2218 lines
61 KiB
C
2218 lines
61 KiB
C
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved.
|
|
*/
|
|
|
|
/*
|
|
* Cross Partition Communication (XPC) sn2-based functions.
|
|
*
|
|
* Architecture specific implementation of common functions.
|
|
*
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/delay.h>
|
|
#include <asm/uncached.h>
|
|
#include <asm/sn/sn_sal.h>
|
|
#include "xpc.h"
|
|
|
|
static struct xpc_vars_sn2 *xpc_vars; /* >>> Add _sn2 suffix? */
|
|
static struct xpc_vars_part_sn2 *xpc_vars_part; /* >>> Add _sn2 suffix? */
|
|
|
|
/* SH_IPI_ACCESS shub register value on startup */
|
|
static u64 xpc_sh1_IPI_access;
|
|
static u64 xpc_sh2_IPI_access0;
|
|
static u64 xpc_sh2_IPI_access1;
|
|
static u64 xpc_sh2_IPI_access2;
|
|
static u64 xpc_sh2_IPI_access3;
|
|
|
|
/*
|
|
* Change protections to allow IPI operations.
|
|
*/
|
|
static void
|
|
xpc_allow_IPI_ops_sn2(void)
|
|
{
|
|
int node;
|
|
int nasid;
|
|
|
|
/* >>> The following should get moved into SAL. */
|
|
if (is_shub2()) {
|
|
xpc_sh2_IPI_access0 =
|
|
(u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS0));
|
|
xpc_sh2_IPI_access1 =
|
|
(u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS1));
|
|
xpc_sh2_IPI_access2 =
|
|
(u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS2));
|
|
xpc_sh2_IPI_access3 =
|
|
(u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS3));
|
|
|
|
for_each_online_node(node) {
|
|
nasid = cnodeid_to_nasid(node);
|
|
HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
|
|
-1UL);
|
|
HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
|
|
-1UL);
|
|
HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
|
|
-1UL);
|
|
HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
|
|
-1UL);
|
|
}
|
|
} else {
|
|
xpc_sh1_IPI_access =
|
|
(u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH1_IPI_ACCESS));
|
|
|
|
for_each_online_node(node) {
|
|
nasid = cnodeid_to_nasid(node);
|
|
HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
|
|
-1UL);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Restrict protections to disallow IPI operations.
|
|
*/
|
|
static void
|
|
xpc_disallow_IPI_ops_sn2(void)
|
|
{
|
|
int node;
|
|
int nasid;
|
|
|
|
/* >>> The following should get moved into SAL. */
|
|
if (is_shub2()) {
|
|
for_each_online_node(node) {
|
|
nasid = cnodeid_to_nasid(node);
|
|
HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
|
|
xpc_sh2_IPI_access0);
|
|
HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
|
|
xpc_sh2_IPI_access1);
|
|
HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
|
|
xpc_sh2_IPI_access2);
|
|
HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
|
|
xpc_sh2_IPI_access3);
|
|
}
|
|
} else {
|
|
for_each_online_node(node) {
|
|
nasid = cnodeid_to_nasid(node);
|
|
HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
|
|
xpc_sh1_IPI_access);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The following set of macros and functions are used for the sending and
|
|
* receiving of IPIs (also known as IRQs). There are two flavors of IPIs,
|
|
* one that is associated with partition activity (SGI_XPC_ACTIVATE) and
|
|
* the other that is associated with channel activity (SGI_XPC_NOTIFY).
|
|
*/
|
|
|
|
static u64
|
|
xpc_IPI_receive_sn2(AMO_t *amo)
|
|
{
|
|
return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_CLEAR);
|
|
}
|
|
|
|
static enum xp_retval
|
|
xpc_IPI_send_sn2(AMO_t *amo, u64 flag, int nasid, int phys_cpuid, int vector)
|
|
{
|
|
int ret = 0;
|
|
unsigned long irq_flags;
|
|
|
|
local_irq_save(irq_flags);
|
|
|
|
FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR, flag);
|
|
sn_send_IPI_phys(nasid, phys_cpuid, vector, 0);
|
|
|
|
/*
|
|
* We must always use the nofault function regardless of whether we
|
|
* are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
|
|
* didn't, we'd never know that the other partition is down and would
|
|
* keep sending IPIs and AMOs to it until the heartbeat times out.
|
|
*/
|
|
ret = xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->variable),
|
|
xp_nofault_PIOR_target));
|
|
|
|
local_irq_restore(irq_flags);
|
|
|
|
return ((ret == 0) ? xpSuccess : xpPioReadError);
|
|
}
|
|
|
|
static AMO_t *
|
|
xpc_IPI_init_sn2(int index)
|
|
{
|
|
AMO_t *amo = xpc_vars->amos_page + index;
|
|
|
|
(void)xpc_IPI_receive_sn2(amo); /* clear AMO variable */
|
|
return amo;
|
|
}
|
|
|
|
/*
|
|
* IPIs associated with SGI_XPC_ACTIVATE IRQ.
|
|
*/
|
|
|
|
/*
|
|
* Notify the heartbeat check thread that an activate IRQ has been received.
|
|
*/
|
|
static irqreturn_t
|
|
xpc_handle_activate_IRQ_sn2(int irq, void *dev_id)
|
|
{
|
|
atomic_inc(&xpc_activate_IRQ_rcvd);
|
|
wake_up_interruptible(&xpc_activate_IRQ_wq);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* Flag the appropriate AMO variable and send an IPI to the specified node.
|
|
*/
|
|
static void
|
|
xpc_activate_IRQ_send_sn2(u64 amos_page_pa, int from_nasid, int to_nasid,
|
|
int to_phys_cpuid)
|
|
{
|
|
int w_index = XPC_NASID_W_INDEX(from_nasid);
|
|
int b_index = XPC_NASID_B_INDEX(from_nasid);
|
|
AMO_t *amos = (AMO_t *)__va(amos_page_pa +
|
|
(XPC_ACTIVATE_IRQ_AMOS * sizeof(AMO_t)));
|
|
|
|
(void)xpc_IPI_send_sn2(&amos[w_index], (1UL << b_index), to_nasid,
|
|
to_phys_cpuid, SGI_XPC_ACTIVATE);
|
|
}
|
|
|
|
static void
|
|
xpc_activate_IRQ_send_local_sn2(int from_nasid)
|
|
{
|
|
int w_index = XPC_NASID_W_INDEX(from_nasid);
|
|
int b_index = XPC_NASID_B_INDEX(from_nasid);
|
|
AMO_t *amos = (AMO_t *)__va(xpc_vars->amos_page_pa +
|
|
(XPC_ACTIVATE_IRQ_AMOS * sizeof(AMO_t)));
|
|
|
|
/* fake the sending and receipt of an activate IRQ from remote nasid */
|
|
FETCHOP_STORE_OP(TO_AMO((u64)&amos[w_index].variable), FETCHOP_OR,
|
|
(1UL << b_index));
|
|
atomic_inc(&xpc_activate_IRQ_rcvd);
|
|
wake_up_interruptible(&xpc_activate_IRQ_wq);
|
|
}
|
|
|
|
/*
|
|
* IPIs associated with SGI_XPC_NOTIFY IRQ.
|
|
*/
|
|
|
|
/*
|
|
* Check to see if there is any channel activity to/from the specified
|
|
* partition.
|
|
*/
|
|
static void
|
|
xpc_check_for_channel_activity_sn2(struct xpc_partition *part)
|
|
{
|
|
u64 IPI_amo;
|
|
unsigned long irq_flags;
|
|
|
|
IPI_amo = xpc_IPI_receive_sn2(part->sn.sn2.local_IPI_amo_va);
|
|
if (IPI_amo == 0)
|
|
return;
|
|
|
|
spin_lock_irqsave(&part->IPI_lock, irq_flags);
|
|
part->local_IPI_amo |= IPI_amo;
|
|
spin_unlock_irqrestore(&part->IPI_lock, irq_flags);
|
|
|
|
dev_dbg(xpc_chan, "received IPI from partid=%d, IPI_amo=0x%lx\n",
|
|
XPC_PARTID(part), IPI_amo);
|
|
|
|
xpc_wakeup_channel_mgr(part);
|
|
}
|
|
|
|
/*
|
|
* Handle the receipt of a SGI_XPC_NOTIFY IRQ by seeing whether the specified
|
|
* partition actually sent it. Since SGI_XPC_NOTIFY IRQs may be shared by more
|
|
* than one partition, we use an AMO_t structure per partition to indicate
|
|
* whether a partition has sent an IPI or not. If it has, then wake up the
|
|
* associated kthread to handle it.
|
|
*
|
|
* All SGI_XPC_NOTIFY IRQs received by XPC are the result of IPIs sent by XPC
|
|
* running on other partitions.
|
|
*
|
|
* Noteworthy Arguments:
|
|
*
|
|
* irq - Interrupt ReQuest number. NOT USED.
|
|
*
|
|
* dev_id - partid of IPI's potential sender.
|
|
*/
|
|
static irqreturn_t
|
|
xpc_handle_notify_IRQ_sn2(int irq, void *dev_id)
|
|
{
|
|
short partid = (short)(u64)dev_id;
|
|
struct xpc_partition *part = &xpc_partitions[partid];
|
|
|
|
DBUG_ON(partid < 0 || partid >= xp_max_npartitions);
|
|
|
|
if (xpc_part_ref(part)) {
|
|
xpc_check_for_channel_activity_sn2(part);
|
|
|
|
xpc_part_deref(part);
|
|
}
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* Check to see if xpc_handle_notify_IRQ_sn2() dropped any IPIs on the floor
|
|
* because the write to their associated IPI amo completed after the IRQ/IPI
|
|
* was received.
|
|
*/
|
|
static void
|
|
xpc_dropped_notify_IRQ_check_sn2(struct xpc_partition *part)
|
|
{
|
|
struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
|
|
|
|
if (xpc_part_ref(part)) {
|
|
xpc_check_for_channel_activity_sn2(part);
|
|
|
|
part_sn2->dropped_notify_IRQ_timer.expires = jiffies +
|
|
XPC_P_DROPPED_IPI_WAIT_INTERVAL;
|
|
add_timer(&part_sn2->dropped_notify_IRQ_timer);
|
|
xpc_part_deref(part);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Send an IPI to the remote partition that is associated with the
|
|
* specified channel.
