450 lines
11 KiB
C
450 lines
11 KiB
C
/*
|
|
* Copyright (C) 2008 Red Hat. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include "ctree.h"
|
|
|
|
static int tree_insert_offset(struct rb_root *root, u64 offset,
|
|
struct rb_node *node)
|
|
{
|
|
struct rb_node **p = &root->rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct btrfs_free_space *info;
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
info = rb_entry(parent, struct btrfs_free_space, offset_index);
|
|
|
|
if (offset < info->offset)
|
|
p = &(*p)->rb_left;
|
|
else if (offset > info->offset)
|
|
p = &(*p)->rb_right;
|
|
else
|
|
return -EEXIST;
|
|
}
|
|
|
|
rb_link_node(node, parent, p);
|
|
rb_insert_color(node, root);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tree_insert_bytes(struct rb_root *root, u64 bytes,
|
|
struct rb_node *node)
|
|
{
|
|
struct rb_node **p = &root->rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct btrfs_free_space *info;
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
info = rb_entry(parent, struct btrfs_free_space, bytes_index);
|
|
|
|
if (bytes < info->bytes)
|
|
p = &(*p)->rb_left;
|
|
else
|
|
p = &(*p)->rb_right;
|
|
}
|
|
|
|
rb_link_node(node, parent, p);
|
|
rb_insert_color(node, root);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* searches the tree for the given offset. If contains is set we will return
|
|
* the free space that contains the given offset. If contains is not set we
|
|
* will return the free space that starts at or after the given offset and is
|
|
* at least bytes long.
|
|
*/
|
|
static struct btrfs_free_space *tree_search_offset(struct rb_root *root,
|
|
u64 offset, u64 bytes,
|
|
int contains)
|
|
{
|
|
struct rb_node *n = root->rb_node;
|
|
struct btrfs_free_space *entry, *ret = NULL;
|
|
|
|
while (n) {
|
|
entry = rb_entry(n, struct btrfs_free_space, offset_index);
|
|
|
|
if (offset < entry->offset) {
|
|
if (!contains &&
|
|
(!ret || entry->offset < ret->offset) &&
|
|
(bytes <= entry->bytes))
|
|
ret = entry;
|
|
n = n->rb_left;
|
|
} else if (offset > entry->offset) {
|
|
if (contains &&
|
|
(entry->offset + entry->bytes - 1) >= offset) {
|
|
ret = entry;
|
|
break;
|
|
}
|
|
n = n->rb_right;
|
|
} else {
|
|
if (bytes > entry->bytes) {
|
|
n = n->rb_right;
|
|
continue;
|
|
}
|
|
ret = entry;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* return a chunk at least bytes size, as close to offset that we can get.
|
|
*/
|
|
static struct btrfs_free_space *tree_search_bytes(struct rb_root *root,
|
|
u64 offset, u64 bytes)
|
|
{
|
|
struct rb_node *n = root->rb_node;
|
|
struct btrfs_free_space *entry, *ret = NULL;
|
|
|
|
while (n) {
|
|
entry = rb_entry(n, struct btrfs_free_space, bytes_index);
|
|
|
|
if (bytes < entry->bytes) {
|
|
/*
|
|
* We prefer to get a hole size as close to the size we
|
|
* are asking for so we don't take small slivers out of
|
|
* huge holes, but we also want to get as close to the
|
|
* offset as possible so we don't have a whole lot of
|
|
* fragmentation.
|
|
*/
|
|
if (offset <= entry->offset) {
|
|
if (!ret)
|
|
ret = entry;
|
|
else if (entry->bytes < ret->bytes)
|
|
ret = entry;
|
|
else if (entry->offset < ret->offset)
|
|
ret = entry;
|
|
}
|
|
n = n->rb_left;
|
|
} else if (bytes > entry->bytes) {
|
|
n = n->rb_right;
|
|
} else {
|
|
/*
|
|
* Ok we may have multiple chunks of the wanted size,
|
|
* so we don't want to take the first one we find, we
|
|
* want to take the one closest to our given offset, so
|
|
* keep searching just in case theres a better match.
