OpenCloudOS-Kernel/drivers/net/wireless/ath/ath9k/calib.c

1047 lines
28 KiB
C

/*
* Copyright (c) 2008-2009 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "ath9k.h"
/* We can tune this as we go by monitoring really low values */
#define ATH9K_NF_TOO_LOW -60
/* AR5416 may return very high value (like -31 dBm), in those cases the nf
* is incorrect and we should use the static NF value. Later we can try to
* find out why they are reporting these values */
static bool ath9k_hw_nf_in_range(struct ath_hw *ah, s16 nf)
{
if (nf > ATH9K_NF_TOO_LOW) {
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"noise floor value detected (%d) is "
"lower than what we think is a "
"reasonable value (%d)\n",
nf, ATH9K_NF_TOO_LOW);
return false;
}
return true;
}
static int16_t ath9k_hw_get_nf_hist_mid(int16_t *nfCalBuffer)
{
int16_t nfval;
int16_t sort[ATH9K_NF_CAL_HIST_MAX];
int i, j;
for (i = 0; i < ATH9K_NF_CAL_HIST_MAX; i++)
sort[i] = nfCalBuffer[i];
for (i = 0; i < ATH9K_NF_CAL_HIST_MAX - 1; i++) {
for (j = 1; j < ATH9K_NF_CAL_HIST_MAX - i; j++) {
if (sort[j] > sort[j - 1]) {
nfval = sort[j];
sort[j] = sort[j - 1];
sort[j - 1] = nfval;
}
}
}
nfval = sort[(ATH9K_NF_CAL_HIST_MAX - 1) >> 1];
return nfval;
}
static void ath9k_hw_update_nfcal_hist_buffer(struct ath9k_nfcal_hist *h,
int16_t *nfarray)
{
int i;
for (i = 0; i < NUM_NF_READINGS; i++) {
h[i].nfCalBuffer[h[i].currIndex] = nfarray[i];
if (++h[i].currIndex >= ATH9K_NF_CAL_HIST_MAX)
h[i].currIndex = 0;
if (h[i].invalidNFcount > 0) {
if (nfarray[i] < AR_PHY_CCA_MIN_BAD_VALUE ||
nfarray[i] > AR_PHY_CCA_MAX_HIGH_VALUE) {
h[i].invalidNFcount = ATH9K_NF_CAL_HIST_MAX;
} else {
h[i].invalidNFcount--;
h[i].privNF = nfarray[i];
}
} else {
h[i].privNF =
ath9k_hw_get_nf_hist_mid(h[i].nfCalBuffer);
}
}
return;
}
static void ath9k_hw_do_getnf(struct ath_hw *ah,
int16_t nfarray[NUM_NF_READINGS])
{
int16_t nf;
if (AR_SREV_9280_10_OR_LATER(ah))
nf = MS(REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR);
else
nf = MS(REG_READ(ah, AR_PHY_CCA), AR_PHY_MINCCA_PWR);
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"NF calibrated [ctl] [chain 0] is %d\n", nf);
nfarray[0] = nf;
if (!AR_SREV_9285(ah)) {
if (AR_SREV_9280_10_OR_LATER(ah))
nf = MS(REG_READ(ah, AR_PHY_CH1_CCA),
AR9280_PHY_CH1_MINCCA_PWR);
else
nf = MS(REG_READ(ah, AR_PHY_CH1_CCA),
AR_PHY_CH1_MINCCA_PWR);
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"NF calibrated [ctl] [chain 1] is %d\n", nf);
nfarray[1] = nf;
if (!AR_SREV_9280(ah)) {
nf = MS(REG_READ(ah, AR_PHY_CH2_CCA),
AR_PHY_CH2_MINCCA_PWR);
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"NF calibrated [ctl] [chain 2] is %d\n", nf);
nfarray[2] = nf;
}
}
if (AR_SREV_9280_10_OR_LATER(ah))
nf = MS(REG_READ(ah, AR_PHY_EXT_CCA),
AR9280_PHY_EXT_MINCCA_PWR);
else
nf = MS(REG_READ(ah, AR_PHY_EXT_CCA),
AR_PHY_EXT_MINCCA_PWR);
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"NF calibrated [ext] [chain 0] is %d\n", nf);
nfarray[3] = nf;
if (!AR_SREV_9285(ah)) {
if (AR_SREV_9280_10_OR_LATER(ah))
nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA),
AR9280_PHY_CH1_EXT_MINCCA_PWR);
else
nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA),
AR_PHY_CH1_EXT_MINCCA_PWR);
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"NF calibrated [ext] [chain 1] is %d\n", nf);
nfarray[4] = nf;
if (!AR_SREV_9280(ah)) {
nf = MS(REG_READ(ah, AR_PHY_CH2_EXT_CCA),
AR_PHY_CH2_EXT_MINCCA_PWR);
if (nf & 0x100)