|
|
*/
|
|
static void
|
|
xpc_notify_IRQ_send_sn2(struct xpc_channel *ch, u8 ipi_flag,
|
|
char *ipi_flag_string, unsigned long *irq_flags)
|
|
{
|
|
struct xpc_partition *part = &xpc_partitions[ch->partid];
|
|
struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
|
|
enum xp_retval ret;
|
|
|
|
if (likely(part->act_state != XPC_P_DEACTIVATING)) {
|
|
ret = xpc_IPI_send_sn2(part_sn2->remote_IPI_amo_va,
|
|
(u64)ipi_flag << (ch->number * 8),
|
|
part_sn2->remote_IPI_nasid,
|
|
part_sn2->remote_IPI_phys_cpuid,
|
|
SGI_XPC_NOTIFY);
|
|
dev_dbg(xpc_chan, "%s sent to partid=%d, channel=%d, ret=%d\n",
|
|
ipi_flag_string, ch->partid, ch->number, ret);
|
|
if (unlikely(ret != xpSuccess)) {
|
|
if (irq_flags != NULL)
|
|
spin_unlock_irqrestore(&ch->lock, *irq_flags);
|
|
XPC_DEACTIVATE_PARTITION(part, ret);
|
|
if (irq_flags != NULL)
|
|
spin_lock_irqsave(&ch->lock, *irq_flags);
|
|
}
|
|
}
|
|
}
|
|
|
|
#define XPC_NOTIFY_IRQ_SEND_SN2(_ch, _ipi_f, _irq_f) \
|
|
xpc_notify_IRQ_send_sn2(_ch, _ipi_f, #_ipi_f, _irq_f)
|
|
|
|
/*
|
|
* Make it look like the remote partition, which is associated with the
|
|
* specified channel, sent us an IPI. This faked IPI will be handled
|
|
* by xpc_dropped_notify_IRQ_check_sn2().
|
|
*/
|
|
static void
|
|
xpc_notify_IRQ_send_local_sn2(struct xpc_channel *ch, u8 ipi_flag,
|
|
char *ipi_flag_string)
|
|
{
|
|
struct xpc_partition *part = &xpc_partitions[ch->partid];
|
|
|
|
FETCHOP_STORE_OP(TO_AMO((u64)&part->sn.sn2.local_IPI_amo_va->variable),
|
|
FETCHOP_OR, ((u64)ipi_flag << (ch->number * 8)));
|
|
dev_dbg(xpc_chan, "%s sent local from partid=%d, channel=%d\n",
|
|
ipi_flag_string, ch->partid, ch->number);
|
|
}
|
|
|
|
#define XPC_NOTIFY_IRQ_SEND_LOCAL_SN2(_ch, _ipi_f) \
|
|
xpc_notify_IRQ_send_local_sn2(_ch, _ipi_f, #_ipi_f)
|
|
|
|
static void
|
|
xpc_send_channel_closerequest_sn2(struct xpc_channel *ch,
|
|
unsigned long *irq_flags)
|
|
{
|
|
struct xpc_openclose_args *args = ch->local_openclose_args;
|
|
|
|
args->reason = ch->reason;
|
|
XPC_NOTIFY_IRQ_SEND_SN2(ch, XPC_IPI_CLOSEREQUEST, irq_flags);
|
|
}
|
|
|
|
static void
|
|
xpc_send_channel_closereply_sn2(struct xpc_channel *ch,
|
|
unsigned long *irq_flags)
|
|
{
|
|
XPC_NOTIFY_IRQ_SEND_SN2(ch, XPC_IPI_CLOSEREPLY, irq_flags);
|
|
}
|
|
|
|
static void
|
|
xpc_send_channel_openrequest_sn2(struct xpc_channel *ch,
|
|
unsigned long *irq_flags)
|
|
{
|
|
struct xpc_openclose_args *args = ch->local_openclose_args;
|
|
|
|
args->msg_size = ch->msg_size;
|
|
args->local_nentries = ch->local_nentries;
|
|
XPC_NOTIFY_IRQ_SEND_SN2(ch, XPC_IPI_OPENREQUEST, irq_flags);
|
|
}
|
|
|
|
static void
|
|
xpc_send_channel_openreply_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
|
|
{
|
|
struct xpc_openclose_args *args = ch->local_openclose_args;
|
|
|
|
args->remote_nentries = ch->remote_nentries;
|
|
args->local_nentries = ch->local_nentries;
|
|
args->local_msgqueue_pa = __pa(ch->local_msgqueue);
|
|
XPC_NOTIFY_IRQ_SEND_SN2(ch, XPC_IPI_OPENREPLY, irq_flags);
|
|
}
|
|
|
|
static void
|
|
xpc_send_channel_msgrequest_sn2(struct xpc_channel *ch)
|
|
{
|
|
XPC_NOTIFY_IRQ_SEND_SN2(ch, XPC_IPI_MSGREQUEST, NULL);
|
|
}
|
|
|
|
static void
|
|
xpc_send_channel_local_msgrequest_sn2(struct xpc_channel *ch)
|
|
{
|
|
XPC_NOTIFY_IRQ_SEND_LOCAL_SN2(ch, XPC_IPI_MSGREQUEST);
|
|
}
|
|
|
|
/*
|
|
* This next set of functions are used to keep track of when a partition is
|
|
* potentially engaged in accessing memory belonging to another partition.
|
|
*/
|
|
|
|
static void
|
|
xpc_indicate_partition_engaged_sn2(struct xpc_partition *part)
|
|
{
|
|
unsigned long irq_flags;
|
|
AMO_t *amo = (AMO_t *)__va(part->sn.sn2.remote_amos_page_pa +
|
|
(XPC_ENGAGED_PARTITIONS_AMO *
|
|
sizeof(AMO_t)));
|
|
|
|
local_irq_save(irq_flags);
|
|
|
|
/* set bit corresponding to our partid in remote partition's AMO */
|
|
FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
|
|
(1UL << sn_partition_id));
|
|
/*
|
|
* We must always use the nofault function regardless of whether we
|
|
* are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
|
|
* didn't, we'd never know that the other partition is down and would
|
|
* keep sending IPIs and AMOs to it until the heartbeat times out.
|
|
*/
|
|
(void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
|
|
variable),
|
|
xp_nofault_PIOR_target));
|
|
|
|
local_irq_restore(irq_flags);
|
|
}
|
|
|
|
static void
|
|
xpc_indicate_partition_disengaged_sn2(struct xpc_partition *part)
|
|
{
|
|
struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
|
|
unsigned long irq_flags;
|
|
AMO_t *amo = (AMO_t *)__va(part_sn2->remote_amos_page_pa +
|
|
(XPC_ENGAGED_PARTITIONS_AMO *
|
|
sizeof(AMO_t)));
|
|
|
|
local_irq_save(irq_flags);
|
|
|
|
/* clear bit corresponding to our partid in remote partition's AMO */
|
|
FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
|
|
~(1UL << sn_partition_id));
|
|
/*
|
|
* We must always use the nofault function regardless of whether we
|
|
* are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
|
|
* didn't, we'd never know that the other partition is down and would
|
|
* keep sending IPIs and AMOs to it until the heartbeat times out.
|
|
*/
|
|
(void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
|
|
variable),
|
|
xp_nofault_PIOR_target));
|
|
|
|
local_irq_restore(irq_flags);
|
|
|
|
/*
|
|
* Send activate IRQ to get other side to see that we've cleared our
|
|
* bit in their engaged partitions AMO.
|
|
*/
|
|
xpc_activate_IRQ_send_sn2(part_sn2->remote_amos_page_pa,
|
|
cnodeid_to_nasid(0),
|
|
part_sn2->activate_IRQ_nasid,
|
|
part_sn2->activate_IRQ_phys_cpuid);
|
|
}
|
|
|
|
static int
|
|
xpc_partition_engaged_sn2(short partid)
|
|
{
|
|
AMO_t *amo = xpc_vars->amos_page + XPC_ENGAGED_PARTITIONS_AMO;
|
|
|
|
/* our partition's AMO variable ANDed with partid mask */
|
|
return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
|
|
(1UL << partid)) != 0;
|
|
}
|
|
|
|
static int
|
|
xpc_any_partition_engaged_sn2(void)
|
|
{
|
|
AMO_t *amo = xpc_vars->amos_page + XPC_ENGAGED_PARTITIONS_AMO;
|
|
|
|
/* our partition's AMO variable */
|
|
return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) != 0;
|
|
}
|
|
|
|
static void
|
|
xpc_assume_partition_disengaged_sn2(short partid)
|
|
{
|
|
AMO_t *amo = xpc_vars->amos_page + XPC_ENGAGED_PARTITIONS_AMO;
|
|
|
|
/* clear bit(s) based on partid mask in our partition's AMO */
|
|
FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
|
|
~(1UL << partid));
|
|
}
|
|
|
|
/* original protection values for each node */
|
|
static u64 xpc_prot_vec_sn2[MAX_NUMNODES];
|
|
|
|
/*
|
|
* Change protections to allow AMO operations on non-Shub 1.1 systems.
|
|
*/
|
|
static enum xp_retval
|
|
xpc_allow_AMO_ops_sn2(AMO_t *amos_page)
|
|
{
|
|
u64 nasid_array = 0;
|
|
int ret;
|
|
|
|
/*
|
|
* On SHUB 1.1, we cannot call sn_change_memprotect() since the BIST
|
|
* collides with memory operations. On those systems we call
|
|
* xpc_allow_AMO_ops_shub_wars_1_1_sn2() instead.
|
|
*/
|
|
if (!enable_shub_wars_1_1()) {
|
|
ret = sn_change_memprotect(ia64_tpa((u64)amos_page), PAGE_SIZE,
|
|
SN_MEMPROT_ACCESS_CLASS_1,
|
|
&nasid_array);
|
|
if (ret != 0)
|
|
return xpSalError;
|
|
}
|
|
return xpSuccess;
|
|
}
|
|
|
|
/*
|
|
* Change protections to allow AMO operations on Shub 1.1 systems.
