OpenCloudOS-Kernel/drivers/net/wireless/ath/ath9k/ar9003_calib.c

1188 lines
32 KiB
C

/*
* Copyright (c) 2010-2011 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "hw.h"
#include "hw-ops.h"
#include "ar9003_phy.h"
#include "ar9003_rtt.h"
#include "ar9003_mci.h"
#define MAX_MEASUREMENT MAX_IQCAL_MEASUREMENT
#define MAX_MAG_DELTA 11
#define MAX_PHS_DELTA 10
struct coeff {
int mag_coeff[AR9300_MAX_CHAINS][MAX_MEASUREMENT];
int phs_coeff[AR9300_MAX_CHAINS][MAX_MEASUREMENT];
int iqc_coeff[2];
};
enum ar9003_cal_types {
IQ_MISMATCH_CAL = BIT(0),
};
static void ar9003_hw_setup_calibration(struct ath_hw *ah,
struct ath9k_cal_list *currCal)
{
struct ath_common *common = ath9k_hw_common(ah);
/* Select calibration to run */
switch (currCal->calData->calType) {
case IQ_MISMATCH_CAL:
/*
* Start calibration with
* 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples
*/
REG_RMW_FIELD(ah, AR_PHY_TIMING4,
AR_PHY_TIMING4_IQCAL_LOG_COUNT_MAX,
currCal->calData->calCountMax);
REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_IQ);
ath_dbg(common, CALIBRATE,
"starting IQ Mismatch Calibration\n");
/* Kick-off cal */
REG_SET_BIT(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_DO_CAL);
break;
default:
ath_err(common, "Invalid calibration type\n");
break;
}
}
/*
* Generic calibration routine.
* Recalibrate the lower PHY chips to account for temperature/environment
* changes.
*/
static bool ar9003_hw_per_calibration(struct ath_hw *ah,
struct ath9k_channel *ichan,
u8 rxchainmask,
struct ath9k_cal_list *currCal)
{
struct ath9k_hw_cal_data *caldata = ah->caldata;
/* Cal is assumed not done until explicitly set below */
bool iscaldone = false;
/* Calibration in progress. */
if (currCal->calState == CAL_RUNNING) {
/* Check to see if it has finished. */
if (!(REG_READ(ah, AR_PHY_TIMING4) & AR_PHY_TIMING4_DO_CAL)) {
/*
* Accumulate cal measures for active chains
*/
currCal->calData->calCollect(ah);
ah->cal_samples++;
if (ah->cal_samples >=
currCal->calData->calNumSamples) {
unsigned int i, numChains = 0;
for (i = 0; i < AR9300_MAX_CHAINS; i++) {
if (rxchainmask & (1 << i))
numChains++;
}
/*
* Process accumulated data
*/
currCal->calData->calPostProc(ah, numChains);
/* Calibration has finished. */
caldata->CalValid |= currCal->calData->calType;
currCal->calState = CAL_DONE;
iscaldone = true;
} else {
/*
* Set-up collection of another sub-sample until we
* get desired number
*/
ar9003_hw_setup_calibration(ah, currCal);
}
}
} else if (!(caldata->CalValid & currCal->calData->calType)) {
/* If current cal is marked invalid in channel, kick it off */
ath9k_hw_reset_calibration(ah, currCal);
}
return iscaldone;
}
static bool ar9003_hw_calibrate(struct ath_hw *ah,
struct ath9k_channel *chan,
u8 rxchainmask,
bool longcal)
{
bool iscaldone = true;
struct ath9k_cal_list *currCal = ah->cal_list_curr;
/*
* For given calibration:
* 1. Call generic cal routine
* 2. When this cal is done (isCalDone) if we have more cals waiting
* (eg after reset), mask this to upper layers by not propagating
* isCalDone if it is set to TRUE.
* Instead, change isCalDone to FALSE and setup the waiting cal(s)
* to be run.
*/
if (currCal &&
(currCal->calState == CAL_RUNNING ||
currCal->calState == CAL_WAITING)) {
iscaldone = ar9003_hw_per_calibration(ah, chan,
rxchainmask, currCal);
if (iscaldone) {
ah->cal_list_curr = currCal = currCal->calNext;
if (currCal->calState == CAL_WAITING) {
iscaldone = false;
ath9k_hw_reset_calibration(ah, currCal);
}
}
}
/*
* Do NF cal only at longer intervals. Get the value from
* the previous NF cal and update history buffer.
*/
if (longcal && ath9k_hw_getnf(ah, chan)) {
/*
* Load the NF from history buffer of the current channel.
* NF is slow time-variant, so it is OK to use a historical
* value.