nf = 0 - ((nf ^ 0x1ff) + 1);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"NF calibrated [ext] [chain 2] is %d\n", nf);
nfarray[5] = nf;
}
}
}
static bool getNoiseFloorThresh(struct ath_hw *ah,
enum ieee80211_band band,
int16_t *nft)
{
switch (band) {
case IEEE80211_BAND_5GHZ:
*nft = (int8_t)ah->eep_ops->get_eeprom(ah, EEP_NFTHRESH_5);
break;
case IEEE80211_BAND_2GHZ:
*nft = (int8_t)ah->eep_ops->get_eeprom(ah, EEP_NFTHRESH_2);
break;
default:
BUG_ON(1);
return false;
}
return true;
}
static void ath9k_hw_setup_calibration(struct ath_hw *ah,
struct ath9k_cal_list *currCal)
{
REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4(0),
AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
currCal->calData->calCountMax);
switch (currCal->calData->calType) {
case IQ_MISMATCH_CAL:
REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_IQ);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"starting IQ Mismatch Calibration\n");
break;
case ADC_GAIN_CAL:
REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_ADC_GAIN);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"starting ADC Gain Calibration\n");
break;
case ADC_DC_CAL:
REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_ADC_DC_PER);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"starting ADC DC Calibration\n");
break;
case ADC_DC_INIT_CAL:
REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_ADC_DC_INIT);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"starting Init ADC DC Calibration\n");
break;
}
REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4(0),
AR_PHY_TIMING_CTRL4_DO_CAL);
}
static void ath9k_hw_reset_calibration(struct ath_hw *ah,
struct ath9k_cal_list *currCal)
{
int i;
ath9k_hw_setup_calibration(ah, currCal);
currCal->calState = CAL_RUNNING;
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
ah->meas0.sign[i] = 0;
ah->meas1.sign[i] = 0;
ah->meas2.sign[i] = 0;
ah->meas3.sign[i] = 0;
}
ah->cal_samples = 0;
}
static bool ath9k_hw_per_calibration(struct ath_hw *ah,
struct ath9k_channel *ichan,
u8 rxchainmask,
struct ath9k_cal_list *currCal)
{
bool iscaldone = false;
if (currCal->calState == CAL_RUNNING) {
if (!(REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) &
AR_PHY_TIMING_CTRL4_DO_CAL)) {
currCal->calData->calCollect(ah);
ah->cal_samples++;
if (ah->cal_samples >= currCal->calData->calNumSamples) {
int i, numChains = 0;
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
if (rxchainmask & (1 << i))
numChains++;
}
currCal->calData->calPostProc(ah, numChains);
ichan->CalValid |= currCal->calData->calType;
currCal->calState = CAL_DONE;
iscaldone = true;
} else {
ath9k_hw_setup_calibration(ah, currCal);
}
}
} else if (!(ichan->CalValid & currCal->calData->calType)) {
ath9k_hw_reset_calibration(ah, currCal);
}
return iscaldone;
}
/* Assumes you are talking about the currently configured channel */
static bool ath9k_hw_iscal_supported(struct ath_hw *ah,
enum ath9k_cal_types calType)
{
struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
switch (calType & ah->supp_cals) {
case IQ_MISMATCH_CAL: /* Both 2 GHz and 5 GHz support OFDM */
return true;
case ADC_GAIN_CAL:
case ADC_DC_CAL:
if (!(conf->channel->band == IEEE80211_BAND_2GHZ &&
conf_is_ht20(conf)))
return true;
break;
}
return false;
}
static void ath9k_hw_iqcal_collect(struct ath_hw *ah)
{
int i;
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
ah->totalPowerMeasI[i] +=
REG_READ(ah, AR_PHY_CAL_MEAS_0(i));
ah->totalPowerMeasQ[i] +=
REG_READ(ah, AR_PHY_CAL_MEAS_1(i));