|
|
*/
|
|
static void
|
|
xpc_allow_AMO_ops_shub_wars_1_1_sn2(void)
|
|
{
|
|
int node;
|
|
int nasid;
|
|
|
|
if (!enable_shub_wars_1_1())
|
|
return;
|
|
|
|
for_each_online_node(node) {
|
|
nasid = cnodeid_to_nasid(node);
|
|
/* save current protection values */
|
|
xpc_prot_vec_sn2[node] =
|
|
(u64)HUB_L((u64 *)GLOBAL_MMR_ADDR(nasid,
|
|
SH1_MD_DQLP_MMR_DIR_PRIVEC0));
|
|
/* open up everything */
|
|
HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid,
|
|
SH1_MD_DQLP_MMR_DIR_PRIVEC0),
|
|
-1UL);
|
|
HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid,
|
|
SH1_MD_DQRP_MMR_DIR_PRIVEC0),
|
|
-1UL);
|
|
}
|
|
}
|
|
|
|
static enum xp_retval
|
|
xpc_rsvd_page_init_sn2(struct xpc_rsvd_page *rp)
|
|
{
|
|
AMO_t *amos_page;
|
|
int i;
|
|
int ret;
|
|
|
|
xpc_vars = XPC_RP_VARS(rp);
|
|
|
|
rp->sn.vars_pa = __pa(xpc_vars);
|
|
|
|
/* vars_part array follows immediately after vars */
|
|
xpc_vars_part = (struct xpc_vars_part_sn2 *)((u8 *)XPC_RP_VARS(rp) +
|
|
XPC_RP_VARS_SIZE);
|
|
|
|
/*
|
|
* Before clearing xpc_vars, see if a page of AMOs had been previously
|
|
* allocated. If not we'll need to allocate one and set permissions
|
|
* so that cross-partition AMOs are allowed.
|
|
*
|
|
* The allocated AMO page needs MCA reporting to remain disabled after
|
|
* XPC has unloaded. To make this work, we keep a copy of the pointer
|
|
* to this page (i.e., amos_page) in the struct xpc_vars structure,
|
|
* which is pointed to by the reserved page, and re-use that saved copy
|
|
* on subsequent loads of XPC. This AMO page is never freed, and its
|
|
* memory protections are never restricted.
|
|
*/
|
|
amos_page = xpc_vars->amos_page;
|
|
if (amos_page == NULL) {
|
|
amos_page = (AMO_t *)TO_AMO(uncached_alloc_page(0, 1));
|
|
if (amos_page == NULL) {
|
|
dev_err(xpc_part, "can't allocate page of AMOs\n");
|
|
return xpNoMemory;
|
|
}
|
|
|
|
/*
|
|
* Open up AMO-R/W to cpu. This is done on Shub 1.1 systems
|
|
* when xpc_allow_AMO_ops_shub_wars_1_1_sn2() is called.
|
|
*/
|
|
ret = xpc_allow_AMO_ops_sn2(amos_page);
|
|
if (ret != xpSuccess) {
|
|
dev_err(xpc_part, "can't allow AMO operations\n");
|
|
uncached_free_page(__IA64_UNCACHED_OFFSET |
|
|
TO_PHYS((u64)amos_page), 1);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* clear xpc_vars */
|
|
memset(xpc_vars, 0, sizeof(struct xpc_vars_sn2));
|
|
|
|
xpc_vars->version = XPC_V_VERSION;
|
|
xpc_vars->activate_IRQ_nasid = cpuid_to_nasid(0);
|
|
xpc_vars->activate_IRQ_phys_cpuid = cpu_physical_id(0);
|
|
xpc_vars->vars_part_pa = __pa(xpc_vars_part);
|
|
xpc_vars->amos_page_pa = ia64_tpa((u64)amos_page);
|
|
xpc_vars->amos_page = amos_page; /* save for next load of XPC */
|
|
|
|
/* clear xpc_vars_part */
|
|
memset((u64 *)xpc_vars_part, 0, sizeof(struct xpc_vars_part_sn2) *
|
|
xp_max_npartitions);
|
|
|
|
/* initialize the activate IRQ related AMO variables */
|
|
for (i = 0; i < xp_nasid_mask_words; i++)
|
|
(void)xpc_IPI_init_sn2(XPC_ACTIVATE_IRQ_AMOS + i);
|
|
|
|
/* initialize the engaged remote partitions related AMO variables */
|
|
(void)xpc_IPI_init_sn2(XPC_ENGAGED_PARTITIONS_AMO);
|
|
(void)xpc_IPI_init_sn2(XPC_DEACTIVATE_REQUEST_AMO);
|
|
|
|
return xpSuccess;
|
|
}
|
|
|
|
static void
|
|
xpc_increment_heartbeat_sn2(void)
|
|
{
|
|
xpc_vars->heartbeat++;
|
|
}
|
|
|
|
static void
|
|
xpc_offline_heartbeat_sn2(void)
|
|
{
|
|
xpc_increment_heartbeat_sn2();
|
|
xpc_vars->heartbeat_offline = 1;
|
|
}
|
|
|
|
static void
|
|
xpc_online_heartbeat_sn2(void)
|
|
{
|
|
xpc_increment_heartbeat_sn2();
|
|
xpc_vars->heartbeat_offline = 0;
|
|
}
|
|
|
|
static void
|
|
xpc_heartbeat_init_sn2(void)
|
|
{
|
|
DBUG_ON(xpc_vars == NULL);
|
|
|
|
bitmap_zero(xpc_vars->heartbeating_to_mask, XP_MAX_NPARTITIONS_SN2);
|
|
xpc_heartbeating_to_mask = &xpc_vars->heartbeating_to_mask[0];
|
|
xpc_online_heartbeat_sn2();
|
|
}
|
|
|
|
static void
|
|
xpc_heartbeat_exit_sn2(void)
|
|
{
|
|
xpc_offline_heartbeat_sn2();
|
|
}
|
|
|
|
/*
|
|
* At periodic intervals, scan through all active partitions and ensure
|
|
* their heartbeat is still active. If not, the partition is deactivated.
|
|
*/
|
|
static void
|
|
xpc_check_remote_hb_sn2(void)
|
|
{
|
|
struct xpc_vars_sn2 *remote_vars;
|
|
struct xpc_partition *part;
|
|
short partid;
|
|
enum xp_retval ret;
|
|
|
|
remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer;
|
|
|
|
for (partid = 0; partid < xp_max_npartitions; partid++) {
|
|
|
|
if (xpc_exiting)
|
|
break;
|
|
|
|
if (partid == sn_partition_id)
|
|
continue;
|
|
|
|
part = &xpc_partitions[partid];
|
|
|
|
if (part->act_state == XPC_P_INACTIVE ||
|
|
part->act_state == XPC_P_DEACTIVATING) {
|
|
continue;
|
|
}
|
|
|
|
/* pull the remote_hb cache line */
|
|
ret = xp_remote_memcpy(remote_vars,
|
|
(void *)part->sn.sn2.remote_vars_pa,
|
|
XPC_RP_VARS_SIZE);
|
|
if (ret != xpSuccess) {
|
|
XPC_DEACTIVATE_PARTITION(part, ret);
|
|
continue;
|
|
}
|
|
|
|
dev_dbg(xpc_part, "partid = %d, heartbeat = %ld, last_heartbeat"
|
|
" = %ld, heartbeat_offline = %ld, HB_mask[0] = 0x%lx\n",
|
|
partid, remote_vars->heartbeat, part->last_heartbeat,
|
|
remote_vars->heartbeat_offline,
|
|
remote_vars->heartbeating_to_mask[0]);
|
|
|
|
if (((remote_vars->heartbeat == part->last_heartbeat) &&
|
|
(remote_vars->heartbeat_offline == 0)) ||
|
|
!xpc_hb_allowed(sn_partition_id,
|
|
&remote_vars->heartbeating_to_mask)) {
|
|
|
|
XPC_DEACTIVATE_PARTITION(part, xpNoHeartbeat);
|
|
continue;
|
|
}
|
|
|
|
part->last_heartbeat = remote_vars->heartbeat;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get a copy of the remote partition's XPC variables from the reserved page.
|
|
*
|
|
* remote_vars points to a buffer that is cacheline aligned for BTE copies and
|
|
* assumed to be of size XPC_RP_VARS_SIZE.
|
|
*/
|
|
static enum xp_retval
|
|
xpc_get_remote_vars_sn2(u64 remote_vars_pa, struct xpc_vars_sn2 *remote_vars)
|
|
{
|
|
enum xp_retval ret;
|
|
|
|
if (remote_vars_pa == 0)
|
|
return xpVarsNotSet;
|
|
|
|
/* pull over the cross partition variables */
|
|
ret = xp_remote_memcpy(remote_vars, (void *)remote_vars_pa,
|
|
XPC_RP_VARS_SIZE);
|
|
if (ret != xpSuccess)
|
|
return ret;
|
|
|
|
if (XPC_VERSION_MAJOR(remote_vars->version) !=
|
|
XPC_VERSION_MAJOR(XPC_V_VERSION)) {
|
|
return xpBadVersion;
|
|
}
|
|
|
|
return xpSuccess;
|
|
}
|
|
|
|
static void
|
|
xpc_request_partition_activation_sn2(struct xpc_rsvd_page *remote_rp,
|
|
u64 remote_rp_pa, int nasid)
|
|
{
|
|
xpc_activate_IRQ_send_local_sn2(nasid);
|
|
}
|
|
|
|
static void
|
|
xpc_request_partition_reactivation_sn2(struct xpc_partition *part)
|
|
{
|
|
xpc_activate_IRQ_send_local_sn2(part->sn.sn2.activate_IRQ_nasid);
|
|
}
|
|
|
|
static void
|
|
xpc_request_partition_deactivation_sn2(struct xpc_partition *part)
|
|
{
|
|
struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
|
|
unsigned long irq_flags;
|
|
AMO_t *amo = (AMO_t *)__va(part_sn2->remote_amos_page_pa +
|
|
(XPC_DEACTIVATE_REQUEST_AMO * sizeof(AMO_t)));
|
|
|
|
local_irq_save(irq_flags);
|
|
|
|
/* set bit corresponding to our partid in remote partition's AMO */
|
|
FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
|
|
(1UL << sn_partition_id));
|
|
/*
|
|
* We must always use the nofault function regardless of whether we
|
|
* are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
|
|
* didn't, we'd never know that the other partition is down and would
|
|
* keep sending IPIs and AMOs to it until the heartbeat times out.
|
|
*/
|
|
(void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
|
|
variable),
|
|
xp_nofault_PIOR_target));
|
|
|
|
local_irq_restore(irq_flags);
|
|
|
|
/*
|
|
* Send activate IRQ to get other side to see that we've set our
|
|
* bit in their deactivate request AMO.
|
|
*/
|
|
xpc_activate_IRQ_send_sn2(part_sn2->remote_amos_page_pa,
|
|
cnodeid_to_nasid(0),
|
|
part_sn2->activate_IRQ_nasid,
|
|
part_sn2->activate_IRQ_phys_cpuid);
|
|
}
|
|
|
|
static void
|
|
xpc_cancel_partition_deactivation_request_sn2(struct xpc_partition *part)
|
|
{
|
|
unsigned long irq_flags;
|
|
AMO_t *amo = (AMO_t *)__va(part->sn.sn2.remote_amos_page_pa +
|
|
(XPC_DEACTIVATE_REQUEST_AMO * sizeof(AMO_t)));
|
|
|
|
local_irq_save(irq_flags);
|
|
|
|
/* clear bit corresponding to our partid in remote partition's AMO */
|
|
FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
|
|
~(1UL << sn_partition_id));
|
|
/*
|
|
* We must always use the nofault function regardless of whether we
|
|
* are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
|
|
* didn't, we'd never know that the other partition is down and would
|
|
* keep sending IPIs and AMOs to it until the heartbeat times out.