*/
ath9k_hw_loadnf(ah, ah->curchan);
/* start NF calibration, without updating BB NF register */
ath9k_hw_start_nfcal(ah, false);
}
return iscaldone;
}
static void ar9003_hw_iqcal_collect(struct ath_hw *ah)
{
int i;
/* Accumulate IQ cal measures for active chains */
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
if (ah->txchainmask & BIT(i)) {
ah->totalPowerMeasI[i] +=
REG_READ(ah, AR_PHY_CAL_MEAS_0(i));
ah->totalPowerMeasQ[i] +=
REG_READ(ah, AR_PHY_CAL_MEAS_1(i));
ah->totalIqCorrMeas[i] +=
(int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_2(i));
ath_dbg(ath9k_hw_common(ah), CALIBRATE,
"%d: Chn %d pmi=0x%08x;pmq=0x%08x;iqcm=0x%08x;\n",
ah->cal_samples, i, ah->totalPowerMeasI[i],
ah->totalPowerMeasQ[i],
ah->totalIqCorrMeas[i]);
}
}
}
static void ar9003_hw_iqcalibrate(struct ath_hw *ah, u8 numChains)
{
struct ath_common *common = ath9k_hw_common(ah);
u32 powerMeasQ, powerMeasI, iqCorrMeas;
u32 qCoffDenom, iCoffDenom;
int32_t qCoff, iCoff;
int iqCorrNeg, i;
static const u_int32_t offset_array[3] = {
AR_PHY_RX_IQCAL_CORR_B0,
AR_PHY_RX_IQCAL_CORR_B1,
AR_PHY_RX_IQCAL_CORR_B2,
};
for (i = 0; i < numChains; i++) {
powerMeasI = ah->totalPowerMeasI[i];
powerMeasQ = ah->totalPowerMeasQ[i];
iqCorrMeas = ah->totalIqCorrMeas[i];
ath_dbg(common, CALIBRATE,
"Starting IQ Cal and Correction for Chain %d\n", i);
ath_dbg(common, CALIBRATE,
"Original: Chn %d iq_corr_meas = 0x%08x\n",
i, ah->totalIqCorrMeas[i]);
iqCorrNeg = 0;
if (iqCorrMeas > 0x80000000) {
iqCorrMeas = (0xffffffff - iqCorrMeas) + 1;
iqCorrNeg = 1;
}
ath_dbg(common, CALIBRATE, "Chn %d pwr_meas_i = 0x%08x\n",
i, powerMeasI);
ath_dbg(common, CALIBRATE, "Chn %d pwr_meas_q = 0x%08x\n",
i, powerMeasQ);
ath_dbg(common, CALIBRATE, "iqCorrNeg is 0x%08x\n", iqCorrNeg);
iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 256;
qCoffDenom = powerMeasQ / 64;
if ((iCoffDenom != 0) && (qCoffDenom != 0)) {
iCoff = iqCorrMeas / iCoffDenom;
qCoff = powerMeasI / qCoffDenom - 64;
ath_dbg(common, CALIBRATE, "Chn %d iCoff = 0x%08x\n",
i, iCoff);
ath_dbg(common, CALIBRATE, "Chn %d qCoff = 0x%08x\n",
i, qCoff);
/* Force bounds on iCoff */
if (iCoff >= 63)
iCoff = 63;
else if (iCoff <= -63)
iCoff = -63;
/* Negate iCoff if iqCorrNeg == 0 */
if (iqCorrNeg == 0x0)
iCoff = -iCoff;
/* Force bounds on qCoff */
if (qCoff >= 63)
qCoff = 63;
else if (qCoff <= -63)
qCoff = -63;
iCoff = iCoff & 0x7f;
qCoff = qCoff & 0x7f;
ath_dbg(common, CALIBRATE,
"Chn %d : iCoff = 0x%x qCoff = 0x%x\n",
i, iCoff, qCoff);
ath_dbg(common, CALIBRATE,
"Register offset (0x%04x) before update = 0x%x\n",
offset_array[i],
REG_READ(ah, offset_array[i]));
if (AR_SREV_9565(ah) &&
(iCoff == 63 || qCoff == 63 ||
iCoff == -63 || qCoff == -63))
return;
REG_RMW_FIELD(ah, offset_array[i],
AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF,
iCoff);
REG_RMW_FIELD(ah, offset_array[i],
AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF,
qCoff);
ath_dbg(common, CALIBRATE,
"Register offset (0x%04x) QI COFF (bitfields 0x%08x) after update = 0x%x\n",
offset_array[i],
AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF,
REG_READ(ah, offset_array[i]));
ath_dbg(common, CALIBRATE,
"Register offset (0x%04x) QQ COFF (bitfields 0x%08x) after update = 0x%x\n",
offset_array[i],
AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF,
REG_READ(ah, offset_array[i]));
ath_dbg(common, CALIBRATE,
"IQ Cal and Correction done for Chain %d\n", i);
}
}
REG_SET_BIT(ah, AR_PHY_RX_IQCAL_CORR_B0,
AR_PHY_RX_IQCAL_CORR_IQCORR_ENABLE);
ath_dbg(common, CALIBRATE,
"IQ Cal and Correction (offset 0x%04x) enabled (bit position 0x%08x). New Value 0x%08x\n",
(unsigned) (AR_PHY_RX_IQCAL_CORR_B0),
AR_PHY_RX_IQCAL_CORR_IQCORR_ENABLE,
REG_READ(ah, AR_PHY_RX_IQCAL_CORR_B0));
}
static const struct ath9k_percal_data iq_cal_single_sample = {
IQ_MISMATCH_CAL,
MIN_CAL_SAMPLES,
PER_MAX_LOG_COUNT,
ar9003_hw_iqcal_collect,
ar9003_hw_iqcalibrate
};
static void ar9003_hw_init_cal_settings(struct ath_hw *ah)
{
ah->iq_caldata.calData = &iq_cal_single_sample;
if (AR_SREV_9300_20_OR_LATER(ah)) {
ah->enabled_cals |= TX_IQ_CAL;
if (AR_SREV_9485_OR_LATER(ah) && !AR_SREV_9340(ah))
ah->enabled_cals |= TX_IQ_ON_AGC_CAL;
}
ah->supp_cals = IQ_MISMATCH_CAL;
}
/*
* solve 4x4 linear equation used in loopback iq cal.
