OpenCloudOS-Kernel/drivers/crypto/hisilicon/hpre/hpre_crypto.c

1196 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019 HiSilicon Limited. */
#include <crypto/akcipher.h>
#include <crypto/dh.h>
#include <crypto/internal/akcipher.h>
#include <crypto/internal/kpp.h>
#include <crypto/internal/rsa.h>
#include <crypto/kpp.h>
#include <crypto/scatterwalk.h>
#include <linux/dma-mapping.h>
#include <linux/fips.h>
#include <linux/module.h>
#include <linux/time.h>
#include "hpre.h"
struct hpre_ctx;
#define HPRE_CRYPTO_ALG_PRI 1000
#define HPRE_ALIGN_SZ 64
#define HPRE_BITS_2_BYTES_SHIFT 3
#define HPRE_RSA_512BITS_KSZ 64
#define HPRE_RSA_1536BITS_KSZ 192
#define HPRE_CRT_PRMS 5
#define HPRE_CRT_Q 2
#define HPRE_CRT_P 3
#define HPRE_CRT_INV 4
#define HPRE_DH_G_FLAG 0x02
#define HPRE_TRY_SEND_TIMES 100
#define HPRE_INVLD_REQ_ID (-1)
#define HPRE_DEV(ctx) (&((ctx)->qp->qm->pdev->dev))
#define HPRE_SQE_ALG_BITS 5
#define HPRE_SQE_DONE_SHIFT 30
#define HPRE_DH_MAX_P_SZ 512
#define HPRE_DFX_SEC_TO_US 1000000
#define HPRE_DFX_US_TO_NS 1000
typedef void (*hpre_cb)(struct hpre_ctx *ctx, void *sqe);
struct hpre_rsa_ctx {
/* low address: e--->n */
char *pubkey;
dma_addr_t dma_pubkey;
/* low address: d--->n */
char *prikey;
dma_addr_t dma_prikey;
/* low address: dq->dp->q->p->qinv */
char *crt_prikey;
dma_addr_t dma_crt_prikey;
struct crypto_akcipher *soft_tfm;
};
struct hpre_dh_ctx {
/*
* If base is g we compute the public key
* ya = g^xa mod p; [RFC2631 sec 2.1.1]
* else if base if the counterpart public key we
* compute the shared secret
* ZZ = yb^xa mod p; [RFC2631 sec 2.1.1]
*/
char *xa_p; /* low address: d--->n, please refer to Hisilicon HPRE UM */
dma_addr_t dma_xa_p;
char *g; /* m */
dma_addr_t dma_g;
};
struct hpre_ctx {
struct hisi_qp *qp;
struct hpre_asym_request **req_list;
struct hpre *hpre;
spinlock_t req_lock;
unsigned int key_sz;
bool crt_g2_mode;
struct idr req_idr;
union {
struct hpre_rsa_ctx rsa;
struct hpre_dh_ctx dh;
};
};
struct hpre_asym_request {
char *src;
char *dst;
struct hpre_sqe req;
struct hpre_ctx *ctx;
union {
struct akcipher_request *rsa;
struct kpp_request *dh;
} areq;
int err;
int req_id;
hpre_cb cb;
struct timespec64 req_time;
};
static DEFINE_MUTEX(hpre_alg_lock);
static unsigned int hpre_active_devs;
static int hpre_alloc_req_id(struct hpre_ctx *ctx)
{
unsigned long flags;
int id;
spin_lock_irqsave(&ctx->req_lock, flags);
id = idr_alloc(&ctx->req_idr, NULL, 0, QM_Q_DEPTH, GFP_ATOMIC);
spin_unlock_irqrestore(&ctx->req_lock, flags);
return id;
}
static void hpre_free_req_id(struct hpre_ctx *ctx, int req_id)
{
unsigned long flags;
spin_lock_irqsave(&ctx->req_lock, flags);
idr_remove(&ctx->req_idr, req_id);
spin_unlock_irqrestore(&ctx->req_lock, flags);
}
static int hpre_add_req_to_ctx(struct hpre_asym_request *hpre_req)
{
struct hpre_ctx *ctx;
struct hpre_dfx *dfx;
int id;
ctx = hpre_req->ctx;
id = hpre_alloc_req_id(ctx);
if (unlikely(id < 0))
return -EINVAL;
ctx->req_list[id] = hpre_req;
hpre_req->req_id = id;
dfx = ctx->hpre->debug.dfx;
if (atomic64_read(&dfx[HPRE_OVERTIME_THRHLD].value))
ktime_get_ts64(&hpre_req->req_time);