|
|
*/
|
|
(void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
|
|
variable),
|
|
xp_nofault_PIOR_target));
|
|
|
|
local_irq_restore(irq_flags);
|
|
}
|
|
|
|
static int
|
|
xpc_partition_deactivation_requested_sn2(short partid)
|
|
{
|
|
AMO_t *amo = xpc_vars->amos_page + XPC_DEACTIVATE_REQUEST_AMO;
|
|
|
|
/* our partition's AMO variable ANDed with partid mask */
|
|
return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
|
|
(1UL << partid)) != 0;
|
|
}
|
|
|
|
/*
|
|
* Update the remote partition's info.
|
|
*/
|
|
static void
|
|
xpc_update_partition_info_sn2(struct xpc_partition *part, u8 remote_rp_version,
|
|
unsigned long *remote_rp_stamp, u64 remote_rp_pa,
|
|
u64 remote_vars_pa,
|
|
struct xpc_vars_sn2 *remote_vars)
|
|
{
|
|
struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
|
|
|
|
part->remote_rp_version = remote_rp_version;
|
|
dev_dbg(xpc_part, " remote_rp_version = 0x%016x\n",
|
|
part->remote_rp_version);
|
|
|
|
part->remote_rp_stamp = *remote_rp_stamp;
|
|
dev_dbg(xpc_part, " remote_rp_stamp = 0x%016lx\n",
|
|
part->remote_rp_stamp);
|
|
|
|
part->remote_rp_pa = remote_rp_pa;
|
|
dev_dbg(xpc_part, " remote_rp_pa = 0x%016lx\n", part->remote_rp_pa);
|
|
|
|
part_sn2->remote_vars_pa = remote_vars_pa;
|
|
dev_dbg(xpc_part, " remote_vars_pa = 0x%016lx\n",
|
|
part_sn2->remote_vars_pa);
|
|
|
|
part->last_heartbeat = remote_vars->heartbeat;
|
|
dev_dbg(xpc_part, " last_heartbeat = 0x%016lx\n",
|
|
part->last_heartbeat);
|
|
|
|
part_sn2->remote_vars_part_pa = remote_vars->vars_part_pa;
|
|
dev_dbg(xpc_part, " remote_vars_part_pa = 0x%016lx\n",
|
|
part_sn2->remote_vars_part_pa);
|
|
|
|
part_sn2->activate_IRQ_nasid = remote_vars->activate_IRQ_nasid;
|
|
dev_dbg(xpc_part, " activate_IRQ_nasid = 0x%x\n",
|
|
part_sn2->activate_IRQ_nasid);
|
|
|
|
part_sn2->activate_IRQ_phys_cpuid =
|
|
remote_vars->activate_IRQ_phys_cpuid;
|
|
dev_dbg(xpc_part, " activate_IRQ_phys_cpuid = 0x%x\n",
|
|
part_sn2->activate_IRQ_phys_cpuid);
|
|
|
|
part_sn2->remote_amos_page_pa = remote_vars->amos_page_pa;
|
|
dev_dbg(xpc_part, " remote_amos_page_pa = 0x%lx\n",
|
|
part_sn2->remote_amos_page_pa);
|
|
|
|
part_sn2->remote_vars_version = remote_vars->version;
|
|
dev_dbg(xpc_part, " remote_vars_version = 0x%x\n",
|
|
part_sn2->remote_vars_version);
|
|
}
|
|
|
|
/*
|
|
* Prior code has determined the nasid which generated an IPI. Inspect
|
|
* that nasid to determine if its partition needs to be activated or
|
|
* deactivated.
|
|
*
|
|
* A partition is consider "awaiting activation" if our partition
|
|
* flags indicate it is not active and it has a heartbeat. A
|
|
* partition is considered "awaiting deactivation" if our partition
|
|
* flags indicate it is active but it has no heartbeat or it is not
|
|
* sending its heartbeat to us.
|
|
*
|
|
* To determine the heartbeat, the remote nasid must have a properly
|
|
* initialized reserved page.
|
|
*/
|
|
static void
|
|
xpc_identify_activate_IRQ_req_sn2(int nasid)
|
|
{
|
|
struct xpc_rsvd_page *remote_rp;
|
|
struct xpc_vars_sn2 *remote_vars;
|
|
u64 remote_rp_pa;
|
|
u64 remote_vars_pa;
|
|
int remote_rp_version;
|
|
int reactivate = 0;
|
|
unsigned long remote_rp_stamp = 0;
|
|
short partid;
|
|
struct xpc_partition *part;
|
|
struct xpc_partition_sn2 *part_sn2;
|
|
enum xp_retval ret;
|
|
|
|
/* pull over the reserved page structure */
|
|
|
|
remote_rp = (struct xpc_rsvd_page *)xpc_remote_copy_buffer;
|
|
|
|
ret = xpc_get_remote_rp(nasid, NULL, remote_rp, &remote_rp_pa);
|
|
if (ret != xpSuccess) {
|
|
dev_warn(xpc_part, "unable to get reserved page from nasid %d, "
|
|
"which sent interrupt, reason=%d\n", nasid, ret);
|
|
return;
|
|
}
|
|
|
|
remote_vars_pa = remote_rp->sn.vars_pa;
|
|
remote_rp_version = remote_rp->version;
|
|
remote_rp_stamp = remote_rp->stamp;
|
|
|
|
partid = remote_rp->SAL_partid;
|
|
part = &xpc_partitions[partid];
|
|
part_sn2 = &part->sn.sn2;
|
|
|
|
/* pull over the cross partition variables */
|
|
|
|
remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer;
|
|
|
|
ret = xpc_get_remote_vars_sn2(remote_vars_pa, remote_vars);
|
|
if (ret != xpSuccess) {
|
|
dev_warn(xpc_part, "unable to get XPC variables from nasid %d, "
|
|
"which sent interrupt, reason=%d\n", nasid, ret);
|
|
|
|
XPC_DEACTIVATE_PARTITION(part, ret);
|
|
return;
|
|
}
|
|
|
|
part->activate_IRQ_rcvd++;
|
|
|
|
dev_dbg(xpc_part, "partid for nasid %d is %d; IRQs = %d; HB = "
|
|
"%ld:0x%lx\n", (int)nasid, (int)partid, part->activate_IRQ_rcvd,
|
|
remote_vars->heartbeat, remote_vars->heartbeating_to_mask[0]);
|
|
|
|
if (xpc_partition_disengaged(part) &&
|
|
part->act_state == XPC_P_INACTIVE) {
|
|
|
|
xpc_update_partition_info_sn2(part, remote_rp_version,
|
|
&remote_rp_stamp, remote_rp_pa,
|
|
remote_vars_pa, remote_vars);
|
|
|
|
if (xpc_partition_deactivation_requested_sn2(partid)) {
|
|
/*
|
|
* Other side is waiting on us to deactivate even though
|
|
* we already have.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
xpc_activate_partition(part);
|
|
return;
|
|
}
|
|
|
|
DBUG_ON(part->remote_rp_version == 0);
|
|
DBUG_ON(part_sn2->remote_vars_version == 0);
|
|
|
|
if (remote_rp_stamp != part->remote_rp_stamp) {
|
|
|
|
/* the other side rebooted */
|
|
|
|
DBUG_ON(xpc_partition_engaged_sn2(partid));
|
|
DBUG_ON(xpc_partition_deactivation_requested_sn2(partid));
|
|
|
|
xpc_update_partition_info_sn2(part, remote_rp_version,
|
|
&remote_rp_stamp, remote_rp_pa,
|
|
remote_vars_pa, remote_vars);
|
|
reactivate = 1;
|
|
}
|
|
|
|
if (part->disengage_timeout > 0 && !xpc_partition_disengaged(part)) {
|
|
/* still waiting on other side to disengage from us */
|
|
return;
|
|
}
|
|
|
|
if (reactivate)
|
|
XPC_DEACTIVATE_PARTITION(part, xpReactivating);
|
|
else if (xpc_partition_deactivation_requested_sn2(partid))
|
|
XPC_DEACTIVATE_PARTITION(part, xpOtherGoingDown);
|
|
}
|
|
|
|
/*
|
|
* Loop through the activation AMO variables and process any bits
|
|
* which are set. Each bit indicates a nasid sending a partition
|
|
* activation or deactivation request.
|
|
*
|
|
* Return #of IRQs detected.
|
|
*/
|
|
int
|
|
xpc_identify_activate_IRQ_sender_sn2(void)
|
|
{
|
|
int word, bit;
|
|
u64 nasid_mask;
|
|
u64 nasid; /* remote nasid */
|
|
int n_IRQs_detected = 0;
|
|
AMO_t *act_amos;
|
|
|
|
act_amos = xpc_vars->amos_page + XPC_ACTIVATE_IRQ_AMOS;
|
|
|
|
/* scan through act AMO variable looking for non-zero entries */
|
|
for (word = 0; word < xp_nasid_mask_words; word++) {
|
|
|
|
if (xpc_exiting)
|
|
break;
|
|
|
|
nasid_mask = xpc_IPI_receive_sn2(&act_amos[word]);
|
|
if (nasid_mask == 0) {
|
|
/* no IRQs from nasids in this variable */
|
|
continue;
|
|
}
|
|
|
|
dev_dbg(xpc_part, "AMO[%d] gave back 0x%lx\n", word,
|
|
nasid_mask);
|
|
|
|
/*
|
|
* If this nasid has been added to the machine since
|
|
* our partition was reset, this will retain the
|
|
* remote nasid in our reserved pages machine mask.
|
|
* This is used in the event of module reload.