ah->totalIqCorrMeas[i] +=
(int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_2(i));
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"%d: Chn %d pmi=0x%08x;pmq=0x%08x;iqcm=0x%08x;\n",
ah->cal_samples, i, ah->totalPowerMeasI[i],
ah->totalPowerMeasQ[i],
ah->totalIqCorrMeas[i]);
}
}
static void ath9k_hw_adc_gaincal_collect(struct ath_hw *ah)
{
int i;
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
ah->totalAdcIOddPhase[i] +=
REG_READ(ah, AR_PHY_CAL_MEAS_0(i));
ah->totalAdcIEvenPhase[i] +=
REG_READ(ah, AR_PHY_CAL_MEAS_1(i));
ah->totalAdcQOddPhase[i] +=
REG_READ(ah, AR_PHY_CAL_MEAS_2(i));
ah->totalAdcQEvenPhase[i] +=
REG_READ(ah, AR_PHY_CAL_MEAS_3(i));
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"%d: Chn %d oddi=0x%08x; eveni=0x%08x; "
"oddq=0x%08x; evenq=0x%08x;\n",
ah->cal_samples, i,
ah->totalAdcIOddPhase[i],
ah->totalAdcIEvenPhase[i],
ah->totalAdcQOddPhase[i],
ah->totalAdcQEvenPhase[i]);
}
}
static void ath9k_hw_adc_dccal_collect(struct ath_hw *ah)
{
int i;
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
ah->totalAdcDcOffsetIOddPhase[i] +=
(int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_0(i));
ah->totalAdcDcOffsetIEvenPhase[i] +=
(int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_1(i));
ah->totalAdcDcOffsetQOddPhase[i] +=
(int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_2(i));
ah->totalAdcDcOffsetQEvenPhase[i] +=
(int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_3(i));
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"%d: Chn %d oddi=0x%08x; eveni=0x%08x; "
"oddq=0x%08x; evenq=0x%08x;\n",
ah->cal_samples, i,
ah->totalAdcDcOffsetIOddPhase[i],
ah->totalAdcDcOffsetIEvenPhase[i],
ah->totalAdcDcOffsetQOddPhase[i],
ah->totalAdcDcOffsetQEvenPhase[i]);
}
}
static void ath9k_hw_iqcalibrate(struct ath_hw *ah, u8 numChains)
{
u32 powerMeasQ, powerMeasI, iqCorrMeas;
u32 qCoffDenom, iCoffDenom;
int32_t qCoff, iCoff;
int iqCorrNeg, i;
for (i = 0; i < numChains; i++) {
powerMeasI = ah->totalPowerMeasI[i];
powerMeasQ = ah->totalPowerMeasQ[i];
iqCorrMeas = ah->totalIqCorrMeas[i];
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Starting IQ Cal and Correction for Chain %d\n",
i);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Orignal: Chn %diq_corr_meas = 0x%08x\n",
i, ah->totalIqCorrMeas[i]);
iqCorrNeg = 0;
if (iqCorrMeas > 0x80000000) {
iqCorrMeas = (0xffffffff - iqCorrMeas) + 1;
iqCorrNeg = 1;
}
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Chn %d pwr_meas_i = 0x%08x\n", i, powerMeasI);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Chn %d pwr_meas_q = 0x%08x\n", i, powerMeasQ);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "iqCorrNeg is 0x%08x\n",
iqCorrNeg);
iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128;
qCoffDenom = powerMeasQ / 64;
if (powerMeasQ != 0) {
iCoff = iqCorrMeas / iCoffDenom;
qCoff = powerMeasI / qCoffDenom - 64;
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Chn %d iCoff = 0x%08x\n", i, iCoff);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Chn %d qCoff = 0x%08x\n", i, qCoff);
iCoff = iCoff & 0x3f;
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"New: Chn %d iCoff = 0x%08x\n", i, iCoff);
if (iqCorrNeg == 0x0)
iCoff = 0x40 - iCoff;
if (qCoff > 15)
qCoff = 15;
else if (qCoff <= -16)
qCoff = 16;
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Chn %d : iCoff = 0x%x qCoff = 0x%x\n",
i, iCoff, qCoff);
REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4(i),
AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF,
iCoff);
REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4(i),
AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF,
qCoff);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"IQ Cal and Correction done for Chain %d\n",
i);
}
}
REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4(0),
AR_PHY_TIMING_CTRL4_IQCORR_ENABLE);
}
static void ath9k_hw_adc_gaincal_calibrate(struct ath_hw *ah, u8 numChains)
{
u32 iOddMeasOffset, iEvenMeasOffset, qOddMeasOffset, qEvenMeasOffset;
u32 qGainMismatch, iGainMismatch, val, i;
for (i = 0; i < numChains; i++) {
iOddMeasOffset = ah->totalAdcIOddPhase[i];
iEvenMeasOffset = ah->totalAdcIEvenPhase[i];
qOddMeasOffset = ah->totalAdcQOddPhase[i];
qEvenMeasOffset = ah->totalAdcQEvenPhase[i];
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Starting ADC Gain Cal for Chain %d\n", i);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Chn %d pwr_meas_odd_i = 0x%08x\n", i,
iOddMeasOffset);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Chn %d pwr_meas_even_i = 0x%08x\n", i,
iEvenMeasOffset);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Chn %d pwr_meas_odd_q = 0x%08x\n", i,
qOddMeasOffset);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Chn %d pwr_meas_even_q = 0x%08x\n", i,
qEvenMeasOffset);
if (iOddMeasOffset != 0 && qEvenMeasOffset != 0) {
iGainMismatch =
((iEvenMeasOffset * 32) /
iOddMeasOffset) & 0x3f;
qGainMismatch =
((qOddMeasOffset * 32) /
qEvenMeasOffset) & 0x3f;
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Chn %d gain_mismatch_i = 0x%08x\n", i,
iGainMismatch);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Chn %d gain_mismatch_q = 0x%08x\n", i,
qGainMismatch);
val = REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i));
val &= 0xfffff000;
val |= (qGainMismatch) | (iGainMismatch << 6);
REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), val);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"ADC Gain Cal done for Chain %d\n", i);
}
}
REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0),
REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0)) |
AR_PHY_NEW_ADC_GAIN_CORR_ENABLE);
}
static void ath9k_hw_adc_dccal_calibrate(struct ath_hw *ah, u8 numChains)
{
u32 iOddMeasOffset, iEvenMeasOffset, val, i;
int32_t qOddMeasOffset, qEvenMeasOffset, qDcMismatch, iDcMismatch;
const struct ath9k_percal_data *calData =
ah->cal_list_curr->calData;
u32 numSamples =
(1 << (calData->calCountMax + 5)) * calData->calNumSamples;
for (i = 0; i < numChains; i++) {
iOddMeasOffset = ah->totalAdcDcOffsetIOddPhase[i];
iEvenMeasOffset = ah->totalAdcDcOffsetIEvenPhase[i];
qOddMeasOffset = ah->totalAdcDcOffsetQOddPhase[i];
qEvenMeasOffset = ah->totalAdcDcOffsetQEvenPhase[i];
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Starting ADC DC Offset Cal for Chain %d\n", i);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Chn %d pwr_meas_odd_i = %d\n", i,
iOddMeasOffset);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Chn %d pwr_meas_even_i = %d\n", i,
iEvenMeasOffset);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Chn %d pwr_meas_odd_q = %d\n", i,
qOddMeasOffset);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Chn %d pwr_meas_even_q = %d\n", i,
qEvenMeasOffset);
iDcMismatch = (((iEvenMeasOffset - iOddMeasOffset) * 2) /
numSamples) & 0x1ff;
qDcMismatch = (((qOddMeasOffset - qEvenMeasOffset) * 2) /
numSamples) & 0x1ff;