return id;
}
static void hpre_rm_req_from_ctx(struct hpre_asym_request *hpre_req)
{
struct hpre_ctx *ctx = hpre_req->ctx;
int id = hpre_req->req_id;
if (hpre_req->req_id >= 0) {
hpre_req->req_id = HPRE_INVLD_REQ_ID;
ctx->req_list[id] = NULL;
hpre_free_req_id(ctx, id);
}
}
static struct hisi_qp *hpre_get_qp_and_start(void)
{
struct hisi_qp *qp;
int ret;
qp = hpre_create_qp();
if (!qp) {
pr_err("Can not create hpre qp!\n");
return ERR_PTR(-ENODEV);
}
ret = hisi_qm_start_qp(qp, 0);
if (ret < 0) {
hisi_qm_free_qps(&qp, 1);
pci_err(qp->qm->pdev, "Can not start qp!\n");
return ERR_PTR(-EINVAL);
}
return qp;
}
static int hpre_get_data_dma_addr(struct hpre_asym_request *hpre_req,
struct scatterlist *data, unsigned int len,
int is_src, dma_addr_t *tmp)
{
struct hpre_ctx *ctx = hpre_req->ctx;
struct device *dev = HPRE_DEV(ctx);
enum dma_data_direction dma_dir;
if (is_src) {
hpre_req->src = NULL;
dma_dir = DMA_TO_DEVICE;
} else {
hpre_req->dst = NULL;
dma_dir = DMA_FROM_DEVICE;
}
*tmp = dma_map_single(dev, sg_virt(data),
len, dma_dir);
if (unlikely(dma_mapping_error(dev, *tmp))) {
dev_err(dev, "dma map data err!\n");
return -ENOMEM;
}
return 0;
}
static int hpre_prepare_dma_buf(struct hpre_asym_request *hpre_req,
struct scatterlist *data, unsigned int len,
int is_src, dma_addr_t *tmp)
{
struct hpre_ctx *ctx = hpre_req->ctx;
struct device *dev = HPRE_DEV(ctx);
void *ptr;
int shift;
shift = ctx->key_sz - len;
if (unlikely(shift < 0))
return -EINVAL;
ptr = dma_alloc_coherent(dev, ctx->key_sz, tmp, GFP_KERNEL);
if (unlikely(!ptr))
return -ENOMEM;
if (is_src) {
scatterwalk_map_and_copy(ptr + shift, data, 0, len, 0);
hpre_req->src = ptr;
} else {
hpre_req->dst = ptr;
}
return 0;
}
static int hpre_hw_data_init(struct hpre_asym_request *hpre_req,
struct scatterlist *data, unsigned int len,
int is_src, int is_dh)
{
struct hpre_sqe *msg = &hpre_req->req;
struct hpre_ctx *ctx = hpre_req->ctx;
dma_addr_t tmp = 0;
int ret;
/* when the data is dh's source, we should format it */
if ((sg_is_last(data) && len == ctx->key_sz) &&
((is_dh && !is_src) || !is_dh))
ret = hpre_get_data_dma_addr(hpre_req, data, len, is_src, &tmp);
else
ret = hpre_prepare_dma_buf(hpre_req, data, len,
is_src, &tmp);
if (unlikely(ret))
return ret;
if (is_src)
msg->in = cpu_to_le64(tmp);
else
msg->out = cpu_to_le64(tmp);
return 0;
}
static void hpre_hw_data_clr_all(struct hpre_ctx *ctx,
struct hpre_asym_request *req,
struct scatterlist *dst,
struct scatterlist *src)
{
struct device *dev = HPRE_DEV(ctx);
struct hpre_sqe *sqe = &req->req;
dma_addr_t tmp;
tmp = le64_to_cpu(sqe->in);
if (unlikely(!tmp))
return;
if (src) {
if (req->src)
dma_free_coherent(dev, ctx->key_sz,
req->src, tmp);
else
dma_unmap_single(dev, tmp,
ctx->key_sz, DMA_TO_DEVICE);
}
tmp = le64_to_cpu(sqe->out);
if (unlikely(!tmp))
return;
if (req->dst) {
if (dst)
scatterwalk_map_and_copy(req->dst, dst, 0,
ctx->key_sz, 1);
dma_free_coherent(dev, ctx->key_sz, req->dst, tmp);
} else {
dma_unmap_single(dev, tmp, ctx->key_sz, DMA_FROM_DEVICE);
}
}
static int hpre_alg_res_post_hf(struct hpre_ctx *ctx, struct hpre_sqe *sqe,