|
|
*/
|
|
xpc_mach_nasids[word] |= nasid_mask;
|
|
|
|
/* locate the nasid(s) which sent interrupts */
|
|
|
|
for (bit = 0; bit < (8 * sizeof(u64)); bit++) {
|
|
if (nasid_mask & (1UL << bit)) {
|
|
n_IRQs_detected++;
|
|
nasid = XPC_NASID_FROM_W_B(word, bit);
|
|
dev_dbg(xpc_part, "interrupt from nasid %ld\n",
|
|
nasid);
|
|
xpc_identify_activate_IRQ_req_sn2(nasid);
|
|
}
|
|
}
|
|
}
|
|
return n_IRQs_detected;
|
|
}
|
|
|
|
static void
|
|
xpc_process_activate_IRQ_rcvd_sn2(int n_IRQs_expected)
|
|
{
|
|
int n_IRQs_detected;
|
|
|
|
n_IRQs_detected = xpc_identify_activate_IRQ_sender_sn2();
|
|
if (n_IRQs_detected < n_IRQs_expected) {
|
|
/* retry once to help avoid missing AMO */
|
|
(void)xpc_identify_activate_IRQ_sender_sn2();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Setup the infrastructure necessary to support XPartition Communication
|
|
* between the specified remote partition and the local one.
|
|
*/
|
|
static enum xp_retval
|
|
xpc_setup_infrastructure_sn2(struct xpc_partition *part)
|
|
{
|
|
struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
|
|
enum xp_retval retval;
|
|
int ret;
|
|
int cpuid;
|
|
int ch_number;
|
|
struct xpc_channel *ch;
|
|
struct timer_list *timer;
|
|
short partid = XPC_PARTID(part);
|
|
|
|
/*
|
|
* Allocate all of the channel structures as a contiguous chunk of
|
|
* memory.
|
|
*/
|
|
DBUG_ON(part->channels != NULL);
|
|
part->channels = kzalloc(sizeof(struct xpc_channel) * XPC_MAX_NCHANNELS,
|
|
GFP_KERNEL);
|
|
if (part->channels == NULL) {
|
|
dev_err(xpc_chan, "can't get memory for channels\n");
|
|
return xpNoMemory;
|
|
}
|
|
|
|
/* allocate all the required GET/PUT values */
|
|
|
|
part_sn2->local_GPs = xpc_kzalloc_cacheline_aligned(XPC_GP_SIZE,
|
|
GFP_KERNEL,
|
|
&part_sn2->
|
|
local_GPs_base);
|
|
if (part_sn2->local_GPs == NULL) {
|
|
dev_err(xpc_chan, "can't get memory for local get/put "
|
|
"values\n");
|
|
retval = xpNoMemory;
|
|
goto out_1;
|
|
}
|
|
|
|
part_sn2->remote_GPs = xpc_kzalloc_cacheline_aligned(XPC_GP_SIZE,
|
|
GFP_KERNEL,
|
|
&part_sn2->
|
|
remote_GPs_base);
|
|
if (part_sn2->remote_GPs == NULL) {
|
|
dev_err(xpc_chan, "can't get memory for remote get/put "
|
|
"values\n");
|
|
retval = xpNoMemory;
|
|
goto out_2;
|
|
}
|
|
|
|
part_sn2->remote_GPs_pa = 0;
|
|
|
|
/* allocate all the required open and close args */
|
|
|
|
part->local_openclose_args =
|
|
xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE, GFP_KERNEL,
|
|
&part->local_openclose_args_base);
|
|
if (part->local_openclose_args == NULL) {
|
|
dev_err(xpc_chan, "can't get memory for local connect args\n");
|
|
retval = xpNoMemory;
|
|
goto out_3;
|
|
}
|
|
|
|
part->remote_openclose_args =
|
|
xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE, GFP_KERNEL,
|
|
&part->remote_openclose_args_base);
|
|
if (part->remote_openclose_args == NULL) {
|
|
dev_err(xpc_chan, "can't get memory for remote connect args\n");
|
|
retval = xpNoMemory;
|
|
goto out_4;
|
|
}
|
|
|
|
part_sn2->remote_openclose_args_pa = 0;
|
|
|
|
part_sn2->local_IPI_amo_va = xpc_IPI_init_sn2(partid);
|
|
part->local_IPI_amo = 0;
|
|
spin_lock_init(&part->IPI_lock);
|
|
|
|
part_sn2->remote_IPI_nasid = 0;
|
|
part_sn2->remote_IPI_phys_cpuid = 0;
|
|
part_sn2->remote_IPI_amo_va = NULL;
|
|
|
|
atomic_set(&part->channel_mgr_requests, 1);
|
|
init_waitqueue_head(&part->channel_mgr_wq);
|
|
|
|
sprintf(part_sn2->IPI_owner, "xpc%02d", partid);
|
|
ret = request_irq(SGI_XPC_NOTIFY, xpc_handle_notify_IRQ_sn2,
|
|
IRQF_SHARED, part_sn2->IPI_owner,
|
|
(void *)(u64)partid);
|
|
if (ret != 0) {
|
|
dev_err(xpc_chan, "can't register NOTIFY IRQ handler, "
|
|
"errno=%d\n", -ret);
|
|
retval = xpLackOfResources;
|
|
goto out_5;
|
|
}
|
|
|
|
/* Setup a timer to check for dropped IPIs */
|
|
timer = &part_sn2->dropped_notify_IRQ_timer;
|
|
init_timer(timer);
|
|
timer->function =
|
|
(void (*)(unsigned long))xpc_dropped_notify_IRQ_check_sn2;
|
|
timer->data = (unsigned long)part;
|
|
timer->expires = jiffies + XPC_P_DROPPED_IPI_WAIT_INTERVAL;
|
|
add_timer(timer);
|
|
|
|
part->nchannels = XPC_MAX_NCHANNELS;
|
|
|
|
atomic_set(&part->nchannels_active, 0);
|
|
atomic_set(&part->nchannels_engaged, 0);
|
|
|
|
for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
|
|
ch = &part->channels[ch_number];
|
|
|
|
ch->partid = partid;
|
|
ch->number = ch_number;
|
|
ch->flags = XPC_C_DISCONNECTED;
|
|
|
|
ch->sn.sn2.local_GP = &part_sn2->local_GPs[ch_number];
|
|
ch->local_openclose_args =
|
|
&part->local_openclose_args[ch_number];
|
|
|
|
atomic_set(&ch->kthreads_assigned, 0);
|
|
atomic_set(&ch->kthreads_idle, 0);
|
|
atomic_set(&ch->kthreads_active, 0);
|
|
|
|
atomic_set(&ch->references, 0);
|
|
atomic_set(&ch->n_to_notify, 0);
|
|
|
|
spin_lock_init(&ch->lock);
|
|
mutex_init(&ch->sn.sn2.msg_to_pull_mutex);
|
|
init_completion(&ch->wdisconnect_wait);
|
|
|
|
atomic_set(&ch->n_on_msg_allocate_wq, 0);
|
|
init_waitqueue_head(&ch->msg_allocate_wq);
|
|
init_waitqueue_head(&ch->idle_wq);
|
|
}
|
|
|
|
/*
|
|
* With the setting of the partition setup_state to XPC_P_SETUP, we're
|
|
* declaring that this partition is ready to go.
|
|
*/
|
|
part->setup_state = XPC_P_SETUP;
|
|
|
|
/*
|
|
* Setup the per partition specific variables required by the
|
|
* remote partition to establish channel connections with us.
|
|
*
|
|
* The setting of the magic # indicates that these per partition
|
|
* specific variables are ready to be used.
|
|
*/
|
|
xpc_vars_part[partid].GPs_pa = __pa(part_sn2->local_GPs);
|
|
xpc_vars_part[partid].openclose_args_pa =
|
|
__pa(part->local_openclose_args);
|
|
xpc_vars_part[partid].IPI_amo_pa = __pa(part_sn2->local_IPI_amo_va);
|
|
cpuid = raw_smp_processor_id(); /* any CPU in this partition will do */
|
|
xpc_vars_part[partid].IPI_nasid = cpuid_to_nasid(cpuid);
|
|
xpc_vars_part[partid].IPI_phys_cpuid = cpu_physical_id(cpuid);
|
|
xpc_vars_part[partid].nchannels = part->nchannels;
|
|
xpc_vars_part[partid].magic = XPC_VP_MAGIC1;
|
|
|
|
return xpSuccess;
|
|
|
|
/* setup of infrastructure failed */
|
|
out_5:
|
|
kfree(part->remote_openclose_args_base);
|
|
part->remote_openclose_args = NULL;
|
|
out_4:
|
|
kfree(part->local_openclose_args_base);
|
|
part->local_openclose_args = NULL;
|
|
out_3:
|
|
kfree(part_sn2->remote_GPs_base);
|
|
part_sn2->remote_GPs = NULL;
|
|
out_2:
|
|
kfree(part_sn2->local_GPs_base);
|
|
part_sn2->local_GPs = NULL;
|
|
out_1:
|
|
kfree(part->channels);
|
|
part->channels = NULL;
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Teardown the infrastructure necessary to support XPartition Communication
|
|
* between the specified remote partition and the local one.
|
|
*/
|
|
static void
|
|
xpc_teardown_infrastructure_sn2(struct xpc_partition *part)
|
|
{
|
|
struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
|
|
short partid = XPC_PARTID(part);
|
|
|
|
/*
|
|
* We start off by making this partition inaccessible to local
|
|
* processes by marking it as no longer setup. Then we make it
|
|
* inaccessible to remote processes by clearing the XPC per partition
|
|
* specific variable's magic # (which indicates that these variables
|
|
* are no longer valid) and by ignoring all XPC notify IPIs sent to
|
|
* this partition.
|
|
*/
|
|
|
|
DBUG_ON(atomic_read(&part->nchannels_engaged) != 0);
|
|
DBUG_ON(atomic_read(&part->nchannels_active) != 0);
|
|
DBUG_ON(part->setup_state != XPC_P_SETUP);
|
|
part->setup_state = XPC_P_WTEARDOWN;
|
|
|
|
xpc_vars_part[partid].magic = 0;
|
|
|
|
free_irq(SGI_XPC_NOTIFY, (void *)(u64)partid);
|
|
|
|
/*
|
|
* Before proceeding with the teardown we have to wait until all
|
|
* existing references cease.
|
|
*/
|
|
wait_event(part->teardown_wq, (atomic_read(&part->references) == 0));
|
|
|
|
/* now we can begin tearing down the infrastructure */
|
|
|
|
part->setup_state = XPC_P_TORNDOWN;
|
|
|
|
/* in case we've still got outstanding timers registered... */
|
|
del_timer_sync(&part_sn2->dropped_notify_IRQ_timer);
|
|
|
|
kfree(part->remote_openclose_args_base);
|
|
part->remote_openclose_args = NULL;
|
|
kfree(part->local_openclose_args_base);
|
|
part->local_openclose_args = NULL;
|
|
kfree(part_sn2->remote_GPs_base);
|
|
part_sn2->remote_GPs = NULL;
|
|
kfree(part_sn2->local_GPs_base);
|
|
part_sn2->local_GPs = NULL;
|
|
kfree(part->channels);
|
|
part->channels = NULL;
|
|
part_sn2->local_IPI_amo_va = NULL;
|
|
}
|
|
|
|
/*
|
|
* Create a wrapper that hides the underlying mechanism for pulling a cacheline
|
|
* (or multiple cachelines) from a remote partition.
