLB,
.d_conf = SDRAM_DNON_CHBL,
.valid = 1,
.name = "Uncached DMA Zone",
},
{
.start = 0, /* dynamic */
.end = 0, /* dynamic */
.psize = 0,
.attr = SWITCH_T | D_CPLB,
.i_conf = 0, /* dynamic */
.d_conf = 0, /* dynamic */
.valid = 1,
.name = "Reserved Memory",
},
{
.start = ASYNC_BANK0_BASE,
.end = ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE,
.psize = 0,
.attr = SWITCH_T | D_CPLB,
.d_conf = SDRAM_EBIU,
.valid = 1,
.name = "Asynchronous Memory Banks",
},
{
#ifdef L2_START
.start = L2_START,
.end = L2_START + L2_LENGTH,
.psize = SIZE_1M,
.attr = SWITCH_T | I_CPLB | D_CPLB,
.i_conf = L2_MEMORY,
.d_conf = L2_MEMORY,
.valid = 1,
#else
.valid = 0,
#endif
.name = "L2 Memory",
},
{
.start = BOOT_ROM_START,
.end = BOOT_ROM_START + BOOT_ROM_LENGTH,
.psize = SIZE_1M,
.attr = SWITCH_T | I_CPLB | D_CPLB,
.i_conf = SDRAM_IGENERIC,
.d_conf = SDRAM_DGENERIC,
.valid = 1,
.name = "On-Chip BootROM",
},
};
static u16 __init lock_kernel_check(u32 start, u32 end)
{
if ((end <= (u32) _end && end >= (u32)_stext) ||
(start <= (u32) _end && start >= (u32)_stext))
return IN_KERNEL;
return 0;
}
static unsigned short __init
fill_cplbtab(struct cplb_tab *table,
unsigned long start, unsigned long end,
unsigned long block_size, unsigned long cplb_data)
{
int i;
switch (block_size) {
case SIZE_4M:
i = 3;
break;
case SIZE_1M:
i = 2;
break;
case SIZE_4K:
i = 1;
break;
case SIZE_1K:
default:
i = 0;
break;
}
cplb_data = (cplb_data & ~(3 << 16)) | (i << 16);
while ((start < end) && (table->pos < table->size)) {
table->tab[table->pos++] = start;
if (lock_kernel_check(start, start + block_size) == IN_KERNEL)
table->tab[table->pos++] =
cplb_data | CPLB_LOCK | CPLB_DIRTY;
else
table->tab[table->pos++] = cplb_data;
start += block_size;
}
return 0;
}
static unsigned short __init
close_cplbtab(struct cplb_tab *table)
{
while (table->pos < table->size) {
table->tab[table->pos++] = 0;
table->tab[table->pos++] = 0; /* !CPLB_VALID */
}
return 0;
}
/* helper function */
static void __fill_code_cplbtab(struct cplb_tab *t, int i, u32 a_start, u32 a_end)
{
if (cplb_data[i].psize) {
fill_cplbtab(t,
cplb_data[i].start,
cplb_data[i].end,
cplb_data[i].psize,
cplb_data[i].i_conf);
} else {
#if defined(CONFIG_BFIN_ICACHE)
if (ANOMALY_05000263 && i == SDRAM_KERN) {
fill_cplbtab(t,
cplb_data[i].start,
cplb_data[i].end,
SIZE_4M,
cplb_data[i].i_conf);
} else
#endif
{
fill_cplbtab(t,
cplb_data[i].start,
a_start,
SIZE_1M,
cplb_data[i].i_conf);
fill_cplbtab(t,
a_start,
a_end,
SIZE_4M,
cplb_data[i].i_conf);
fill_cplbtab(t, a_end,
cplb_data[i].end,
SIZE_1M,
cplb_data[i].i_conf);
}
}
}
static void __fill_data_cplbtab(struct cplb_tab *t, int i, u32 a_start, u32 a_end)
{
if (cplb_data[i].psize) {
fill_cplbtab(t,
cplb_data[i].start,
cplb_data[i].end,
cplb_data[i].psize,
cplb_data[i].d_conf);
} else {
fill_cplbtab(t,
cplb_data[i].start,
a_start, SIZE_1M,
cplb_data[i].d_conf);
fill_cplbtab(t, a_start,
a_end, SIZE_4M,
cplb_data[i].d_conf);
fill_cplbtab(t, a_end,
cplb_data[i].end,
SIZE_1M,
cplb_data[i].d_conf);
}
}
void __init generate_cpl_tables(void)
{
u16 i, j, process;
u32 a_start, a_end, as, ae, as_1m;
struct cplb_tab *t_i = NULL;
struct cplb_tab *t_d = NULL;
struct s_cplb cplb;
cplb.init_i.size = MAX_CPLBS;
cplb.init_d.size = MAX_CPLBS;
cplb.switch_i.size = MAX_SWITCH_I_CPLBS;
cplb.switch_d.size = MAX_SWITCH_D_CPLBS;
cplb.init_i.pos = 0;
cplb.init_d.pos = 0;
cplb.switch_i.pos = 0;
cplb.switch_d.pos = 0;
cplb.init_i.tab = icplb_table;
cplb.init_d.tab = dcplb_table;
cplb.switch_i.tab = ipdt_table;
cplb.switch_d.tab = dpdt_table;
cplb_data[SDRAM_KERN].end = memory_end;
#ifdef CONFIG_MTD_UCLINUX
cplb_data[SDRAM_RAM_MTD].start = memory_mtd_start;
cplb_data[SDRAM_RAM_MTD].end = memory_mtd_start + mtd_size;
cplb_data[SDRAM_RAM_MTD].valid = mtd_size > 0;
# if defined(CONFIG_ROMFS_FS)
cplb_data[SDRAM_RAM_MTD].attr |= I_CPLB;
/*
* The ROMFS_FS size is often not multiple of 1MB.