*/
static bool ar9003_hw_solve_iq_cal(struct ath_hw *ah,
s32 sin_2phi_1,
s32 cos_2phi_1,
s32 sin_2phi_2,
s32 cos_2phi_2,
s32 mag_a0_d0,
s32 phs_a0_d0,
s32 mag_a1_d0,
s32 phs_a1_d0,
s32 solved_eq[])
{
s32 f1 = cos_2phi_1 - cos_2phi_2,
f3 = sin_2phi_1 - sin_2phi_2,
f2;
s32 mag_tx, phs_tx, mag_rx, phs_rx;
const s32 result_shift = 1 << 15;
struct ath_common *common = ath9k_hw_common(ah);
f2 = (f1 * f1 + f3 * f3) / result_shift;
if (!f2) {
ath_dbg(common, CALIBRATE, "Divide by 0\n");
return false;
}
/* mag mismatch, tx */
mag_tx = f1 * (mag_a0_d0 - mag_a1_d0) + f3 * (phs_a0_d0 - phs_a1_d0);
/* phs mismatch, tx */
phs_tx = f3 * (-mag_a0_d0 + mag_a1_d0) + f1 * (phs_a0_d0 - phs_a1_d0);
mag_tx = (mag_tx / f2);
phs_tx = (phs_tx / f2);
/* mag mismatch, rx */
mag_rx = mag_a0_d0 - (cos_2phi_1 * mag_tx + sin_2phi_1 * phs_tx) /
result_shift;
/* phs mismatch, rx */
phs_rx = phs_a0_d0 + (sin_2phi_1 * mag_tx - cos_2phi_1 * phs_tx) /
result_shift;
solved_eq[0] = mag_tx;
solved_eq[1] = phs_tx;
solved_eq[2] = mag_rx;
solved_eq[3] = phs_rx;
return true;
}
static s32 ar9003_hw_find_mag_approx(struct ath_hw *ah, s32 in_re, s32 in_im)
{
s32 abs_i = abs(in_re),
abs_q = abs(in_im),
max_abs, min_abs;
if (abs_i > abs_q) {
max_abs = abs_i;
min_abs = abs_q;
} else {
max_abs = abs_q;
min_abs = abs_i;
}
return max_abs - (max_abs / 32) + (min_abs / 8) + (min_abs / 4);
}
#define DELPT 32
static bool ar9003_hw_calc_iq_corr(struct ath_hw *ah,
s32 chain_idx,
const s32 iq_res[],
s32 iqc_coeff[])
{
s32 i2_m_q2_a0_d0, i2_p_q2_a0_d0, iq_corr_a0_d0,
i2_m_q2_a0_d1, i2_p_q2_a0_d1, iq_corr_a0_d1,
i2_m_q2_a1_d0, i2_p_q2_a1_d0, iq_corr_a1_d0,
i2_m_q2_a1_d1, i2_p_q2_a1_d1, iq_corr_a1_d1;
s32 mag_a0_d0, mag_a1_d0, mag_a0_d1, mag_a1_d1,
phs_a0_d0, phs_a1_d0, phs_a0_d1, phs_a1_d1,
sin_2phi_1, cos_2phi_1,
sin_2phi_2, cos_2phi_2;
s32 mag_tx, phs_tx, mag_rx, phs_rx;
s32 solved_eq[4], mag_corr_tx, phs_corr_tx, mag_corr_rx, phs_corr_rx,
q_q_coff, q_i_coff;
const s32 res_scale = 1 << 15;
const s32 delpt_shift = 1 << 8;
s32 mag1, mag2;
struct ath_common *common = ath9k_hw_common(ah);
i2_m_q2_a0_d0 = iq_res[0] & 0xfff;
i2_p_q2_a0_d0 = (iq_res[0] >> 12) & 0xfff;
iq_corr_a0_d0 = ((iq_res[0] >> 24) & 0xff) + ((iq_res[1] & 0xf) << 8);
if (i2_m_q2_a0_d0 > 0x800)
i2_m_q2_a0_d0 = -((0xfff - i2_m_q2_a0_d0) + 1);
if (i2_p_q2_a0_d0 > 0x800)
i2_p_q2_a0_d0 = -((0xfff - i2_p_q2_a0_d0) + 1);
if (iq_corr_a0_d0 > 0x800)
iq_corr_a0_d0 = -((0xfff - iq_corr_a0_d0) + 1);
i2_m_q2_a0_d1 = (iq_res[1] >> 4) & 0xfff;
i2_p_q2_a0_d1 = (iq_res[2] & 0xfff);
iq_corr_a0_d1 = (iq_res[2] >> 12) & 0xfff;
if (i2_m_q2_a0_d1 > 0x800)
i2_m_q2_a0_d1 = -((0xfff - i2_m_q2_a0_d1) + 1);
if (i2_p_q2_a0_d1 > 0x800)
i2_p_q2_a0_d1 = -((0xfff - i2_p_q2_a0_d1) + 1);
if (iq_corr_a0_d1 > 0x800)
iq_corr_a0_d1 = -((0xfff - iq_corr_a0_d1) + 1);
i2_m_q2_a1_d0 = ((iq_res[2] >> 24) & 0xff) + ((iq_res[3] & 0xf) << 8);
i2_p_q2_a1_d0 = (iq_res[3] >> 4) & 0xfff;
iq_corr_a1_d0 = iq_res[4] & 0xfff;
if (i2_m_q2_a1_d0 > 0x800)
i2_m_q2_a1_d0 = -((0xfff - i2_m_q2_a1_d0) + 1);
if (i2_p_q2_a1_d0 > 0x800)
i2_p_q2_a1_d0 = -((0xfff - i2_p_q2_a1_d0) + 1);
if (iq_corr_a1_d0 > 0x800)
iq_corr_a1_d0 = -((0xfff - iq_corr_a1_d0) + 1);
i2_m_q2_a1_d1 = (iq_res[4] >> 12) & 0xfff;
i2_p_q2_a1_d1 = ((iq_res[4] >> 24) & 0xff) + ((iq_res[5] & 0xf) << 8);
iq_corr_a1_d1 = (iq_res[5] >> 4) & 0xfff;
if (i2_m_q2_a1_d1 > 0x800)
i2_m_q2_a1_d1 = -((0xfff - i2_m_q2_a1_d1) + 1);
if (i2_p_q2_a1_d1 > 0x800)
i2_p_q2_a1_d1 = -((0xfff - i2_p_q2_a1_d1) + 1);
if (iq_corr_a1_d1 > 0x800)
iq_corr_a1_d1 = -((0xfff - iq_corr_a1_d1) + 1);
if ((i2_p_q2_a0_d0 == 0) || (i2_p_q2_a0_d1 == 0) ||
(i2_p_q2_a1_d0 == 0) || (i2_p_q2_a1_d1 == 0)) {