|
|
*
|
|
* src must be a cacheline aligned physical address on the remote partition.
|
|
* dst must be a cacheline aligned virtual address on this partition.
|
|
* cnt must be cacheline sized
|
|
*/
|
|
/* >>> Replace this function by call to xp_remote_memcpy() or bte_copy()? */
|
|
static enum xp_retval
|
|
xpc_pull_remote_cachelines_sn2(struct xpc_partition *part, void *dst,
|
|
const void *src, size_t cnt)
|
|
{
|
|
enum xp_retval ret;
|
|
|
|
DBUG_ON((u64)src != L1_CACHE_ALIGN((u64)src));
|
|
DBUG_ON((u64)dst != L1_CACHE_ALIGN((u64)dst));
|
|
DBUG_ON(cnt != L1_CACHE_ALIGN(cnt));
|
|
|
|
if (part->act_state == XPC_P_DEACTIVATING)
|
|
return part->reason;
|
|
|
|
ret = xp_remote_memcpy(dst, src, cnt);
|
|
if (ret != xpSuccess) {
|
|
dev_dbg(xpc_chan, "xp_remote_memcpy() from partition %d failed,"
|
|
" ret=%d\n", XPC_PARTID(part), ret);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Pull the remote per partition specific variables from the specified
|
|
* partition.
|
|
*/
|
|
static enum xp_retval
|
|
xpc_pull_remote_vars_part_sn2(struct xpc_partition *part)
|
|
{
|
|
struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
|
|
u8 buffer[L1_CACHE_BYTES * 2];
|
|
struct xpc_vars_part_sn2 *pulled_entry_cacheline =
|
|
(struct xpc_vars_part_sn2 *)L1_CACHE_ALIGN((u64)buffer);
|
|
struct xpc_vars_part_sn2 *pulled_entry;
|
|
u64 remote_entry_cacheline_pa, remote_entry_pa;
|
|
short partid = XPC_PARTID(part);
|
|
enum xp_retval ret;
|
|
|
|
/* pull the cacheline that contains the variables we're interested in */
|
|
|
|
DBUG_ON(part_sn2->remote_vars_part_pa !=
|
|
L1_CACHE_ALIGN(part_sn2->remote_vars_part_pa));
|
|
DBUG_ON(sizeof(struct xpc_vars_part_sn2) != L1_CACHE_BYTES / 2);
|
|
|
|
remote_entry_pa = part_sn2->remote_vars_part_pa +
|
|
sn_partition_id * sizeof(struct xpc_vars_part_sn2);
|
|
|
|
remote_entry_cacheline_pa = (remote_entry_pa & ~(L1_CACHE_BYTES - 1));
|
|
|
|
pulled_entry = (struct xpc_vars_part_sn2 *)((u64)pulled_entry_cacheline
|
|
+ (remote_entry_pa &
|
|
(L1_CACHE_BYTES - 1)));
|
|
|
|
ret = xpc_pull_remote_cachelines_sn2(part, pulled_entry_cacheline,
|
|
(void *)remote_entry_cacheline_pa,
|
|
L1_CACHE_BYTES);
|
|
if (ret != xpSuccess) {
|
|
dev_dbg(xpc_chan, "failed to pull XPC vars_part from "
|
|
"partition %d, ret=%d\n", partid, ret);
|
|
return ret;
|
|
}
|
|
|
|
/* see if they've been set up yet */
|
|
|
|
if (pulled_entry->magic != XPC_VP_MAGIC1 &&
|
|
pulled_entry->magic != XPC_VP_MAGIC2) {
|
|
|
|
if (pulled_entry->magic != 0) {
|
|
dev_dbg(xpc_chan, "partition %d's XPC vars_part for "
|
|
"partition %d has bad magic value (=0x%lx)\n",
|
|
partid, sn_partition_id, pulled_entry->magic);
|
|
return xpBadMagic;
|
|
}
|
|
|
|
/* they've not been initialized yet */
|
|
return xpRetry;
|
|
}
|
|
|
|
if (xpc_vars_part[partid].magic == XPC_VP_MAGIC1) {
|
|
|
|
/* validate the variables */
|
|
|
|
if (pulled_entry->GPs_pa == 0 ||
|
|
pulled_entry->openclose_args_pa == 0 ||
|
|
pulled_entry->IPI_amo_pa == 0) {
|
|
|
|
dev_err(xpc_chan, "partition %d's XPC vars_part for "
|
|
"partition %d are not valid\n", partid,
|
|
sn_partition_id);
|
|
return xpInvalidAddress;
|
|
}
|
|
|
|
/* the variables we imported look to be valid */
|
|
|
|
part_sn2->remote_GPs_pa = pulled_entry->GPs_pa;
|
|
part_sn2->remote_openclose_args_pa =
|
|
pulled_entry->openclose_args_pa;
|
|
part_sn2->remote_IPI_amo_va =
|
|
(AMO_t *)__va(pulled_entry->IPI_amo_pa);
|
|
part_sn2->remote_IPI_nasid = pulled_entry->IPI_nasid;
|
|
part_sn2->remote_IPI_phys_cpuid = pulled_entry->IPI_phys_cpuid;
|
|
|
|
if (part->nchannels > pulled_entry->nchannels)
|
|
part->nchannels = pulled_entry->nchannels;
|
|
|
|
/* let the other side know that we've pulled their variables */
|
|
|
|
xpc_vars_part[partid].magic = XPC_VP_MAGIC2;
|
|
}
|
|
|
|
if (pulled_entry->magic == XPC_VP_MAGIC1)
|
|
return xpRetry;
|
|
|
|
return xpSuccess;
|
|
}
|
|
|
|
/*
|
|
* Establish first contact with the remote partititon. This involves pulling
|
|
* the XPC per partition variables from the remote partition and waiting for
|
|
* the remote partition to pull ours.
|
|
*/
|
|
static enum xp_retval
|
|
xpc_make_first_contact_sn2(struct xpc_partition *part)
|
|
{
|
|
struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
|
|
enum xp_retval ret;
|
|
|
|
/*
|
|
* Register the remote partition's AMOs with SAL so it can handle
|
|
* and cleanup errors within that address range should the remote
|
|
* partition go down. We don't unregister this range because it is
|
|
* difficult to tell when outstanding writes to the remote partition
|
|
* are finished and thus when it is safe to unregister. This should
|
|
* not result in wasted space in the SAL xp_addr_region table because
|
|
* we should get the same page for remote_amos_page_pa after module
|
|
* reloads and system reboots.
|
|
*/
|
|
if (sn_register_xp_addr_region(part_sn2->remote_amos_page_pa,
|
|
PAGE_SIZE, 1) < 0) {
|
|
dev_warn(xpc_part, "xpc_activating(%d) failed to register "
|
|
"xp_addr region\n", XPC_PARTID(part));
|
|
|
|
ret = xpPhysAddrRegFailed;
|
|
XPC_DEACTIVATE_PARTITION(part, ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Send activate IRQ to get other side to activate if they've not
|
|
* already begun to do so.
|
|
*/
|
|
xpc_activate_IRQ_send_sn2(part_sn2->remote_amos_page_pa,
|
|
cnodeid_to_nasid(0),
|
|
part_sn2->activate_IRQ_nasid,
|
|
part_sn2->activate_IRQ_phys_cpuid);
|
|
|
|
while ((ret = xpc_pull_remote_vars_part_sn2(part)) != xpSuccess) {
|
|
if (ret != xpRetry) {
|
|
XPC_DEACTIVATE_PARTITION(part, ret);
|
|
return ret;
|
|
}
|
|
|
|
dev_dbg(xpc_part, "waiting to make first contact with "
|
|
"partition %d\n", XPC_PARTID(part));
|
|
|
|
/* wait a 1/4 of a second or so */
|
|
(void)msleep_interruptible(250);
|
|
|
|
if (part->act_state == XPC_P_DEACTIVATING)
|
|
return part->reason;
|
|
}
|
|
|
|
return xpSuccess;
|
|
}
|
|
|
|
/*
|
|
* Get the IPI flags and pull the openclose args and/or remote GPs as needed.
|
|
*/
|
|
static u64
|
|
xpc_get_IPI_flags_sn2(struct xpc_partition *part)
|
|
{
|
|
struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
|
|
unsigned long irq_flags;
|
|
u64 IPI_amo;
|
|
enum xp_retval ret;
|
|
|
|
/*
|
|
* See if there are any IPI flags to be handled.
|
|
*/
|
|
|
|
spin_lock_irqsave(&part->IPI_lock, irq_flags);
|
|
IPI_amo = part->local_IPI_amo;
|
|
if (IPI_amo != 0)
|
|
part->local_IPI_amo = 0;
|
|
|
|
spin_unlock_irqrestore(&part->IPI_lock, irq_flags);
|
|
|
|
if (XPC_ANY_OPENCLOSE_IPI_FLAGS_SET(IPI_amo)) {
|
|
ret = xpc_pull_remote_cachelines_sn2(part, part->
|
|
remote_openclose_args,
|
|
(void *)part_sn2->
|
|
remote_openclose_args_pa,
|
|
XPC_OPENCLOSE_ARGS_SIZE);
|
|
if (ret != xpSuccess) {
|
|
XPC_DEACTIVATE_PARTITION(part, ret);
|
|
|
|
dev_dbg(xpc_chan, "failed to pull openclose args from "
|
|
"partition %d, ret=%d\n", XPC_PARTID(part),
|
|
ret);
|
|
|
|
/* don't bother processing IPIs anymore */
|
|
IPI_amo = 0;
|
|
}
|
|
}
|
|
|
|
if (XPC_ANY_MSG_IPI_FLAGS_SET(IPI_amo)) {
|
|
ret = xpc_pull_remote_cachelines_sn2(part, part_sn2->remote_GPs,
|
|
(void *)part_sn2->remote_GPs_pa,
|
|
XPC_GP_SIZE);
|
|
if (ret != xpSuccess) {
|
|
XPC_DEACTIVATE_PARTITION(part, ret);
|
|
|
|
dev_dbg(xpc_chan, "failed to pull GPs from partition "
|
|
"%d, ret=%d\n", XPC_PARTID(part), ret);
|
|
|
|
/* don't bother processing IPIs anymore */
|
|
IPI_amo = 0;
|
|
}
|
|
}
|
|
|
|
return IPI_amo;
|
|
}
|
|
|
|
/*
|
|
* Notify those who wanted to be notified upon delivery of their message.