void **kreq)
{
struct hpre_asym_request *req;
int err, id, done;
#define HPRE_NO_HW_ERR 0
#define HPRE_HW_TASK_DONE 3
#define HREE_HW_ERR_MASK 0x7ff
#define HREE_SQE_DONE_MASK 0x3
id = (int)le16_to_cpu(sqe->tag);
req = ctx->req_list[id];
hpre_rm_req_from_ctx(req);
*kreq = req;
err = (le32_to_cpu(sqe->dw0) >> HPRE_SQE_ALG_BITS) &
HREE_HW_ERR_MASK;
done = (le32_to_cpu(sqe->dw0) >> HPRE_SQE_DONE_SHIFT) &
HREE_SQE_DONE_MASK;
if (likely(err == HPRE_NO_HW_ERR && done == HPRE_HW_TASK_DONE))
return 0;
return -EINVAL;
}
static int hpre_ctx_set(struct hpre_ctx *ctx, struct hisi_qp *qp, int qlen)
{
struct hpre *hpre;
if (!ctx || !qp || qlen < 0)
return -EINVAL;
spin_lock_init(&ctx->req_lock);
ctx->qp = qp;
hpre = container_of(ctx->qp->qm, struct hpre, qm);
ctx->hpre = hpre;
ctx->req_list = kcalloc(qlen, sizeof(void *), GFP_KERNEL);
if (!ctx->req_list)
return -ENOMEM;
ctx->key_sz = 0;
ctx->crt_g2_mode = false;
idr_init(&ctx->req_idr);
return 0;
}
static void hpre_ctx_clear(struct hpre_ctx *ctx, bool is_clear_all)
{
if (is_clear_all) {
idr_destroy(&ctx->req_idr);
kfree(ctx->req_list);
hisi_qm_free_qps(&ctx->qp, 1);
}
ctx->crt_g2_mode = false;
ctx->key_sz = 0;
}
static bool hpre_is_bd_timeout(struct hpre_asym_request *req,
u64 overtime_thrhld)
{
struct timespec64 reply_time;
u64 time_use_us;
ktime_get_ts64(&reply_time);
time_use_us = (reply_time.tv_sec - req->req_time.tv_sec) *
HPRE_DFX_SEC_TO_US +
(reply_time.tv_nsec - req->req_time.tv_nsec) /
HPRE_DFX_US_TO_NS;
if (time_use_us <= overtime_thrhld)
return false;
return true;
}
static void hpre_dh_cb(struct hpre_ctx *ctx, void *resp)
{
struct hpre_dfx *dfx = ctx->hpre->debug.dfx;
struct hpre_asym_request *req;
struct kpp_request *areq;
u64 overtime_thrhld;
int ret;
ret = hpre_alg_res_post_hf(ctx, resp, (void **)&req);
areq = req->areq.dh;
areq->dst_len = ctx->key_sz;
overtime_thrhld = atomic64_read(&dfx[HPRE_OVERTIME_THRHLD].value);
if (overtime_thrhld && hpre_is_bd_timeout(req, overtime_thrhld))
atomic64_inc(&dfx[HPRE_OVER_THRHLD_CNT].value);
hpre_hw_data_clr_all(ctx, req, areq->dst, areq->src);
kpp_request_complete(areq, ret);
atomic64_inc(&dfx[HPRE_RECV_CNT].value);
}
static void hpre_rsa_cb(struct hpre_ctx *ctx, void *resp)
{
struct hpre_dfx *dfx = ctx->hpre->debug.dfx;
struct hpre_asym_request *req;
struct akcipher_request *areq;
u64 overtime_thrhld;
int ret;
ret = hpre_alg_res_post_hf(ctx, resp, (void **)&req);
overtime_thrhld = atomic64_read(&dfx[HPRE_OVERTIME_THRHLD].value);
if (overtime_thrhld && hpre_is_bd_timeout(req, overtime_thrhld))
atomic64_inc(&dfx[HPRE_OVER_THRHLD_CNT].value);
areq = req->areq.rsa;
areq->dst_len = ctx->key_sz;
hpre_hw_data_clr_all(ctx, req, areq->dst, areq->src);
akcipher_request_complete(areq, ret);
atomic64_inc(&dfx[HPRE_RECV_CNT].value);
}
static void hpre_alg_cb(struct hisi_qp *qp, void *resp)
{
struct hpre_ctx *ctx = qp->qp_ctx;
struct hpre_dfx *dfx = ctx->hpre->debug.dfx;
struct hpre_sqe *sqe = resp;
struct hpre_asym_request *req = ctx->req_list[le16_to_cpu(sqe->tag)];
if (unlikely(!req)) {
atomic64_inc(&dfx[HPRE_INVALID_REQ_CNT].value);