|
|
*/
|
|
n = n->rb_right;
|
|
if (offset > entry->offset)
|
|
continue;
|
|
else if (!ret || entry->offset < ret->offset)
|
|
ret = entry;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void unlink_free_space(struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_space *info)
|
|
{
|
|
rb_erase(&info->offset_index, &block_group->free_space_offset);
|
|
rb_erase(&info->bytes_index, &block_group->free_space_bytes);
|
|
}
|
|
|
|
static int link_free_space(struct btrfs_block_group_cache *block_group,
|
|
struct btrfs_free_space *info)
|
|
{
|
|
int ret = 0;
|
|
|
|
|
|
ret = tree_insert_offset(&block_group->free_space_offset, info->offset,
|
|
&info->offset_index);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = tree_insert_bytes(&block_group->free_space_bytes, info->bytes,
|
|
&info->bytes_index);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_add_free_space(struct btrfs_block_group_cache *block_group,
|
|
u64 offset, u64 bytes)
|
|
{
|
|
struct btrfs_free_space *right_info;
|
|
struct btrfs_free_space *left_info;
|
|
struct btrfs_free_space *info = NULL;
|
|
struct btrfs_free_space *alloc_info;
|
|
int ret = 0;
|
|
|
|
alloc_info = kzalloc(sizeof(struct btrfs_free_space), GFP_NOFS);
|
|
if (!alloc_info)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* first we want to see if there is free space adjacent to the range we
|
|
* are adding, if there is remove that struct and add a new one to
|
|
* cover the entire range
|
|
*/
|
|
spin_lock(&block_group->lock);
|
|
|
|
right_info = tree_search_offset(&block_group->free_space_offset,
|
|
offset+bytes, 0, 1);
|
|
left_info = tree_search_offset(&block_group->free_space_offset,
|
|
offset-1, 0, 1);
|
|
|
|
if (right_info && right_info->offset == offset+bytes) {
|
|
unlink_free_space(block_group, right_info);
|
|
info = right_info;
|
|
info->offset = offset;
|
|
info->bytes += bytes;
|
|
} else if (right_info && right_info->offset != offset+bytes) {
|
|
printk(KERN_ERR "adding space in the middle of an existing "
|
|
"free space area. existing: offset=%Lu, bytes=%Lu. "
|
|
"new: offset=%Lu, bytes=%Lu\n", right_info->offset,
|
|
right_info->bytes, offset, bytes);
|
|
BUG();
|
|
}
|
|
|
|
if (left_info) {
|
|
unlink_free_space(block_group, left_info);
|
|
|
|
if (unlikely((left_info->offset + left_info->bytes) !=
|
|
offset)) {
|
|
printk(KERN_ERR "free space to the left of new free "
|
|
"space isn't quite right. existing: offset=%Lu,"
|
|
" bytes=%Lu. new: offset=%Lu, bytes=%Lu\n",
|
|
left_info->offset, left_info->bytes, offset,
|
|
bytes);
|
|
BUG();
|
|
}
|
|
|
|
if (info) {
|
|
info->offset = left_info->offset;
|
|
info->bytes += left_info->bytes;
|
|
kfree(left_info);
|
|
} else {
|
|
info = left_info;
|
|
info->bytes += bytes;
|
|
}
|
|
}
|
|
|
|
if (info) {
|
|
ret = link_free_space(block_group, info);
|
|
if (!ret)
|
|
info = NULL;
|
|
goto out;
|
|
}
|
|
|
|
info = alloc_info;
|
|
alloc_info = NULL;
|
|
info->offset = offset;
|
|
info->bytes = bytes;
|
|
|
|
ret = link_free_space(block_group, info);
|
|
if (ret)
|
|
kfree(info);
|
|
out:
|
|
spin_unlock(&block_group->lock);
|
|
if (ret) {
|
|
printk(KERN_ERR "btrfs: unable to add free space :%d\n", ret);
|
|
if (ret == -EEXIST)
|
|
BUG();
|
|
}
|
|
|
|
if (alloc_info)
|
|
kfree(alloc_info);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
|
|
u64 offset, u64 bytes)
|
|
{
|
|
struct btrfs_free_space *info;
|
|
int ret = 0;
|
|
|
|
spin_lock(&block_group->lock);
|
|
info = tree_search_offset(&block_group->free_space_offset, offset, 0,
|
|
1);
|
|
|
|
if (info && info->offset == offset) {
|
|
if (info->bytes < bytes) {
|
|
printk(KERN_ERR "Found free space at %Lu, size %Lu,"
|
|
"trying to use %Lu\n",
|
|
info->offset, info->bytes, bytes);
|
|
WARN_ON(1);
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
unlink_free_space(block_group, info);
|
|
|
|
if (info->bytes == bytes) {