ath_dbg(common, CALIBRATE,
"Divide by 0:\n"
"a0_d0=%d\n"
"a0_d1=%d\n"
"a2_d0=%d\n"
"a1_d1=%d\n",
i2_p_q2_a0_d0, i2_p_q2_a0_d1,
i2_p_q2_a1_d0, i2_p_q2_a1_d1);
return false;
}
mag_a0_d0 = (i2_m_q2_a0_d0 * res_scale) / i2_p_q2_a0_d0;
phs_a0_d0 = (iq_corr_a0_d0 * res_scale) / i2_p_q2_a0_d0;
mag_a0_d1 = (i2_m_q2_a0_d1 * res_scale) / i2_p_q2_a0_d1;
phs_a0_d1 = (iq_corr_a0_d1 * res_scale) / i2_p_q2_a0_d1;
mag_a1_d0 = (i2_m_q2_a1_d0 * res_scale) / i2_p_q2_a1_d0;
phs_a1_d0 = (iq_corr_a1_d0 * res_scale) / i2_p_q2_a1_d0;
mag_a1_d1 = (i2_m_q2_a1_d1 * res_scale) / i2_p_q2_a1_d1;
phs_a1_d1 = (iq_corr_a1_d1 * res_scale) / i2_p_q2_a1_d1;
/* w/o analog phase shift */
sin_2phi_1 = (((mag_a0_d0 - mag_a0_d1) * delpt_shift) / DELPT);
/* w/o analog phase shift */
cos_2phi_1 = (((phs_a0_d1 - phs_a0_d0) * delpt_shift) / DELPT);
/* w/ analog phase shift */
sin_2phi_2 = (((mag_a1_d0 - mag_a1_d1) * delpt_shift) / DELPT);
/* w/ analog phase shift */
cos_2phi_2 = (((phs_a1_d1 - phs_a1_d0) * delpt_shift) / DELPT);
/*
* force sin^2 + cos^2 = 1;
* find magnitude by approximation
*/
mag1 = ar9003_hw_find_mag_approx(ah, cos_2phi_1, sin_2phi_1);
mag2 = ar9003_hw_find_mag_approx(ah, cos_2phi_2, sin_2phi_2);
if ((mag1 == 0) || (mag2 == 0)) {
ath_dbg(common, CALIBRATE, "Divide by 0: mag1=%d, mag2=%d\n",
mag1, mag2);
return false;
}
/* normalization sin and cos by mag */
sin_2phi_1 = (sin_2phi_1 * res_scale / mag1);
cos_2phi_1 = (cos_2phi_1 * res_scale / mag1);
sin_2phi_2 = (sin_2phi_2 * res_scale / mag2);
cos_2phi_2 = (cos_2phi_2 * res_scale / mag2);
/* calculate IQ mismatch */
if (!ar9003_hw_solve_iq_cal(ah,
sin_2phi_1, cos_2phi_1,
sin_2phi_2, cos_2phi_2,
mag_a0_d0, phs_a0_d0,
mag_a1_d0,
phs_a1_d0, solved_eq)) {
ath_dbg(common, CALIBRATE,
"Call to ar9003_hw_solve_iq_cal() failed\n");
return false;
}
mag_tx = solved_eq[0];
phs_tx = solved_eq[1];
mag_rx = solved_eq[2];
phs_rx = solved_eq[3];
ath_dbg(common, CALIBRATE,
"chain %d: mag mismatch=%d phase mismatch=%d\n",
chain_idx, mag_tx/res_scale, phs_tx/res_scale);
if (res_scale == mag_tx) {
ath_dbg(common, CALIBRATE,
"Divide by 0: mag_tx=%d, res_scale=%d\n",
mag_tx, res_scale);
return false;
}
/* calculate and quantize Tx IQ correction factor */
mag_corr_tx = (mag_tx * res_scale) / (res_scale - mag_tx);
phs_corr_tx = -phs_tx;
q_q_coff = (mag_corr_tx * 128 / res_scale);
q_i_coff = (phs_corr_tx * 256 / res_scale);
ath_dbg(common, CALIBRATE, "tx chain %d: mag corr=%d phase corr=%d\n",
chain_idx, q_q_coff, q_i_coff);
if (q_i_coff < -63)
q_i_coff = -63;
if (q_i_coff > 63)
q_i_coff = 63;
if (q_q_coff < -63)
q_q_coff = -63;
if (q_q_coff > 63)
q_q_coff = 63;
iqc_coeff[0] = (q_q_coff * 128) + q_i_coff;
ath_dbg(common, CALIBRATE, "tx chain %d: iq corr coeff=%x\n",
chain_idx, iqc_coeff[0]);
if (-mag_rx == res_scale) {
ath_dbg(common, CALIBRATE,
"Divide by 0: mag_rx=%d, res_scale=%d\n",
mag_rx, res_scale);
return false;
}
/* calculate and quantize Rx IQ correction factors */
mag_corr_rx = (-mag_rx * res_scale) / (res_scale + mag_rx);
phs_corr_rx = -phs_rx;
q_q_coff = (mag_corr_rx * 128 / res_scale);
q_i_coff = (phs_corr_rx * 256 / res_scale);
ath_dbg(common, CALIBRATE, "rx chain %d: mag corr=%d phase corr=%d\n",
chain_idx, q_q_coff, q_i_coff);
if (q_i_coff < -63)
q_i_coff = -63;
if (q_i_coff > 63)
q_i_coff = 63;
if (q_q_coff < -63)
q_q_coff = -63;
if (q_q_coff > 63)
q_q_coff = 63;
iqc_coeff[1] = (q_q_coff * 128) + q_i_coff;
ath_dbg(common, CALIBRATE, "rx chain %d: iq corr coeff=%x\n",
chain_idx, iqc_coeff[1]);
return true;
}
static void ar9003_hw_detect_outlier(int *mp_coeff, int nmeasurement,
int max_delta)
{
int mp_max = -64, max_idx = 0;
int mp_min = 63, min_idx = 0;