return;
}
req->cb(ctx, resp);
}
static int hpre_ctx_init(struct hpre_ctx *ctx)
{
struct hisi_qp *qp;
qp = hpre_get_qp_and_start();
if (IS_ERR(qp))
return PTR_ERR(qp);
qp->qp_ctx = ctx;
qp->req_cb = hpre_alg_cb;
return hpre_ctx_set(ctx, qp, QM_Q_DEPTH);
}
static int hpre_msg_request_set(struct hpre_ctx *ctx, void *req, bool is_rsa)
{
struct hpre_asym_request *h_req;
struct hpre_sqe *msg;
int req_id;
void *tmp;
if (is_rsa) {
struct akcipher_request *akreq = req;
if (akreq->dst_len < ctx->key_sz) {
akreq->dst_len = ctx->key_sz;
return -EOVERFLOW;
}
tmp = akcipher_request_ctx(akreq);
h_req = PTR_ALIGN(tmp, HPRE_ALIGN_SZ);
h_req->cb = hpre_rsa_cb;
h_req->areq.rsa = akreq;
msg = &h_req->req;
memset(msg, 0, sizeof(*msg));
} else {
struct kpp_request *kreq = req;
if (kreq->dst_len < ctx->key_sz) {
kreq->dst_len = ctx->key_sz;
return -EOVERFLOW;
}
tmp = kpp_request_ctx(kreq);
h_req = PTR_ALIGN(tmp, HPRE_ALIGN_SZ);
h_req->cb = hpre_dh_cb;
h_req->areq.dh = kreq;
msg = &h_req->req;
memset(msg, 0, sizeof(*msg));
msg->key = cpu_to_le64((u64)ctx->dh.dma_xa_p);
}
msg->dw0 |= cpu_to_le32(0x1 << HPRE_SQE_DONE_SHIFT);
msg->task_len1 = (ctx->key_sz >> HPRE_BITS_2_BYTES_SHIFT) - 1;
h_req->ctx = ctx;
req_id = hpre_add_req_to_ctx(h_req);
if (req_id < 0)
return -EBUSY;
msg->tag = cpu_to_le16((u16)req_id);
return 0;
}
static int hpre_send(struct hpre_ctx *ctx, struct hpre_sqe *msg)
{
struct hpre_dfx *dfx = ctx->hpre->debug.dfx;
int ctr = 0;
int ret;
do {
atomic64_inc(&dfx[HPRE_SEND_CNT].value);
ret = hisi_qp_send(ctx->qp, msg);
if (ret != -EBUSY)
break;
atomic64_inc(&dfx[HPRE_SEND_BUSY_CNT].value);
} while (ctr++ < HPRE_TRY_SEND_TIMES);
if (likely(!ret))
return ret;
if (ret != -EBUSY)
atomic64_inc(&dfx[HPRE_SEND_FAIL_CNT].value);
return ret;
}
#ifdef CONFIG_CRYPTO_DH
static int hpre_dh_compute_value(struct kpp_request *req)
{
struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
void *tmp = kpp_request_ctx(req);
struct hpre_asym_request *hpre_req = PTR_ALIGN(tmp, HPRE_ALIGN_SZ);
struct hpre_sqe *msg = &hpre_req->req;
int ret;
ret = hpre_msg_request_set(ctx, req, false);
if (unlikely(ret))
return ret;
if (req->src) {
ret = hpre_hw_data_init(hpre_req, req->src, req->src_len, 1, 1);
if (unlikely(ret))
goto clear_all;
}
ret = hpre_hw_data_init(hpre_req, req->dst, req->dst_len, 0, 1);
if (unlikely(ret))
goto clear_all;
if (ctx->crt_g2_mode && !req->src)
msg->dw0 = cpu_to_le32(le32_to_cpu(msg->dw0) | HPRE_ALG_DH_G2);
else
msg->dw0 = cpu_to_le32(le32_to_cpu(msg->dw0) | HPRE_ALG_DH);
/* success */
ret = hpre_send(ctx, msg);
if (likely(!ret))
return -EINPROGRESS;
clear_all:
hpre_rm_req_from_ctx(hpre_req);
hpre_hw_data_clr_all(ctx, hpre_req, req->dst, req->src);
return ret;
}
static int hpre_is_dh_params_length_valid(unsigned int key_sz)
{
#define _HPRE_DH_GRP1 768
#define _HPRE_DH_GRP2 1024
#define _HPRE_DH_GRP5 1536
#define _HPRE_DH_GRP14 2048
#define _HPRE_DH_GRP15 3072
#define _HPRE_DH_GRP16 4096
switch (key_sz) {
case _HPRE_DH_GRP1:
case _HPRE_DH_GRP2:
case _HPRE_DH_GRP5:
case _HPRE_DH_GRP14:
case _HPRE_DH_GRP15:
case _HPRE_DH_GRP16:
return 0;
}