|
|
kfree(info);
|
|
goto out;
|
|
}
|
|
|
|
info->offset += bytes;
|
|
info->bytes -= bytes;
|
|
|
|
ret = link_free_space(block_group, info);
|
|
BUG_ON(ret);
|
|
} else if (info && info->offset < offset &&
|
|
info->offset + info->bytes >= offset + bytes) {
|
|
u64 old_start = info->offset;
|
|
/*
|
|
* we're freeing space in the middle of the info,
|
|
* this can happen during tree log replay
|
|
*
|
|
* first unlink the old info and then
|
|
* insert it again after the hole we're creating
|
|
*/
|
|
unlink_free_space(block_group, info);
|
|
if (offset + bytes < info->offset + info->bytes) {
|
|
u64 old_end = info->offset + info->bytes;
|
|
|
|
info->offset = offset + bytes;
|
|
info->bytes = old_end - info->offset;
|
|
ret = link_free_space(block_group, info);
|
|
BUG_ON(ret);
|
|
} else {
|
|
/* the hole we're creating ends at the end
|
|
* of the info struct, just free the info
|
|
*/
|
|
kfree(info);
|
|
}
|
|
|
|
/* step two, insert a new info struct to cover anything
|
|
* before the hole
|
|
*/
|
|
spin_unlock(&block_group->lock);
|
|
ret = btrfs_add_free_space(block_group, old_start,
|
|
offset - old_start);
|
|
BUG_ON(ret);
|
|
goto out_nolock;
|
|
} else {
|
|
WARN_ON(1);
|
|
}
|
|
out:
|
|
spin_unlock(&block_group->lock);
|
|
out_nolock:
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
|
|
u64 bytes)
|
|
{
|
|
struct btrfs_free_space *info;
|
|
struct rb_node *n;
|
|
int count = 0;
|
|
|
|
for (n = rb_first(&block_group->free_space_offset); n; n = rb_next(n)) {
|
|
info = rb_entry(n, struct btrfs_free_space, offset_index);
|
|
if (info->bytes >= bytes)
|
|
count++;
|
|
//printk(KERN_INFO "offset=%Lu, bytes=%Lu\n", info->offset,
|
|
// info->bytes);
|
|
}
|
|
printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
|
|
"\n", count);
|
|
}
|
|
|
|
u64 btrfs_block_group_free_space(struct btrfs_block_group_cache *block_group)
|
|
{
|
|
struct btrfs_free_space *info;
|
|
struct rb_node *n;
|
|
u64 ret = 0;
|
|
|
|
for (n = rb_first(&block_group->free_space_offset); n;
|
|
n = rb_next(n)) {
|
|
info = rb_entry(n, struct btrfs_free_space, offset_index);
|
|
ret += info->bytes;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
|
|
{
|
|
struct btrfs_free_space *info;
|
|
struct rb_node *node;
|
|
|
|
spin_lock(&block_group->lock);
|
|
while ((node = rb_last(&block_group->free_space_bytes)) != NULL) {
|
|
info = rb_entry(node, struct btrfs_free_space, bytes_index);
|
|
unlink_free_space(block_group, info);
|
|
kfree(info);
|
|
if (need_resched()) {
|
|
spin_unlock(&block_group->lock);
|
|
cond_resched();
|
|
spin_lock(&block_group->lock);
|
|
}
|
|
}
|
|
spin_unlock(&block_group->lock);
|
|
}
|
|
|
|
struct btrfs_free_space *btrfs_find_free_space_offset(struct
|
|
btrfs_block_group_cache
|
|
*block_group, u64 offset,
|
|
u64 bytes)
|
|
{
|
|
struct btrfs_free_space *ret;
|
|
|
|
spin_lock(&block_group->lock);
|
|
ret = tree_search_offset(&block_group->free_space_offset, offset,
|
|
bytes, 0);
|
|
spin_unlock(&block_group->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct btrfs_free_space *btrfs_find_free_space_bytes(struct
|
|
btrfs_block_group_cache
|
|
*block_group, u64 offset,
|
|
u64 bytes)
|
|
{
|
|
struct btrfs_free_space *ret;
|
|
|
|
spin_lock(&block_group->lock);
|
|
|
|
ret = tree_search_bytes(&block_group->free_space_bytes, offset, bytes);
|
|
spin_unlock(&block_group->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct btrfs_free_space *btrfs_find_free_space(struct btrfs_block_group_cache
|
|
*block_group, u64 offset,
|
|
u64 bytes)
|
|
{
|
|
struct btrfs_free_space *ret;
|
|
|
|
spin_lock(&block_group->lock);
|
|
ret = tree_search_offset(&block_group->free_space_offset, offset,
|
|
bytes, 0);
|
|
if (!ret)
|
|
ret = tree_search_bytes(&block_group->free_space_bytes,
|
|
offset, bytes);
|
|
|
|
spin_unlock(&block_group->lock);
|
|
|
|
return ret;
|
|
}
|