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Chn %d dc_offset_mismatch_i = 0x%08x\n", i,
iDcMismatch);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Chn %d dc_offset_mismatch_q = 0x%08x\n", i,
qDcMismatch);
val = REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i));
val &= 0xc0000fff;
val |= (qDcMismatch << 12) | (iDcMismatch << 21);
REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(i), val);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"ADC DC Offset Cal done for Chain %d\n", i);
}
REG_WRITE(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0),
REG_READ(ah, AR_PHY_NEW_ADC_DC_GAIN_CORR(0)) |
AR_PHY_NEW_ADC_DC_OFFSET_CORR_ENABLE);
}
/* This is done for the currently configured channel */
bool ath9k_hw_reset_calvalid(struct ath_hw *ah)
{
struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
struct ath9k_cal_list *currCal = ah->cal_list_curr;
if (!ah->curchan)
return true;
if (!AR_SREV_9100(ah) && !AR_SREV_9160_10_OR_LATER(ah))
return true;
if (currCal == NULL)
return true;
if (currCal->calState != CAL_DONE) {
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Calibration state incorrect, %d\n",
currCal->calState);
return true;
}
if (!ath9k_hw_iscal_supported(ah, currCal->calData->calType))
return true;
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"Resetting Cal %d state for channel %u\n",
currCal->calData->calType, conf->channel->center_freq);
ah->curchan->CalValid &= ~currCal->calData->calType;
currCal->calState = CAL_WAITING;
return false;
}
void ath9k_hw_start_nfcal(struct ath_hw *ah)
{
REG_SET_BIT(ah, AR_PHY_AGC_CONTROL,
AR_PHY_AGC_CONTROL_ENABLE_NF);
REG_SET_BIT(ah, AR_PHY_AGC_CONTROL,
AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
}
void ath9k_hw_loadnf(struct ath_hw *ah, struct ath9k_channel *chan)
{
struct ath9k_nfcal_hist *h;
int i, j;
int32_t val;
const u32 ar5416_cca_regs[6] = {
AR_PHY_CCA,
AR_PHY_CH1_CCA,
AR_PHY_CH2_CCA,
AR_PHY_EXT_CCA,
AR_PHY_CH1_EXT_CCA,
AR_PHY_CH2_EXT_CCA
};
u8 chainmask;
if (AR_SREV_9285(ah))
chainmask = 0x9;
else if (AR_SREV_9280(ah))
chainmask = 0x1B;
else
chainmask = 0x3F;
h = ah->nfCalHist;
for (i = 0; i < NUM_NF_READINGS; i++) {
if (chainmask & (1 << i)) {
val = REG_READ(ah, ar5416_cca_regs[i]);
val &= 0xFFFFFE00;
val |= (((u32) (h[i].privNF) << 1) & 0x1ff);
REG_WRITE(ah, ar5416_cca_regs[i], val);
}
}
REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL,
AR_PHY_AGC_CONTROL_ENABLE_NF);
REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL,
AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
for (j = 0; j < 1000; j++) {
if ((REG_READ(ah, AR_PHY_AGC_CONTROL) &
AR_PHY_AGC_CONTROL_NF) == 0)
break;
udelay(10);
}
for (i = 0; i < NUM_NF_READINGS; i++) {
if (chainmask & (1 << i)) {
val = REG_READ(ah, ar5416_cca_regs[i]);
val &= 0xFFFFFE00;
val |= (((u32) (-50) << 1) & 0x1ff);
REG_WRITE(ah, ar5416_cca_regs[i], val);
}
}
}
int16_t ath9k_hw_getnf(struct ath_hw *ah,
struct ath9k_channel *chan)
{
int16_t nf, nfThresh;
int16_t nfarray[NUM_NF_READINGS] = { 0 };
struct ath9k_nfcal_hist *h;
struct ieee80211_channel *c = chan->chan;
chan->channelFlags &= (~CHANNEL_CW_INT);
if (REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"NF did not complete in calibration window\n");
nf = 0;
chan->rawNoiseFloor = nf;
return chan->rawNoiseFloor;
} else {
ath9k_hw_do_getnf(ah, nfarray);
nf = nfarray[0];
if (getNoiseFloorThresh(ah, c->band, &nfThresh)
&& nf > nfThresh) {
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"noise floor failed detected; "