return -EINVAL;
}
static int hpre_dh_set_params(struct hpre_ctx *ctx, struct dh *params)
{
struct device *dev = HPRE_DEV(ctx);
unsigned int sz;
if (params->p_size > HPRE_DH_MAX_P_SZ)
return -EINVAL;
if (hpre_is_dh_params_length_valid(params->p_size <<
HPRE_BITS_2_BYTES_SHIFT))
return -EINVAL;
sz = ctx->key_sz = params->p_size;
ctx->dh.xa_p = dma_alloc_coherent(dev, sz << 1,
&ctx->dh.dma_xa_p, GFP_KERNEL);
if (!ctx->dh.xa_p)
return -ENOMEM;
memcpy(ctx->dh.xa_p + sz, params->p, sz);
/* If g equals 2 don't copy it */
if (params->g_size == 1 && *(char *)params->g == HPRE_DH_G_FLAG) {
ctx->crt_g2_mode = true;
return 0;
}
ctx->dh.g = dma_alloc_coherent(dev, sz, &ctx->dh.dma_g, GFP_KERNEL);
if (!ctx->dh.g) {
dma_free_coherent(dev, sz << 1, ctx->dh.xa_p,
ctx->dh.dma_xa_p);
ctx->dh.xa_p = NULL;
return -ENOMEM;
}
memcpy(ctx->dh.g + (sz - params->g_size), params->g, params->g_size);
return 0;
}
static void hpre_dh_clear_ctx(struct hpre_ctx *ctx, bool is_clear_all)
{
struct device *dev = HPRE_DEV(ctx);
unsigned int sz = ctx->key_sz;
if (is_clear_all)
hisi_qm_stop_qp(ctx->qp);
if (ctx->dh.g) {
dma_free_coherent(dev, sz, ctx->dh.g, ctx->dh.dma_g);
ctx->dh.g = NULL;
}
if (ctx->dh.xa_p) {
memzero_explicit(ctx->dh.xa_p, sz);
dma_free_coherent(dev, sz << 1, ctx->dh.xa_p,
ctx->dh.dma_xa_p);
ctx->dh.xa_p = NULL;
}
hpre_ctx_clear(ctx, is_clear_all);
}
static int hpre_dh_set_secret(struct crypto_kpp *tfm, const void *buf,
unsigned int len)
{
struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
struct dh params;
int ret;
if (crypto_dh_decode_key(buf, len, &params) < 0)
return -EINVAL;
/* Free old secret if any */
hpre_dh_clear_ctx(ctx, false);
ret = hpre_dh_set_params(ctx, &params);
if (ret < 0)
goto err_clear_ctx;
memcpy(ctx->dh.xa_p + (ctx->key_sz - params.key_size), params.key,
params.key_size);
return 0;
err_clear_ctx:
hpre_dh_clear_ctx(ctx, false);
return ret;
}
static unsigned int hpre_dh_max_size(struct crypto_kpp *tfm)
{
struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
return ctx->key_sz;
}
static int hpre_dh_init_tfm(struct crypto_kpp *tfm)
{
struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
return hpre_ctx_init(ctx);
}
static void hpre_dh_exit_tfm(struct crypto_kpp *tfm)
{
struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
hpre_dh_clear_ctx(ctx, true);
}
#endif
static void hpre_rsa_drop_leading_zeros(const char **ptr, size_t *len)
{
while (!**ptr && *len) {
(*ptr)++;
(*len)--;
}
}
static bool hpre_rsa_key_size_is_support(unsigned int len)
{
unsigned int bits = len << HPRE_BITS_2_BYTES_SHIFT;
#define _RSA_1024BITS_KEY_WDTH 1024
#define _RSA_2048BITS_KEY_WDTH 2048
#define _RSA_3072BITS_KEY_WDTH 3072
#define _RSA_4096BITS_KEY_WDTH 4096
switch (bits) {
case _RSA_1024BITS_KEY_WDTH:
case _RSA_2048BITS_KEY_WDTH:
case _RSA_3072BITS_KEY_WDTH:
case _RSA_4096BITS_KEY_WDTH:
return true;
default:
return false;
}
}
static int hpre_rsa_enc(struct akcipher_request *req)
{
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm);
void *tmp = akcipher_request_ctx(req);
struct hpre_asym_request *hpre_req = PTR_ALIGN(tmp, HPRE_ALIGN_SZ);