* This can cause multiple CPLB sets covering the same memory area.
* This will then cause multiple CPLB hit exceptions.
* Workaround: We ensure a contiguous memory area by extending the kernel
* memory section over the mtd section.
* For ROMFS_FS memory must be covered with ICPLBs anyways.
* So there is no difference between kernel and mtd memory setup.
*/
cplb_data[SDRAM_KERN].end = memory_mtd_start + mtd_size;;
cplb_data[SDRAM_RAM_MTD].valid = 0;
# endif
#else
cplb_data[SDRAM_RAM_MTD].valid = 0;
#endif
cplb_data[SDRAM_DMAZ].start = _ramend - DMA_UNCACHED_REGION;
cplb_data[SDRAM_DMAZ].end = _ramend;
cplb_data[RES_MEM].start = _ramend;
cplb_data[RES_MEM].end = physical_mem_end;
if (reserved_mem_dcache_on)
cplb_data[RES_MEM].d_conf = SDRAM_DGENERIC;
else
cplb_data[RES_MEM].d_conf = SDRAM_DNON_CHBL;
if (reserved_mem_icache_on)
cplb_data[RES_MEM].i_conf = SDRAM_IGENERIC;
else
cplb_data[RES_MEM].i_conf = SDRAM_INON_CHBL;
for (i = ZERO_P; i < ARRAY_SIZE(cplb_data); ++i) {
if (!cplb_data[i].valid)
continue;
as_1m = cplb_data[i].start % SIZE_1M;
/* We need to make sure all sections are properly 1M aligned
* However between Kernel Memory and the Kernel mtd section, depending on the
* rootfs size, there can be overlapping memory areas.
*/
if (as_1m && i != L1I_MEM && i != L1D_MEM) {
#ifdef CONFIG_MTD_UCLINUX
if (i == SDRAM_RAM_MTD) {
if ((cplb_data[SDRAM_KERN].end + 1) > cplb_data[SDRAM_RAM_MTD].start)
cplb_data[SDRAM_RAM_MTD].start = (cplb_data[i].start & (-2*SIZE_1M)) + SIZE_1M;
else
cplb_data[SDRAM_RAM_MTD].start = (cplb_data[i].start & (-2*SIZE_1M));
} else
#endif
printk(KERN_WARNING "Unaligned Start of %s at 0x%X\n",
cplb_data[i].name, cplb_data[i].start);
}
as = cplb_data[i].start % SIZE_4M;
ae = cplb_data[i].end % SIZE_4M;
if (as)
a_start = cplb_data[i].start + (SIZE_4M - (as));
else
a_start = cplb_data[i].start;
a_end = cplb_data[i].end - ae;
for (j = INITIAL_T; j <= SWITCH_T; j++) {
switch (j) {
case INITIAL_T:
if (cplb_data[i].attr & INITIAL_T) {
t_i = &cplb.init_i;
t_d = &cplb.init_d;
process = 1;
} else
process = 0;
break;
case SWITCH_T:
if (cplb_data[i].attr & SWITCH_T) {
t_i = &cplb.switch_i;
t_d = &cplb.switch_d;
process = 1;
} else
process = 0;
break;
default:
process = 0;
break;
}
if (!process)
continue;
if (cplb_data[i].attr & I_CPLB)
__fill_code_cplbtab(t_i, i, a_start, a_end);
if (cplb_data[i].attr & D_CPLB)
__fill_data_cplbtab(t_d, i, a_start, a_end);
}
}
/* close tables */
close_cplbtab(&cplb.init_i);
close_cplbtab(&cplb.init_d);
cplb.init_i.tab[cplb.init_i.pos] = -1;
cplb.init_d.tab[cplb.init_d.pos] = -1;
cplb.switch_i.tab[cplb.switch_i.pos] = -1;
cplb.switch_d.tab[cplb.switch_d.pos] = -1;
}
#endif