int mp_avg = 0, i, outlier_idx = 0, mp_count = 0;
/* find min/max mismatch across all calibrated gains */
for (i = 0; i < nmeasurement; i++) {
if (mp_coeff[i] > mp_max) {
mp_max = mp_coeff[i];
max_idx = i;
} else if (mp_coeff[i] < mp_min) {
mp_min = mp_coeff[i];
min_idx = i;
}
}
/* find average (exclude max abs value) */
for (i = 0; i < nmeasurement; i++) {
if ((abs(mp_coeff[i]) < abs(mp_max)) ||
(abs(mp_coeff[i]) < abs(mp_min))) {
mp_avg += mp_coeff[i];
mp_count++;
}
}
/*
* finding mean magnitude/phase if possible, otherwise
* just use the last value as the mean
*/
if (mp_count)
mp_avg /= mp_count;
else
mp_avg = mp_coeff[nmeasurement - 1];
/* detect outlier */
if (abs(mp_max - mp_min) > max_delta) {
if (abs(mp_max - mp_avg) > abs(mp_min - mp_avg))
outlier_idx = max_idx;
else
outlier_idx = min_idx;
mp_coeff[outlier_idx] = mp_avg;
}
}
static void ar9003_hw_tx_iqcal_load_avg_2_passes(struct ath_hw *ah,
struct coeff *coeff,
bool is_reusable)
{
int i, im, nmeasurement;
u32 tx_corr_coeff[MAX_MEASUREMENT][AR9300_MAX_CHAINS];
struct ath9k_hw_cal_data *caldata = ah->caldata;
memset(tx_corr_coeff, 0, sizeof(tx_corr_coeff));
for (i = 0; i < MAX_MEASUREMENT / 2; i++) {
tx_corr_coeff[i * 2][0] = tx_corr_coeff[(i * 2) + 1][0] =
AR_PHY_TX_IQCAL_CORR_COEFF_B0(i);
if (!AR_SREV_9485(ah)) {
tx_corr_coeff[i * 2][1] =
tx_corr_coeff[(i * 2) + 1][1] =
AR_PHY_TX_IQCAL_CORR_COEFF_B1(i);
tx_corr_coeff[i * 2][2] =
tx_corr_coeff[(i * 2) + 1][2] =
AR_PHY_TX_IQCAL_CORR_COEFF_B2(i);
}
}
/* Load the average of 2 passes */
for (i = 0; i < AR9300_MAX_CHAINS; i++) {
if (!(ah->txchainmask & (1 << i)))
continue;
nmeasurement = REG_READ_FIELD(ah,
AR_PHY_TX_IQCAL_STATUS_B0,
AR_PHY_CALIBRATED_GAINS_0);
if (nmeasurement > MAX_MEASUREMENT)
nmeasurement = MAX_MEASUREMENT;
/* detect outlier only if nmeasurement > 1 */
if (nmeasurement > 1) {
/* Detect magnitude outlier */
ar9003_hw_detect_outlier(coeff->mag_coeff[i],
nmeasurement, MAX_MAG_DELTA);
/* Detect phase outlier */
ar9003_hw_detect_outlier(coeff->phs_coeff[i],
nmeasurement, MAX_PHS_DELTA);
}
for (im = 0; im < nmeasurement; im++) {
coeff->iqc_coeff[0] = (coeff->mag_coeff[i][im] & 0x7f) |
((coeff->phs_coeff[i][im] & 0x7f) << 7);
if ((im % 2) == 0)
REG_RMW_FIELD(ah, tx_corr_coeff[im][i],
AR_PHY_TX_IQCAL_CORR_COEFF_00_COEFF_TABLE,
coeff->iqc_coeff[0]);
else
REG_RMW_FIELD(ah, tx_corr_coeff[im][i],
AR_PHY_TX_IQCAL_CORR_COEFF_01_COEFF_TABLE,
coeff->iqc_coeff[0]);
if (caldata)
caldata->tx_corr_coeff[im][i] =
coeff->iqc_coeff[0];
}
if (caldata)
caldata->num_measures[i] = nmeasurement;
}
REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_3,
AR_PHY_TX_IQCAL_CONTROL_3_IQCORR_EN, 0x1);
REG_RMW_FIELD(ah, AR_PHY_RX_IQCAL_CORR_B0,
AR_PHY_RX_IQCAL_CORR_B0_LOOPBACK_IQCORR_EN, 0x1);
if (caldata)
caldata->done_txiqcal_once = is_reusable;
return;
}
static bool ar9003_hw_tx_iq_cal_run(struct ath_hw *ah)
{
struct ath_common *common = ath9k_hw_common(ah);
u8 tx_gain_forced;
tx_gain_forced = REG_READ_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
AR_PHY_TXGAIN_FORCE);
if (tx_gain_forced)
REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
AR_PHY_TXGAIN_FORCE, 0);
REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_START,
AR_PHY_TX_IQCAL_START_DO_CAL, 1);
if (!ath9k_hw_wait(ah, AR_PHY_TX_IQCAL_START,
AR_PHY_TX_IQCAL_START_DO_CAL, 0,
AH_WAIT_TIMEOUT)) {
ath_dbg(common, CALIBRATE, "Tx IQ Cal is not completed\n");
return false;
}
return true;
}
static void ar9003_hw_tx_iq_cal_post_proc(struct ath_hw *ah, bool is_reusable)
{
struct ath_common *common = ath9k_hw_common(ah);
const u32 txiqcal_status[AR9300_MAX_CHAINS] = {
AR_PHY_TX_IQCAL_STATUS_B0,
AR_PHY_TX_IQCAL_STATUS_B1,
AR_PHY_TX_IQCAL_STATUS_B2,