struct hpre_sqe *msg = &hpre_req->req;
int ret;
/* For 512 and 1536 bits key size, use soft tfm instead */
if (ctx->key_sz == HPRE_RSA_512BITS_KSZ ||
ctx->key_sz == HPRE_RSA_1536BITS_KSZ) {
akcipher_request_set_tfm(req, ctx->rsa.soft_tfm);
ret = crypto_akcipher_encrypt(req);
akcipher_request_set_tfm(req, tfm);
return ret;
}
if (unlikely(!ctx->rsa.pubkey))
return -EINVAL;
ret = hpre_msg_request_set(ctx, req, true);
if (unlikely(ret))
return ret;
msg->dw0 |= cpu_to_le32(HPRE_ALG_NC_NCRT);
msg->key = cpu_to_le64((u64)ctx->rsa.dma_pubkey);
ret = hpre_hw_data_init(hpre_req, req->src, req->src_len, 1, 0);
if (unlikely(ret))
goto clear_all;
ret = hpre_hw_data_init(hpre_req, req->dst, req->dst_len, 0, 0);
if (unlikely(ret))
goto clear_all;
/* success */
ret = hpre_send(ctx, msg);
if (likely(!ret))
return -EINPROGRESS;
clear_all:
hpre_rm_req_from_ctx(hpre_req);
hpre_hw_data_clr_all(ctx, hpre_req, req->dst, req->src);
return ret;
}
static int hpre_rsa_dec(struct akcipher_request *req)
{
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm);
void *tmp = akcipher_request_ctx(req);
struct hpre_asym_request *hpre_req = PTR_ALIGN(tmp, HPRE_ALIGN_SZ);
struct hpre_sqe *msg = &hpre_req->req;
int ret;
/* For 512 and 1536 bits key size, use soft tfm instead */
if (ctx->key_sz == HPRE_RSA_512BITS_KSZ ||
ctx->key_sz == HPRE_RSA_1536BITS_KSZ) {
akcipher_request_set_tfm(req, ctx->rsa.soft_tfm);
ret = crypto_akcipher_decrypt(req);
akcipher_request_set_tfm(req, tfm);
return ret;
}
if (unlikely(!ctx->rsa.prikey))
return -EINVAL;
ret = hpre_msg_request_set(ctx, req, true);
if (unlikely(ret))
return ret;
if (ctx->crt_g2_mode) {
msg->key = cpu_to_le64((u64)ctx->rsa.dma_crt_prikey);
msg->dw0 = cpu_to_le32(le32_to_cpu(msg->dw0) |
HPRE_ALG_NC_CRT);
} else {
msg->key = cpu_to_le64((u64)ctx->rsa.dma_prikey);
msg->dw0 = cpu_to_le32(le32_to_cpu(msg->dw0) |
HPRE_ALG_NC_NCRT);
}
ret = hpre_hw_data_init(hpre_req, req->src, req->src_len, 1, 0);
if (unlikely(ret))
goto clear_all;
ret = hpre_hw_data_init(hpre_req, req->dst, req->dst_len, 0, 0);
if (unlikely(ret))
goto clear_all;
/* success */
ret = hpre_send(ctx, msg);
if (likely(!ret))
return -EINPROGRESS;
clear_all:
hpre_rm_req_from_ctx(hpre_req);
hpre_hw_data_clr_all(ctx, hpre_req, req->dst, req->src);
return ret;
}
static int hpre_rsa_set_n(struct hpre_ctx *ctx, const char *value,
size_t vlen, bool private)
{
const char *ptr = value;
hpre_rsa_drop_leading_zeros(&ptr, &vlen);
ctx->key_sz = vlen;
/* if invalid key size provided, we use software tfm */
if (!hpre_rsa_key_size_is_support(ctx->key_sz))
return 0;
ctx->rsa.pubkey = dma_alloc_coherent(HPRE_DEV(ctx), vlen << 1,
&ctx->rsa.dma_pubkey,
GFP_KERNEL);
if (!ctx->rsa.pubkey)
return -ENOMEM;
if (private) {
ctx->rsa.prikey = dma_alloc_coherent(HPRE_DEV(ctx), vlen << 1,
&ctx->rsa.dma_prikey,
GFP_KERNEL);
if (!ctx->rsa.prikey) {
dma_free_coherent(HPRE_DEV(ctx), vlen << 1,
ctx->rsa.pubkey,
ctx->rsa.dma_pubkey);
ctx->rsa.pubkey = NULL;
return -ENOMEM;
}
memcpy(ctx->rsa.prikey + vlen, ptr, vlen);
}
memcpy(ctx->rsa.pubkey + vlen, ptr, vlen);
/* Using hardware HPRE to do RSA */