"detected %d, threshold %d\n",
nf, nfThresh);
chan->channelFlags |= CHANNEL_CW_INT;
}
}
h = ah->nfCalHist;
ath9k_hw_update_nfcal_hist_buffer(h, nfarray);
chan->rawNoiseFloor = h[0].privNF;
return chan->rawNoiseFloor;
}
void ath9k_init_nfcal_hist_buffer(struct ath_hw *ah)
{
int i, j;
s16 noise_floor;
if (AR_SREV_9280(ah))
noise_floor = AR_PHY_CCA_MAX_AR9280_GOOD_VALUE;
else if (AR_SREV_9285(ah))
noise_floor = AR_PHY_CCA_MAX_AR9285_GOOD_VALUE;
else
noise_floor = AR_PHY_CCA_MAX_AR5416_GOOD_VALUE;
for (i = 0; i < NUM_NF_READINGS; i++) {
ah->nfCalHist[i].currIndex = 0;
ah->nfCalHist[i].privNF = noise_floor;
ah->nfCalHist[i].invalidNFcount =
AR_PHY_CCA_FILTERWINDOW_LENGTH;
for (j = 0; j < ATH9K_NF_CAL_HIST_MAX; j++) {
ah->nfCalHist[i].nfCalBuffer[j] = noise_floor;
}
}
}
s16 ath9k_hw_getchan_noise(struct ath_hw *ah, struct ath9k_channel *chan)
{
s16 nf;
if (chan->rawNoiseFloor == 0)
nf = -96;
else
nf = chan->rawNoiseFloor;
if (!ath9k_hw_nf_in_range(ah, nf))
nf = ATH_DEFAULT_NOISE_FLOOR;
return nf;
}
static void ath9k_olc_temp_compensation(struct ath_hw *ah)
{
u32 rddata, i;
int delta, currPDADC, regval;
rddata = REG_READ(ah, AR_PHY_TX_PWRCTRL4);
currPDADC = MS(rddata, AR_PHY_TX_PWRCTRL_PD_AVG_OUT);
if (ah->eep_ops->get_eeprom(ah, EEP_DAC_HPWR_5G))
delta = (currPDADC - ah->initPDADC + 4) / 8;
else
delta = (currPDADC - ah->initPDADC + 5) / 10;
if (delta != ah->PDADCdelta) {
ah->PDADCdelta = delta;
for (i = 1; i < AR9280_TX_GAIN_TABLE_SIZE; i++) {
regval = ah->originalGain[i] - delta;
if (regval < 0)
regval = 0;
REG_RMW_FIELD(ah, AR_PHY_TX_GAIN_TBL1 + i * 4,
AR_PHY_TX_GAIN, regval);
}
}
}
static inline void ath9k_hw_9285_pa_cal(struct ath_hw *ah)
{
u32 regVal;
int i, offset, offs_6_1, offs_0;
u32 ccomp_org, reg_field;
u32 regList[][2] = {
{ 0x786c, 0 },
{ 0x7854, 0 },
{ 0x7820, 0 },
{ 0x7824, 0 },
{ 0x7868, 0 },
{ 0x783c, 0 },
{ 0x7838, 0 },
};
if (AR_SREV_9285_11(ah)) {
REG_WRITE(ah, AR9285_AN_TOP4, (AR9285_AN_TOP4_DEFAULT | 0x14));
udelay(10);
}
for (i = 0; i < ARRAY_SIZE(regList); i++)
regList[i][1] = REG_READ(ah, regList[i][0]);
regVal = REG_READ(ah, 0x7834);
regVal &= (~(0x1));
REG_WRITE(ah, 0x7834, regVal);
regVal = REG_READ(ah, 0x9808);
regVal |= (0x1 << 27);
REG_WRITE(ah, 0x9808, regVal);
REG_RMW_FIELD(ah, AR9285_AN_TOP3, AR9285_AN_TOP3_PWDDAC, 1);
REG_RMW_FIELD(ah, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDRXTXBB1, 1);
REG_RMW_FIELD(ah, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDV2I, 1);
REG_RMW_FIELD(ah, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDDACIF, 1);
REG_RMW_FIELD(ah, AR9285_AN_RF2G2, AR9285_AN_RF2G2_OFFCAL, 0);
REG_RMW_FIELD(ah, AR9285_AN_RF2G7, AR9285_AN_RF2G7_PWDDB, 0);
REG_RMW_FIELD(ah, AR9285_AN_RF2G1, AR9285_AN_RF2G1_ENPACAL, 0);
REG_RMW_FIELD(ah, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV1, 1);
REG_RMW_FIELD(ah, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV2, 0);
REG_RMW_FIELD(ah, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPAOUT, 0);
REG_RMW_FIELD(ah, AR9285_AN_RF2G8, AR9285_AN_RF2G8_PADRVGN2TAB0, 7);
REG_RMW_FIELD(ah, AR9285_AN_RF2G7, AR9285_AN_RF2G7_PADRVGN2TAB0, 0);
ccomp_org = MS(REG_READ(ah, AR9285_AN_RF2G6), AR9285_AN_RF2G6_CCOMP);
REG_RMW_FIELD(ah, AR9285_AN_RF2G6, AR9285_AN_RF2G6_CCOMP, 7);
REG_WRITE(ah, AR9285_AN_TOP2, 0xca0358a0);
udelay(30);
REG_RMW_FIELD(ah, AR9285_AN_RF2G6, AR9285_AN_RF2G6_OFFS, 0);
REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP, 0);
for (i = 6; i > 0; i--) {