};
const u_int32_t chan_info_tab[] = {
AR_PHY_CHAN_INFO_TAB_0,
AR_PHY_CHAN_INFO_TAB_1,
AR_PHY_CHAN_INFO_TAB_2,
};
struct coeff coeff;
s32 iq_res[6];
int i, im, j;
int nmeasurement;
for (i = 0; i < AR9300_MAX_CHAINS; i++) {
if (!(ah->txchainmask & (1 << i)))
continue;
nmeasurement = REG_READ_FIELD(ah,
AR_PHY_TX_IQCAL_STATUS_B0,
AR_PHY_CALIBRATED_GAINS_0);
if (nmeasurement > MAX_MEASUREMENT)
nmeasurement = MAX_MEASUREMENT;
for (im = 0; im < nmeasurement; im++) {
ath_dbg(common, CALIBRATE,
"Doing Tx IQ Cal for chain %d\n", i);
if (REG_READ(ah, txiqcal_status[i]) &
AR_PHY_TX_IQCAL_STATUS_FAILED) {
ath_dbg(common, CALIBRATE,
"Tx IQ Cal failed for chain %d\n", i);
goto tx_iqcal_fail;
}
for (j = 0; j < 3; j++) {
u32 idx = 2 * j, offset = 4 * (3 * im + j);
REG_RMW_FIELD(ah,
AR_PHY_CHAN_INFO_MEMORY,
AR_PHY_CHAN_INFO_TAB_S2_READ,
0);
/* 32 bits */
iq_res[idx] = REG_READ(ah,
chan_info_tab[i] +
offset);
REG_RMW_FIELD(ah,
AR_PHY_CHAN_INFO_MEMORY,
AR_PHY_CHAN_INFO_TAB_S2_READ,
1);
/* 16 bits */
iq_res[idx + 1] = 0xffff & REG_READ(ah,
chan_info_tab[i] + offset);
ath_dbg(common, CALIBRATE,
"IQ_RES[%d]=0x%x IQ_RES[%d]=0x%x\n",
idx, iq_res[idx], idx + 1,
iq_res[idx + 1]);
}
if (!ar9003_hw_calc_iq_corr(ah, i, iq_res,
coeff.iqc_coeff)) {
ath_dbg(common, CALIBRATE,
"Failed in calculation of IQ correction\n");
goto tx_iqcal_fail;
}
coeff.mag_coeff[i][im] = coeff.iqc_coeff[0] & 0x7f;
coeff.phs_coeff[i][im] =
(coeff.iqc_coeff[0] >> 7) & 0x7f;
if (coeff.mag_coeff[i][im] > 63)
coeff.mag_coeff[i][im] -= 128;
if (coeff.phs_coeff[i][im] > 63)
coeff.phs_coeff[i][im] -= 128;
}
}
ar9003_hw_tx_iqcal_load_avg_2_passes(ah, &coeff, is_reusable);
return;
tx_iqcal_fail:
ath_dbg(common, CALIBRATE, "Tx IQ Cal failed\n");
return;
}
static void ar9003_hw_tx_iq_cal_reload(struct ath_hw *ah)
{
struct ath9k_hw_cal_data *caldata = ah->caldata;
u32 tx_corr_coeff[MAX_MEASUREMENT][AR9300_MAX_CHAINS];
int i, im;
memset(tx_corr_coeff, 0, sizeof(tx_corr_coeff));
for (i = 0; i < MAX_MEASUREMENT / 2; i++) {
tx_corr_coeff[i * 2][0] = tx_corr_coeff[(i * 2) + 1][0] =
AR_PHY_TX_IQCAL_CORR_COEFF_B0(i);
if (!AR_SREV_9485(ah)) {
tx_corr_coeff[i * 2][1] =
tx_corr_coeff[(i * 2) + 1][1] =
AR_PHY_TX_IQCAL_CORR_COEFF_B1(i);
tx_corr_coeff[i * 2][2] =
tx_corr_coeff[(i * 2) + 1][2] =
AR_PHY_TX_IQCAL_CORR_COEFF_B2(i);
}
}
for (i = 0; i < AR9300_MAX_CHAINS; i++) {
if (!(ah->txchainmask & (1 << i)))
continue;
for (im = 0; im < caldata->num_measures[i]; im++) {
if ((im % 2) == 0)
REG_RMW_FIELD(ah, tx_corr_coeff[im][i],
AR_PHY_TX_IQCAL_CORR_COEFF_00_COEFF_TABLE,
caldata->tx_corr_coeff[im][i]);
else
REG_RMW_FIELD(ah, tx_corr_coeff[im][i],
AR_PHY_TX_IQCAL_CORR_COEFF_01_COEFF_TABLE,
caldata->tx_corr_coeff[im][i]);
}
}
REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_3,
AR_PHY_TX_IQCAL_CONTROL_3_IQCORR_EN, 0x1);
REG_RMW_FIELD(ah, AR_PHY_RX_IQCAL_CORR_B0,
AR_PHY_RX_IQCAL_CORR_B0_LOOPBACK_IQCORR_EN, 0x1);
}
static void ar9003_hw_manual_peak_cal(struct ath_hw *ah, u8 chain, bool is_2g)
{
int offset[8], total = 0, test;
int agc_out, i;
REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_GAINSTAGES(chain),
AR_PHY_65NM_RXRF_GAINSTAGES_RX_OVERRIDE, 0x1);
REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_GAINSTAGES(chain),
AR_PHY_65NM_RXRF_GAINSTAGES_LNAON_CALDC, 0x0);
if (is_2g)
REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_GAINSTAGES(chain),
AR_PHY_65NM_RXRF_GAINSTAGES_LNA2G_GAIN_OVR, 0x0);
else
REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_GAINSTAGES(chain),
AR_PHY_65NM_RXRF_GAINSTAGES_LNA5G_GAIN_OVR, 0x0);
REG_RMW_FIELD(ah, AR_PHY_65NM_RXTX2(chain),
AR_PHY_65NM_RXTX2_RXON_OVR, 0x1);
REG_RMW_FIELD(ah, AR_PHY_65NM_RXTX2(chain),