return 1;
}
static int hpre_rsa_set_e(struct hpre_ctx *ctx, const char *value,
size_t vlen)
{
const char *ptr = value;
hpre_rsa_drop_leading_zeros(&ptr, &vlen);
if (!ctx->key_sz || !vlen || vlen > ctx->key_sz)
return -EINVAL;
memcpy(ctx->rsa.pubkey + ctx->key_sz - vlen, ptr, vlen);
return 0;
}
static int hpre_rsa_set_d(struct hpre_ctx *ctx, const char *value,
size_t vlen)
{
const char *ptr = value;
hpre_rsa_drop_leading_zeros(&ptr, &vlen);
if (!ctx->key_sz || !vlen || vlen > ctx->key_sz)
return -EINVAL;
memcpy(ctx->rsa.prikey + ctx->key_sz - vlen, ptr, vlen);
return 0;
}
static int hpre_crt_para_get(char *para, size_t para_sz,
const char *raw, size_t raw_sz)
{
const char *ptr = raw;
size_t len = raw_sz;
hpre_rsa_drop_leading_zeros(&ptr, &len);
if (!len || len > para_sz)
return -EINVAL;
memcpy(para + para_sz - len, ptr, len);
return 0;
}
static int hpre_rsa_setkey_crt(struct hpre_ctx *ctx, struct rsa_key *rsa_key)
{
unsigned int hlf_ksz = ctx->key_sz >> 1;
struct device *dev = HPRE_DEV(ctx);
u64 offset;
int ret;
ctx->rsa.crt_prikey = dma_alloc_coherent(dev, hlf_ksz * HPRE_CRT_PRMS,
&ctx->rsa.dma_crt_prikey,
GFP_KERNEL);
if (!ctx->rsa.crt_prikey)
return -ENOMEM;
ret = hpre_crt_para_get(ctx->rsa.crt_prikey, hlf_ksz,
rsa_key->dq, rsa_key->dq_sz);
if (ret)
goto free_key;
offset = hlf_ksz;
ret = hpre_crt_para_get(ctx->rsa.crt_prikey + offset, hlf_ksz,
rsa_key->dp, rsa_key->dp_sz);
if (ret)
goto free_key;
offset = hlf_ksz * HPRE_CRT_Q;
ret = hpre_crt_para_get(ctx->rsa.crt_prikey + offset, hlf_ksz,
rsa_key->q, rsa_key->q_sz);
if (ret)
goto free_key;
offset = hlf_ksz * HPRE_CRT_P;
ret = hpre_crt_para_get(ctx->rsa.crt_prikey + offset, hlf_ksz,
rsa_key->p, rsa_key->p_sz);
if (ret)
goto free_key;
offset = hlf_ksz * HPRE_CRT_INV;
ret = hpre_crt_para_get(ctx->rsa.crt_prikey + offset, hlf_ksz,
rsa_key->qinv, rsa_key->qinv_sz);
if (ret)
goto free_key;
ctx->crt_g2_mode = true;
return 0;
free_key:
offset = hlf_ksz * HPRE_CRT_PRMS;
memzero_explicit(ctx->rsa.crt_prikey, offset);
dma_free_coherent(dev, hlf_ksz * HPRE_CRT_PRMS, ctx->rsa.crt_prikey,
ctx->rsa.dma_crt_prikey);
ctx->rsa.crt_prikey = NULL;
ctx->crt_g2_mode = false;
return ret;
}
/* If it is clear all, all the resources of the QP will be cleaned. */
static void hpre_rsa_clear_ctx(struct hpre_ctx *ctx, bool is_clear_all)
{
unsigned int half_key_sz = ctx->key_sz >> 1;
struct device *dev = HPRE_DEV(ctx);
if (is_clear_all)
hisi_qm_stop_qp(ctx->qp);
if (ctx->rsa.pubkey) {
dma_free_coherent(dev, ctx->key_sz << 1,
ctx->rsa.pubkey, ctx->rsa.dma_pubkey);
ctx->rsa.pubkey = NULL;
}
if (ctx->rsa.crt_prikey) {
memzero_explicit(ctx->rsa.crt_prikey,
half_key_sz * HPRE_CRT_PRMS);
dma_free_coherent(dev, half_key_sz * HPRE_CRT_PRMS,
ctx->rsa.crt_prikey, ctx->rsa.dma_crt_prikey);
ctx->rsa.crt_prikey = NULL;
}
if (ctx->rsa.prikey) {
memzero_explicit(ctx->rsa.prikey, ctx->key_sz);
dma_free_coherent(dev, ctx->key_sz << 1, ctx->rsa.prikey,
ctx->rsa.dma_prikey);
ctx->rsa.prikey = NULL;
}
hpre_ctx_clear(ctx, is_clear_all);
}
/*
* we should judge if it is CRT or not,
* CRT: return true, N-CRT: return false .