|
|
*/
|
|
static void
|
|
xpc_notify_senders_sn2(struct xpc_channel *ch, enum xp_retval reason, s64 put)
|
|
{
|
|
struct xpc_notify *notify;
|
|
u8 notify_type;
|
|
s64 get = ch->sn.sn2.w_remote_GP.get - 1;
|
|
|
|
while (++get < put && atomic_read(&ch->n_to_notify) > 0) {
|
|
|
|
notify = &ch->notify_queue[get % ch->local_nentries];
|
|
|
|
/*
|
|
* See if the notify entry indicates it was associated with
|
|
* a message who's sender wants to be notified. It is possible
|
|
* that it is, but someone else is doing or has done the
|
|
* notification.
|
|
*/
|
|
notify_type = notify->type;
|
|
if (notify_type == 0 ||
|
|
cmpxchg(¬ify->type, notify_type, 0) != notify_type) {
|
|
continue;
|
|
}
|
|
|
|
DBUG_ON(notify_type != XPC_N_CALL);
|
|
|
|
atomic_dec(&ch->n_to_notify);
|
|
|
|
if (notify->func != NULL) {
|
|
dev_dbg(xpc_chan, "notify->func() called, notify=0x%p, "
|
|
"msg_number=%ld, partid=%d, channel=%d\n",
|
|
(void *)notify, get, ch->partid, ch->number);
|
|
|
|
notify->func(reason, ch->partid, ch->number,
|
|
notify->key);
|
|
|
|
dev_dbg(xpc_chan, "notify->func() returned, "
|
|
"notify=0x%p, msg_number=%ld, partid=%d, "
|
|
"channel=%d\n", (void *)notify, get,
|
|
ch->partid, ch->number);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
xpc_notify_senders_of_disconnect_sn2(struct xpc_channel *ch)
|
|
{
|
|
xpc_notify_senders_sn2(ch, ch->reason, ch->sn.sn2.w_local_GP.put);
|
|
}
|
|
|
|
/*
|
|
* Clear some of the msg flags in the local message queue.
|
|
*/
|
|
static inline void
|
|
xpc_clear_local_msgqueue_flags_sn2(struct xpc_channel *ch)
|
|
{
|
|
struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
|
|
struct xpc_msg *msg;
|
|
s64 get;
|
|
|
|
get = ch_sn2->w_remote_GP.get;
|
|
do {
|
|
msg = (struct xpc_msg *)((u64)ch->local_msgqueue +
|
|
(get % ch->local_nentries) *
|
|
ch->msg_size);
|
|
msg->flags = 0;
|
|
} while (++get < ch_sn2->remote_GP.get);
|
|
}
|
|
|
|
/*
|
|
* Clear some of the msg flags in the remote message queue.
|
|
*/
|
|
static inline void
|
|
xpc_clear_remote_msgqueue_flags_sn2(struct xpc_channel *ch)
|
|
{
|
|
struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
|
|
struct xpc_msg *msg;
|
|
s64 put;
|
|
|
|
put = ch_sn2->w_remote_GP.put;
|
|
do {
|
|
msg = (struct xpc_msg *)((u64)ch->remote_msgqueue +
|
|
(put % ch->remote_nentries) *
|
|
ch->msg_size);
|
|
msg->flags = 0;
|
|
} while (++put < ch_sn2->remote_GP.put);
|
|
}
|
|
|
|
static void
|
|
xpc_process_msg_IPI_sn2(struct xpc_partition *part, int ch_number)
|
|
{
|
|
struct xpc_channel *ch = &part->channels[ch_number];
|
|
struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
|
|
int nmsgs_sent;
|
|
|
|
ch_sn2->remote_GP = part->sn.sn2.remote_GPs[ch_number];
|
|
|
|
/* See what, if anything, has changed for each connected channel */
|
|
|
|
xpc_msgqueue_ref(ch);
|
|
|
|
if (ch_sn2->w_remote_GP.get == ch_sn2->remote_GP.get &&
|
|
ch_sn2->w_remote_GP.put == ch_sn2->remote_GP.put) {
|
|
/* nothing changed since GPs were last pulled */
|
|
xpc_msgqueue_deref(ch);
|
|
return;
|
|
}
|
|
|
|
if (!(ch->flags & XPC_C_CONNECTED)) {
|
|
xpc_msgqueue_deref(ch);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* First check to see if messages recently sent by us have been
|
|
* received by the other side. (The remote GET value will have
|
|
* changed since we last looked at it.)
|
|
*/
|
|
|
|
if (ch_sn2->w_remote_GP.get != ch_sn2->remote_GP.get) {
|
|
|
|
/*
|
|
* We need to notify any senders that want to be notified
|
|
* that their sent messages have been received by their
|
|
* intended recipients. We need to do this before updating
|
|
* w_remote_GP.get so that we don't allocate the same message
|
|
* queue entries prematurely (see xpc_allocate_msg()).
|
|
*/
|
|
if (atomic_read(&ch->n_to_notify) > 0) {
|
|
/*
|
|
* Notify senders that messages sent have been
|
|
* received and delivered by the other side.
|
|
*/
|
|
xpc_notify_senders_sn2(ch, xpMsgDelivered,
|
|
ch_sn2->remote_GP.get);
|
|
}
|
|
|
|
/*
|
|
* Clear msg->flags in previously sent messages, so that
|
|
* they're ready for xpc_allocate_msg().
|
|
*/
|
|
xpc_clear_local_msgqueue_flags_sn2(ch);
|
|
|
|
ch_sn2->w_remote_GP.get = ch_sn2->remote_GP.get;
|
|
|
|
dev_dbg(xpc_chan, "w_remote_GP.get changed to %ld, partid=%d, "
|
|
"channel=%d\n", ch_sn2->w_remote_GP.get, ch->partid,
|
|
ch->number);
|
|
|
|
/*
|
|
* If anyone was waiting for message queue entries to become
|
|
* available, wake them up.
|
|
*/
|
|
if (atomic_read(&ch->n_on_msg_allocate_wq) > 0)
|
|
wake_up(&ch->msg_allocate_wq);
|
|
}
|
|
|
|
/*
|
|
* Now check for newly sent messages by the other side. (The remote
|
|
* PUT value will have changed since we last looked at it.)
|
|
*/
|
|
|
|
if (ch_sn2->w_remote_GP.put != ch_sn2->remote_GP.put) {
|
|
/*
|
|
* Clear msg->flags in previously received messages, so that
|
|
* they're ready for xpc_get_deliverable_msg().
|
|
*/
|
|
xpc_clear_remote_msgqueue_flags_sn2(ch);
|
|
|
|
ch_sn2->w_remote_GP.put = ch_sn2->remote_GP.put;
|
|
|
|
dev_dbg(xpc_chan, "w_remote_GP.put changed to %ld, partid=%d, "
|
|
"channel=%d\n", ch_sn2->w_remote_GP.put, ch->partid,
|
|
ch->number);
|
|
|
|
nmsgs_sent = ch_sn2->w_remote_GP.put - ch_sn2->w_local_GP.get;
|
|
if (nmsgs_sent > 0) {
|
|
dev_dbg(xpc_chan, "msgs waiting to be copied and "
|
|
"delivered=%d, partid=%d, channel=%d\n",
|
|
nmsgs_sent, ch->partid, ch->number);
|
|
|
|
if (ch->flags & XPC_C_CONNECTEDCALLOUT_MADE)
|
|
xpc_activate_kthreads(ch, nmsgs_sent);
|
|
}
|
|
}
|
|
|
|
xpc_msgqueue_deref(ch);
|
|
}
|
|
|
|
static struct xpc_msg *
|
|
xpc_pull_remote_msg_sn2(struct xpc_channel *ch, s64 get)
|
|
{
|
|
struct xpc_partition *part = &xpc_partitions[ch->partid];
|
|
struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
|
|
struct xpc_msg *remote_msg, *msg;
|
|
u32 msg_index, nmsgs;
|
|
u64 msg_offset;
|
|
enum xp_retval ret;
|
|
|
|
if (mutex_lock_interruptible(&ch_sn2->msg_to_pull_mutex) != 0) {
|
|
/* we were interrupted by a signal */
|
|
return NULL;
|
|
}
|
|
|
|
while (get >= ch_sn2->next_msg_to_pull) {
|
|
|
|
/* pull as many messages as are ready and able to be pulled */
|
|
|
|
msg_index = ch_sn2->next_msg_to_pull % ch->remote_nentries;
|
|
|
|
DBUG_ON(ch_sn2->next_msg_to_pull >= ch_sn2->w_remote_GP.put);
|
|
nmsgs = ch_sn2->w_remote_GP.put - ch_sn2->next_msg_to_pull;
|
|
if (msg_index + nmsgs > ch->remote_nentries) {
|
|
/* ignore the ones that wrap the msg queue for now */
|
|
nmsgs = ch->remote_nentries - msg_index;
|
|
}
|
|
|
|
msg_offset = msg_index * ch->msg_size;
|
|
msg = (struct xpc_msg *)((u64)ch->remote_msgqueue + msg_offset);
|
|
remote_msg = (struct xpc_msg *)(ch->remote_msgqueue_pa +
|
|
msg_offset);
|
|
|
|
ret = xpc_pull_remote_cachelines_sn2(part, msg, remote_msg,
|
|
nmsgs * ch->msg_size);
|
|
if (ret != xpSuccess) {
|
|
|
|
dev_dbg(xpc_chan, "failed to pull %d msgs starting with"
|
|
" msg %ld from partition %d, channel=%d, "
|
|
"ret=%d\n", nmsgs, ch_sn2->next_msg_to_pull,
|
|
ch->partid, ch->number, ret);
|
|
|
|
XPC_DEACTIVATE_PARTITION(part, ret);
|
|
|
|
mutex_unlock(&ch_sn2->msg_to_pull_mutex);
|
|
return NULL;
|
|
}
|
|
|
|
ch_sn2->next_msg_to_pull += nmsgs;
|
|
}
|
|
|
|
mutex_unlock(&ch_sn2->msg_to_pull_mutex);
|
|
|
|
/* return the message we were looking for */
|
|
msg_offset = (get % ch->remote_nentries) * ch->msg_size;
|
|
msg = (struct xpc_msg *)((u64)ch->remote_msgqueue + msg_offset);
|
|
|
|
return msg;
|
|
}
|
|
|
|
static int
|
|
xpc_n_of_deliverable_msgs_sn2(struct xpc_channel *ch)
|
|
{
|
|
return ch->sn.sn2.w_remote_GP.put - ch->sn.sn2.w_local_GP.get;
|
|
}
|
|
|
|
/*
|
|
* Get a message to be delivered.