AR_PHY_65NM_RXTX2_RXON, 0x0);
REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain),
AR_PHY_65NM_RXRF_AGC_AGC_OVERRIDE, 0x1);
REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain),
AR_PHY_65NM_RXRF_AGC_AGC_ON_OVR, 0x1);
REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain),
AR_PHY_65NM_RXRF_AGC_AGC_CAL_OVR, 0x1);
if (is_2g)
REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain),
AR_PHY_65NM_RXRF_AGC_AGC2G_DBDAC_OVR, 0x0);
else
REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain),
AR_PHY_65NM_RXRF_AGC_AGC5G_DBDAC_OVR, 0x0);
for (i = 6; i > 0; i--) {
offset[i] = BIT(i - 1);
test = total + offset[i];
if (is_2g)
REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain),
AR_PHY_65NM_RXRF_AGC_AGC2G_CALDAC_OVR,
test);
else
REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain),
AR_PHY_65NM_RXRF_AGC_AGC5G_CALDAC_OVR,
test);
udelay(100);
agc_out = REG_READ_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain),
AR_PHY_65NM_RXRF_AGC_AGC_OUT);
offset[i] = (agc_out) ? 0 : 1;
total += (offset[i] << (i - 1));
}
if (is_2g)
REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain),
AR_PHY_65NM_RXRF_AGC_AGC2G_CALDAC_OVR, total);
else
REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain),
AR_PHY_65NM_RXRF_AGC_AGC5G_CALDAC_OVR, total);
REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_GAINSTAGES(chain),
AR_PHY_65NM_RXRF_GAINSTAGES_RX_OVERRIDE, 0);
REG_RMW_FIELD(ah, AR_PHY_65NM_RXTX2(chain),
AR_PHY_65NM_RXTX2_RXON_OVR, 0);
REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain),
AR_PHY_65NM_RXRF_AGC_AGC_CAL_OVR, 0);
}
static void ar9003_hw_do_manual_peak_cal(struct ath_hw *ah,
struct ath9k_channel *chan)
{
int i;
if (!AR_SREV_9462(ah) && !AR_SREV_9565(ah) && !AR_SREV_9485(ah))
return;
for (i = 0; i < AR9300_MAX_CHAINS; i++) {
if (!(ah->rxchainmask & (1 << i)))
continue;
ar9003_hw_manual_peak_cal(ah, i, IS_CHAN_2GHZ(chan));
}
}
static void ar9003_hw_cl_cal_post_proc(struct ath_hw *ah, bool is_reusable)
{
u32 cl_idx[AR9300_MAX_CHAINS] = { AR_PHY_CL_TAB_0,
AR_PHY_CL_TAB_1,
AR_PHY_CL_TAB_2 };
struct ath9k_hw_cal_data *caldata = ah->caldata;
bool txclcal_done = false;
int i, j;
if (!caldata || !(ah->enabled_cals & TX_CL_CAL))
return;
txclcal_done = !!(REG_READ(ah, AR_PHY_AGC_CONTROL) &
AR_PHY_AGC_CONTROL_CLC_SUCCESS);
if (caldata->done_txclcal_once) {
for (i = 0; i < AR9300_MAX_CHAINS; i++) {
if (!(ah->txchainmask & (1 << i)))
continue;
for (j = 0; j < MAX_CL_TAB_ENTRY; j++)
REG_WRITE(ah, CL_TAB_ENTRY(cl_idx[i]),
caldata->tx_clcal[i][j]);
}
} else if (is_reusable && txclcal_done) {
for (i = 0; i < AR9300_MAX_CHAINS; i++) {
if (!(ah->txchainmask & (1 << i)))
continue;
for (j = 0; j < MAX_CL_TAB_ENTRY; j++)
caldata->tx_clcal[i][j] =
REG_READ(ah, CL_TAB_ENTRY(cl_idx[i]));
}
caldata->done_txclcal_once = true;
}
}
static bool ar9003_hw_init_cal(struct ath_hw *ah,
struct ath9k_channel *chan)
{
struct ath_common *common = ath9k_hw_common(ah);
struct ath9k_hw_cal_data *caldata = ah->caldata;
bool txiqcal_done = false;
bool is_reusable = true, status = true;
bool run_rtt_cal = false, run_agc_cal, sep_iq_cal = false;
bool rtt = !!(ah->caps.hw_caps & ATH9K_HW_CAP_RTT);
u32 agc_ctrl = 0, agc_supp_cals = AR_PHY_AGC_CONTROL_OFFSET_CAL |
AR_PHY_AGC_CONTROL_FLTR_CAL |
AR_PHY_AGC_CONTROL_PKDET_CAL;
/* Use chip chainmask only for calibration */
ar9003_hw_set_chain_masks(ah, ah->caps.rx_chainmask, ah->caps.tx_chainmask);
if (rtt) {
if (!ar9003_hw_rtt_restore(ah, chan))
run_rtt_cal = true;
if (run_rtt_cal)
ath_dbg(common, CALIBRATE, "RTT calibration to be done\n");
}
run_agc_cal = run_rtt_cal;
if (run_rtt_cal) {
ar9003_hw_rtt_enable(ah);
ar9003_hw_rtt_set_mask(ah, 0x00);