*/
static bool hpre_is_crt_key(struct rsa_key *key)
{
u16 len = key->p_sz + key->q_sz + key->dp_sz + key->dq_sz +
key->qinv_sz;
#define LEN_OF_NCRT_PARA 5
/* N-CRT less than 5 parameters */
return len > LEN_OF_NCRT_PARA;
}
static int hpre_rsa_setkey(struct hpre_ctx *ctx, const void *key,
unsigned int keylen, bool private)
{
struct rsa_key rsa_key;
int ret;
hpre_rsa_clear_ctx(ctx, false);
if (private)
ret = rsa_parse_priv_key(&rsa_key, key, keylen);
else
ret = rsa_parse_pub_key(&rsa_key, key, keylen);
if (ret < 0)
return ret;
ret = hpre_rsa_set_n(ctx, rsa_key.n, rsa_key.n_sz, private);
if (ret <= 0)
return ret;
if (private) {
ret = hpre_rsa_set_d(ctx, rsa_key.d, rsa_key.d_sz);
if (ret < 0)
goto free;
if (hpre_is_crt_key(&rsa_key)) {
ret = hpre_rsa_setkey_crt(ctx, &rsa_key);
if (ret < 0)
goto free;
}
}
ret = hpre_rsa_set_e(ctx, rsa_key.e, rsa_key.e_sz);
if (ret < 0)
goto free;
if ((private && !ctx->rsa.prikey) || !ctx->rsa.pubkey) {
ret = -EINVAL;
goto free;
}
return 0;
free:
hpre_rsa_clear_ctx(ctx, false);
return ret;
}
static int hpre_rsa_setpubkey(struct crypto_akcipher *tfm, const void *key,
unsigned int keylen)
{
struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm);
int ret;
ret = crypto_akcipher_set_pub_key(ctx->rsa.soft_tfm, key, keylen);
if (ret)
return ret;
return hpre_rsa_setkey(ctx, key, keylen, false);
}
static int hpre_rsa_setprivkey(struct crypto_akcipher *tfm, const void *key,
unsigned int keylen)
{
struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm);
int ret;
ret = crypto_akcipher_set_priv_key(ctx->rsa.soft_tfm, key, keylen);
if (ret)
return ret;
return hpre_rsa_setkey(ctx, key, keylen, true);
}
static unsigned int hpre_rsa_max_size(struct crypto_akcipher *tfm)
{
struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm);
/* For 512 and 1536 bits key size, use soft tfm instead */
if (ctx->key_sz == HPRE_RSA_512BITS_KSZ ||
ctx->key_sz == HPRE_RSA_1536BITS_KSZ)
return crypto_akcipher_maxsize(ctx->rsa.soft_tfm);
return ctx->key_sz;
}
static int hpre_rsa_init_tfm(struct crypto_akcipher *tfm)
{
struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm);
int ret;
ctx->rsa.soft_tfm = crypto_alloc_akcipher("rsa-generic", 0, 0);
if (IS_ERR(ctx->rsa.soft_tfm)) {
pr_err("Can not alloc_akcipher!\n");
return PTR_ERR(ctx->rsa.soft_tfm);
}
ret = hpre_ctx_init(ctx);
if (ret)
crypto_free_akcipher(ctx->rsa.soft_tfm);
return ret;
}
static void hpre_rsa_exit_tfm(struct crypto_akcipher *tfm)
{
struct hpre_ctx *ctx = akcipher_tfm_ctx(tfm);
hpre_rsa_clear_ctx(ctx, true);
crypto_free_akcipher(ctx->rsa.soft_tfm);
}
static struct akcipher_alg rsa = {
.sign = hpre_rsa_dec,
.verify = hpre_rsa_enc,
.encrypt = hpre_rsa_enc,
.decrypt = hpre_rsa_dec,
.set_pub_key = hpre_rsa_setpubkey,
.set_priv_key = hpre_rsa_setprivkey,
.max_size = hpre_rsa_max_size,
.init = hpre_rsa_init_tfm,
.exit = hpre_rsa_exit_tfm,
.reqsize = sizeof(struct hpre_asym_request) + HPRE_ALIGN_SZ,
.base = {
.cra_ctxsize = sizeof(struct hpre_ctx),
.cra_priority = HPRE_CRYPTO_ALG_PRI,
.cra_name = "rsa",
.cra_driver_name = "hpre-rsa",
.cra_module = THIS_MODULE,
},
};
#ifdef CONFIG_CRYPTO_DH
static struct kpp_alg dh = {
.set_secret = hpre_dh_set_secret,
.generate_public_key = hpre_dh_compute_value,
.compute_shared_secret = hpre_dh_compute_value,
.max_size = hpre_dh_max_size,
.init = hpre_dh_init_tfm,
.exit = hpre_dh_exit_tfm,
.reqsize = sizeof(struct hpre_asym_request) + HPRE_ALIGN_SZ,
.base = {
.cra_ctxsize = sizeof(struct hpre_ctx),
.cra_priority = HPRE_CRYPTO_ALG_PRI,
.cra_name = "dh",
.cra_driver_name = "hpre-dh",
.cra_module = THIS_MODULE,
},
};
#endif
int hpre_algs_register(void)
{
int ret = 0;
mutex_lock(&hpre_alg_lock);
if (++hpre_active_devs == 1) {
rsa.base.cra_flags = 0;
ret = crypto_register_akcipher(&rsa);
if (ret)
goto unlock;
#ifdef CONFIG_CRYPTO_DH
ret = crypto_register_kpp(&dh);
if (ret) {
crypto_unregister_akcipher(&rsa);
goto unlock;
}
#endif
}
unlock:
mutex_unlock(&hpre_alg_lock);
return ret;
}
void hpre_algs_unregister(void)
{
mutex_lock(&hpre_alg_lock);
if (--hpre_active_devs == 0) {
crypto_unregister_akcipher(&rsa);
#ifdef CONFIG_CRYPTO_DH
crypto_unregister_kpp(&dh);
#endif
}
mutex_unlock(&hpre_alg_lock);
}