regVal = REG_READ(ah, 0x7834);
regVal |= (1 << (19 + i));
REG_WRITE(ah, 0x7834, regVal);
udelay(1);
regVal = REG_READ(ah, 0x7834);
regVal &= (~(0x1 << (19 + i)));
reg_field = MS(REG_READ(ah, 0x7840), AR9285_AN_RXTXBB1_SPARE9);
regVal |= (reg_field << (19 + i));
REG_WRITE(ah, 0x7834, regVal);
}
REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP, 1);
udelay(1);
reg_field = MS(REG_READ(ah, AR9285_AN_RF2G9), AR9285_AN_RXTXBB1_SPARE9);
REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP, reg_field);
offs_6_1 = MS(REG_READ(ah, AR9285_AN_RF2G6), AR9285_AN_RF2G6_OFFS);
offs_0 = MS(REG_READ(ah, AR9285_AN_RF2G3), AR9285_AN_RF2G3_PDVCCOMP);
offset = (offs_6_1<<1) | offs_0;
offset = offset - 0;
offs_6_1 = offset>>1;
offs_0 = offset & 1;
REG_RMW_FIELD(ah, AR9285_AN_RF2G6, AR9285_AN_RF2G6_OFFS, offs_6_1);
REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP, offs_0);
regVal = REG_READ(ah, 0x7834);
regVal |= 0x1;
REG_WRITE(ah, 0x7834, regVal);
regVal = REG_READ(ah, 0x9808);
regVal &= (~(0x1 << 27));
REG_WRITE(ah, 0x9808, regVal);
for (i = 0; i < ARRAY_SIZE(regList); i++)
REG_WRITE(ah, regList[i][0], regList[i][1]);
REG_RMW_FIELD(ah, AR9285_AN_RF2G6, AR9285_AN_RF2G6_CCOMP, ccomp_org);
if (AR_SREV_9285_11(ah))
REG_WRITE(ah, AR9285_AN_TOP4, AR9285_AN_TOP4_DEFAULT);
}
bool ath9k_hw_calibrate(struct ath_hw *ah, struct ath9k_channel *chan,
u8 rxchainmask, bool longcal)
{
bool iscaldone = true;
struct ath9k_cal_list *currCal = ah->cal_list_curr;
if (currCal &&
(currCal->calState == CAL_RUNNING ||
currCal->calState == CAL_WAITING)) {
iscaldone = ath9k_hw_per_calibration(ah, chan,
rxchainmask, currCal);
if (iscaldone) {
ah->cal_list_curr = currCal = currCal->calNext;
if (currCal->calState == CAL_WAITING) {
iscaldone = false;
ath9k_hw_reset_calibration(ah, currCal);
}
}
}
if (longcal) {
if (AR_SREV_9285_11_OR_LATER(ah))
ath9k_hw_9285_pa_cal(ah);
if (OLC_FOR_AR9280_20_LATER)
ath9k_olc_temp_compensation(ah);
ath9k_hw_getnf(ah, chan);
ath9k_hw_loadnf(ah, ah->curchan);
ath9k_hw_start_nfcal(ah);
}
return iscaldone;
}
static bool ar9285_clc(struct ath_hw *ah, struct ath9k_channel *chan)
{
REG_SET_BIT(ah, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE);
if (IS_CHAN_HT20(chan)) {
REG_SET_BIT(ah, AR_PHY_CL_CAL_CTL, AR_PHY_PARALLEL_CAL_ENABLE);
REG_SET_BIT(ah, AR_PHY_TURBO, AR_PHY_FC_DYN2040_EN);
REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL,
AR_PHY_AGC_CONTROL_FLTR_CAL);
REG_CLR_BIT(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_CAL_ENABLE);
REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL);
if (!ath9k_hw_wait(ah, AR_PHY_AGC_CONTROL,
AR_PHY_AGC_CONTROL_CAL, 0, AH_WAIT_TIMEOUT)) {
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "offset "
"calibration failed to complete in "
"1ms; noisy ??\n");
return false;
}
REG_CLR_BIT(ah, AR_PHY_TURBO, AR_PHY_FC_DYN2040_EN);
REG_CLR_BIT(ah, AR_PHY_CL_CAL_CTL, AR_PHY_PARALLEL_CAL_ENABLE);
REG_CLR_BIT(ah, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE);
}
REG_CLR_BIT(ah, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC);
REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL);
REG_SET_BIT(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_CAL_ENABLE);
REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL);
if (!ath9k_hw_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL,
0, AH_WAIT_TIMEOUT)) {
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE, "offset calibration "
"failed to complete in 1ms; noisy ??\n");