ar9003_hw_rtt_clear_hist(ah);
}
if (rtt && !run_rtt_cal) {
agc_ctrl = REG_READ(ah, AR_PHY_AGC_CONTROL);
agc_supp_cals &= agc_ctrl;
agc_ctrl &= ~(AR_PHY_AGC_CONTROL_OFFSET_CAL |
AR_PHY_AGC_CONTROL_FLTR_CAL |
AR_PHY_AGC_CONTROL_PKDET_CAL);
REG_WRITE(ah, AR_PHY_AGC_CONTROL, agc_ctrl);
}
if (ah->enabled_cals & TX_CL_CAL) {
if (caldata && caldata->done_txclcal_once)
REG_CLR_BIT(ah, AR_PHY_CL_CAL_CTL,
AR_PHY_CL_CAL_ENABLE);
else {
REG_SET_BIT(ah, AR_PHY_CL_CAL_CTL,
AR_PHY_CL_CAL_ENABLE);
run_agc_cal = true;
}
}
if ((IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan)) ||
!(ah->enabled_cals & TX_IQ_CAL))
goto skip_tx_iqcal;
/* Do Tx IQ Calibration */
REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_1,
AR_PHY_TX_IQCAL_CONTROL_1_IQCORR_I_Q_COFF_DELPT,
DELPT);
/*
* For AR9485 or later chips, TxIQ cal runs as part of
* AGC calibration
*/
if (ah->enabled_cals & TX_IQ_ON_AGC_CAL) {
if (caldata && !caldata->done_txiqcal_once)
REG_SET_BIT(ah, AR_PHY_TX_IQCAL_CONTROL_0,
AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL);
else
REG_CLR_BIT(ah, AR_PHY_TX_IQCAL_CONTROL_0,
AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL);
txiqcal_done = run_agc_cal = true;
} else if (caldata && !caldata->done_txiqcal_once) {
run_agc_cal = true;
sep_iq_cal = true;
}
skip_tx_iqcal:
if (ath9k_hw_mci_is_enabled(ah) && IS_CHAN_2GHZ(chan) && run_agc_cal)
ar9003_mci_init_cal_req(ah, &is_reusable);
if (sep_iq_cal) {
txiqcal_done = ar9003_hw_tx_iq_cal_run(ah);
REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
udelay(5);
REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
}
if (run_agc_cal || !(ah->ah_flags & AH_FASTCC)) {
/* Calibrate the AGC */
REG_WRITE(ah, AR_PHY_AGC_CONTROL,
REG_READ(ah, AR_PHY_AGC_CONTROL) |
AR_PHY_AGC_CONTROL_CAL);
/* Poll for offset calibration complete */
status = ath9k_hw_wait(ah, AR_PHY_AGC_CONTROL,
AR_PHY_AGC_CONTROL_CAL,
0, AH_WAIT_TIMEOUT);
ar9003_hw_do_manual_peak_cal(ah, chan);
}
if (ath9k_hw_mci_is_enabled(ah) && IS_CHAN_2GHZ(chan) && run_agc_cal)
ar9003_mci_init_cal_done(ah);
if (rtt && !run_rtt_cal) {
agc_ctrl |= agc_supp_cals;
REG_WRITE(ah, AR_PHY_AGC_CONTROL, agc_ctrl);
}
if (!status) {
if (run_rtt_cal)
ar9003_hw_rtt_disable(ah);
ath_dbg(common, CALIBRATE,
"offset calibration failed to complete in %d ms; noisy environment?\n",
AH_WAIT_TIMEOUT / 1000);
return false;
}
if (txiqcal_done)
ar9003_hw_tx_iq_cal_post_proc(ah, is_reusable);
else if (caldata && caldata->done_txiqcal_once)
ar9003_hw_tx_iq_cal_reload(ah);
ar9003_hw_cl_cal_post_proc(ah, is_reusable);
if (run_rtt_cal && caldata) {
if (is_reusable) {
if (!ath9k_hw_rfbus_req(ah))
ath_err(ath9k_hw_common(ah),
"Could not stop baseband\n");
else
ar9003_hw_rtt_fill_hist(ah);
ath9k_hw_rfbus_done(ah);
}
ar9003_hw_rtt_disable(ah);
}
/* Revert chainmask to runtime parameters */
ar9003_hw_set_chain_masks(ah, ah->rxchainmask, ah->txchainmask);
/* Initialize list pointers */
ah->cal_list = ah->cal_list_last = ah->cal_list_curr = NULL;
INIT_CAL(&ah->iq_caldata);
INSERT_CAL(ah, &ah->iq_caldata);
ath_dbg(common, CALIBRATE, "enabling IQ Calibration\n");
/* Initialize current pointer to first element in list */
ah->cal_list_curr = ah->cal_list;
if (ah->cal_list_curr)
ath9k_hw_reset_calibration(ah, ah->cal_list_curr);
if (caldata)
caldata->CalValid = 0;
return true;
}
void ar9003_hw_attach_calib_ops(struct ath_hw *ah)
{
struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
struct ath_hw_ops *ops = ath9k_hw_ops(ah);
priv_ops->init_cal_settings = ar9003_hw_init_cal_settings;
priv_ops->init_cal = ar9003_hw_init_cal;
priv_ops->setup_calibration = ar9003_hw_setup_calibration;
ops->calibrate = ar9003_hw_calibrate;
}