return false;
}
REG_SET_BIT(ah, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC);
REG_CLR_BIT(ah, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE);
REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL);
return true;
}
bool ath9k_hw_init_cal(struct ath_hw *ah, struct ath9k_channel *chan)
{
if (AR_SREV_9285_12_OR_LATER(ah)) {
if (!ar9285_clc(ah, chan))
return false;
} else {
if (AR_SREV_9280_10_OR_LATER(ah)) {
REG_CLR_BIT(ah, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC);
REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL);
}
/* Calibrate the AGC */
REG_WRITE(ah, AR_PHY_AGC_CONTROL,
REG_READ(ah, AR_PHY_AGC_CONTROL) |
AR_PHY_AGC_CONTROL_CAL);
/* Poll for offset calibration complete */
if (!ath9k_hw_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL,
0, AH_WAIT_TIMEOUT)) {
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"offset calibration failed to complete in 1ms; "
"noisy environment?\n");
return false;
}
if (AR_SREV_9280_10_OR_LATER(ah)) {
REG_SET_BIT(ah, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC);
REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL);
}
}
/* Do PA Calibration */
if (AR_SREV_9285_11_OR_LATER(ah))
ath9k_hw_9285_pa_cal(ah);
/* Do NF Calibration after DC offset and other calibrations */
REG_WRITE(ah, AR_PHY_AGC_CONTROL,
REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_NF);
ah->cal_list = ah->cal_list_last = ah->cal_list_curr = NULL;
/* Enable IQ, ADC Gain and ADC DC offset CALs */
if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah)) {
if (ath9k_hw_iscal_supported(ah, ADC_GAIN_CAL)) {
INIT_CAL(&ah->adcgain_caldata);
INSERT_CAL(ah, &ah->adcgain_caldata);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"enabling ADC Gain Calibration.\n");
}
if (ath9k_hw_iscal_supported(ah, ADC_DC_CAL)) {
INIT_CAL(&ah->adcdc_caldata);
INSERT_CAL(ah, &ah->adcdc_caldata);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"enabling ADC DC Calibration.\n");
}
if (ath9k_hw_iscal_supported(ah, IQ_MISMATCH_CAL)) {
INIT_CAL(&ah->iq_caldata);
INSERT_CAL(ah, &ah->iq_caldata);
DPRINTF(ah->ah_sc, ATH_DBG_CALIBRATE,
"enabling IQ Calibration.\n");
}
ah->cal_list_curr = ah->cal_list;
if (ah->cal_list_curr)
ath9k_hw_reset_calibration(ah, ah->cal_list_curr);
}
chan->CalValid = 0;
return true;
}
const struct ath9k_percal_data iq_cal_multi_sample = {
IQ_MISMATCH_CAL,
MAX_CAL_SAMPLES,
PER_MIN_LOG_COUNT,
ath9k_hw_iqcal_collect,
ath9k_hw_iqcalibrate
};
const struct ath9k_percal_data iq_cal_single_sample = {
IQ_MISMATCH_CAL,
MIN_CAL_SAMPLES,
PER_MAX_LOG_COUNT,
ath9k_hw_iqcal_collect,
ath9k_hw_iqcalibrate
};
const struct ath9k_percal_data adc_gain_cal_multi_sample = {
ADC_GAIN_CAL,
MAX_CAL_SAMPLES,
PER_MIN_LOG_COUNT,
ath9k_hw_adc_gaincal_collect,
ath9k_hw_adc_gaincal_calibrate
};
const struct ath9k_percal_data adc_gain_cal_single_sample = {
ADC_GAIN_CAL,
MIN_CAL_SAMPLES,
PER_MAX_LOG_COUNT,
ath9k_hw_adc_gaincal_collect,
ath9k_hw_adc_gaincal_calibrate
};
const struct ath9k_percal_data adc_dc_cal_multi_sample = {
ADC_DC_CAL,
MAX_CAL_SAMPLES,
PER_MIN_LOG_COUNT,
ath9k_hw_adc_dccal_collect,
ath9k_hw_adc_dccal_calibrate
};
const struct ath9k_percal_data adc_dc_cal_single_sample = {
ADC_DC_CAL,
MIN_CAL_SAMPLES,
PER_MAX_LOG_COUNT,
ath9k_hw_adc_dccal_collect,
ath9k_hw_adc_dccal_calibrate
};
const struct ath9k_percal_data adc_init_dc_cal = {
ADC_DC_INIT_CAL,
MIN_CAL_SAMPLES,
INIT_LOG_COUNT,
ath9k_hw_adc_dccal_collect,
ath9k_hw_adc_dccal_calibrate
};