|
|
*/
|
|
static struct xpc_msg *
|
|
xpc_get_deliverable_msg_sn2(struct xpc_channel *ch)
|
|
{
|
|
struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
|
|
struct xpc_msg *msg = NULL;
|
|
s64 get;
|
|
|
|
do {
|
|
if (ch->flags & XPC_C_DISCONNECTING)
|
|
break;
|
|
|
|
get = ch_sn2->w_local_GP.get;
|
|
rmb(); /* guarantee that .get loads before .put */
|
|
if (get == ch_sn2->w_remote_GP.put)
|
|
break;
|
|
|
|
/* There are messages waiting to be pulled and delivered.
|
|
* We need to try to secure one for ourselves. We'll do this
|
|
* by trying to increment w_local_GP.get and hope that no one
|
|
* else beats us to it. If they do, we'll we'll simply have
|
|
* to try again for the next one.
|
|
*/
|
|
|
|
if (cmpxchg(&ch_sn2->w_local_GP.get, get, get + 1) == get) {
|
|
/* we got the entry referenced by get */
|
|
|
|
dev_dbg(xpc_chan, "w_local_GP.get changed to %ld, "
|
|
"partid=%d, channel=%d\n", get + 1,
|
|
ch->partid, ch->number);
|
|
|
|
/* pull the message from the remote partition */
|
|
|
|
msg = xpc_pull_remote_msg_sn2(ch, get);
|
|
|
|
DBUG_ON(msg != NULL && msg->number != get);
|
|
DBUG_ON(msg != NULL && (msg->flags & XPC_M_DONE));
|
|
DBUG_ON(msg != NULL && !(msg->flags & XPC_M_READY));
|
|
|
|
break;
|
|
}
|
|
|
|
} while (1);
|
|
|
|
return msg;
|
|
}
|
|
|
|
/*
|
|
* Now we actually send the messages that are ready to be sent by advancing
|
|
* the local message queue's Put value and then send an IPI to the recipient
|
|
* partition.
|
|
*/
|
|
static void
|
|
xpc_send_msgs_sn2(struct xpc_channel *ch, s64 initial_put)
|
|
{
|
|
struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
|
|
struct xpc_msg *msg;
|
|
s64 put = initial_put + 1;
|
|
int send_IPI = 0;
|
|
|
|
while (1) {
|
|
|
|
while (1) {
|
|
if (put == ch_sn2->w_local_GP.put)
|
|
break;
|
|
|
|
msg = (struct xpc_msg *)((u64)ch->local_msgqueue +
|
|
(put % ch->local_nentries) *
|
|
ch->msg_size);
|
|
|
|
if (!(msg->flags & XPC_M_READY))
|
|
break;
|
|
|
|
put++;
|
|
}
|
|
|
|
if (put == initial_put) {
|
|
/* nothing's changed */
|
|
break;
|
|
}
|
|
|
|
if (cmpxchg_rel(&ch_sn2->local_GP->put, initial_put, put) !=
|
|
initial_put) {
|
|
/* someone else beat us to it */
|
|
DBUG_ON(ch_sn2->local_GP->put < initial_put);
|
|
break;
|
|
}
|
|
|
|
/* we just set the new value of local_GP->put */
|
|
|
|
dev_dbg(xpc_chan, "local_GP->put changed to %ld, partid=%d, "
|
|
"channel=%d\n", put, ch->partid, ch->number);
|
|
|
|
send_IPI = 1;
|
|
|
|
/*
|
|
* We need to ensure that the message referenced by
|
|
* local_GP->put is not XPC_M_READY or that local_GP->put
|
|
* equals w_local_GP.put, so we'll go have a look.
|
|
*/
|
|
initial_put = put;
|
|
}
|
|
|
|
if (send_IPI)
|
|
xpc_send_channel_msgrequest_sn2(ch);
|
|
}
|
|
|
|
/*
|
|
* Allocate an entry for a message from the message queue associated with the
|
|
* specified channel.
|
|
*/
|
|
static enum xp_retval
|
|
xpc_allocate_msg_sn2(struct xpc_channel *ch, u32 flags,
|
|
struct xpc_msg **address_of_msg)
|
|
{
|
|
struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
|
|
struct xpc_msg *msg;
|
|
enum xp_retval ret;
|
|
s64 put;
|
|
|
|
/*
|
|
* Get the next available message entry from the local message queue.
|
|
* If none are available, we'll make sure that we grab the latest
|
|
* GP values.
|
|
*/
|
|
ret = xpTimeout;
|
|
|
|
while (1) {
|
|
|
|
put = ch_sn2->w_local_GP.put;
|
|
rmb(); /* guarantee that .put loads before .get */
|
|
if (put - ch_sn2->w_remote_GP.get < ch->local_nentries) {
|
|
|
|
/* There are available message entries. We need to try
|
|
* to secure one for ourselves. We'll do this by trying
|
|
* to increment w_local_GP.put as long as someone else
|
|
* doesn't beat us to it. If they do, we'll have to
|
|
* try again.
|
|
*/
|
|
if (cmpxchg(&ch_sn2->w_local_GP.put, put, put + 1) ==
|
|
put) {
|
|
/* we got the entry referenced by put */
|
|
break;
|
|
}
|
|
continue; /* try again */
|
|
}
|
|
|
|
/*
|
|
* There aren't any available msg entries at this time.
|
|
*
|
|
* In waiting for a message entry to become available,
|
|
* we set a timeout in case the other side is not
|
|
* sending completion IPIs. This lets us fake an IPI
|
|
* that will cause the IPI handler to fetch the latest
|
|
* GP values as if an IPI was sent by the other side.
|
|
*/
|
|
if (ret == xpTimeout)
|
|
xpc_send_channel_local_msgrequest_sn2(ch);
|
|
|
|
if (flags & XPC_NOWAIT)
|
|
return xpNoWait;
|
|
|
|
ret = xpc_allocate_msg_wait(ch);
|
|
if (ret != xpInterrupted && ret != xpTimeout)
|
|
return ret;
|
|
}
|
|
|
|
/* get the message's address and initialize it */
|
|
msg = (struct xpc_msg *)((u64)ch->local_msgqueue +
|
|
(put % ch->local_nentries) * ch->msg_size);
|
|
|
|
DBUG_ON(msg->flags != 0);
|
|
msg->number = put;
|
|
|
|
dev_dbg(xpc_chan, "w_local_GP.put changed to %ld; msg=0x%p, "
|
|
"msg_number=%ld, partid=%d, channel=%d\n", put + 1,
|
|
(void *)msg, msg->number, ch->partid, ch->number);
|
|
|
|
*address_of_msg = msg;
|
|
return xpSuccess;
|
|
}
|
|
|
|
/*
|
|
* Common code that does the actual sending of the message by advancing the
|
|
* local message queue's Put value and sends an IPI to the partition the
|
|
* message is being sent to.
|
|
*/
|
|
static enum xp_retval
|
|
xpc_send_msg_sn2(struct xpc_channel *ch, u32 flags, void *payload,
|
|
u16 payload_size, u8 notify_type, xpc_notify_func func,
|
|
void *key)
|
|
{
|
|
enum xp_retval ret = xpSuccess;
|
|
struct xpc_msg *msg = msg;
|
|
struct xpc_notify *notify = notify;
|
|
s64 msg_number;
|
|
s64 put;
|
|
|
|
DBUG_ON(notify_type == XPC_N_CALL && func == NULL);
|
|
|
|
if (XPC_MSG_SIZE(payload_size) > ch->msg_size)
|
|
return xpPayloadTooBig;
|
|
|
|
xpc_msgqueue_ref(ch);
|
|
|
|
if (ch->flags & XPC_C_DISCONNECTING) {
|
|
ret = ch->reason;
|
|
goto out_1;
|
|
}
|
|
if (!(ch->flags & XPC_C_CONNECTED)) {
|
|
ret = xpNotConnected;
|
|
goto out_1;
|
|
}
|
|
|
|
ret = xpc_allocate_msg_sn2(ch, flags, &msg);
|
|
if (ret != xpSuccess)
|
|
goto out_1;
|
|
|
|
msg_number = msg->number;
|
|
|
|
if (notify_type != 0) {
|
|
/*
|
|
* Tell the remote side to send an ACK interrupt when the
|
|
* message has been delivered.
|
|
*/
|
|
msg->flags |= XPC_M_INTERRUPT;
|
|
|
|
atomic_inc(&ch->n_to_notify);
|
|
|
|
notify = &ch->notify_queue[msg_number % ch->local_nentries];
|
|
notify->func = func;
|
|
notify->key = key;
|
|
notify->type = notify_type;
|
|
|
|
/* >>> is a mb() needed here? */
|
|
|
|
if (ch->flags & XPC_C_DISCONNECTING) {
|
|
/*
|
|
* An error occurred between our last error check and
|
|
* this one. We will try to clear the type field from
|
|
* the notify entry. If we succeed then
|
|
* xpc_disconnect_channel() didn't already process
|
|
* the notify entry.
|
|
*/
|
|
if (cmpxchg(¬ify->type, notify_type, 0) ==
|
|
notify_type) {
|
|
atomic_dec(&ch->n_to_notify);
|
|
ret = ch->reason;
|
|
}
|
|
goto out_1;
|
|
}
|
|
}
|
|
|
|
memcpy(&msg->payload, payload, payload_size);
|
|
|
|
msg->flags |= XPC_M_READY;
|
|
|
|
/*
|
|
* The preceding store of msg->flags must occur before the following
|
|
* load of local_GP->put.
|
|
*/
|
|
mb();
|
|
|
|
/* see if the message is next in line to be sent, if so send it */
|
|
|
|
put = ch->sn.sn2.local_GP->put;
|
|
if (put == msg_number)
|
|
xpc_send_msgs_sn2(ch, put);
|
|
|
|
out_1:
|
|
xpc_msgqueue_deref(ch);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Now we actually acknowledge the messages that have been delivered and ack'd
|
|
* by advancing the cached remote message queue's Get value and if requested
|
|
* send an IPI to the message sender's partition.
|
|
*/
|
|
static void
|
|
xpc_acknowledge_msgs_sn2(struct xpc_channel *ch, s64 initial_get, u8 msg_flags)
|
|
{
|
|
struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
|
|
struct xpc_msg *msg;
|
|
s64 get = initial_get + 1;
|
|
int send_IPI = 0;
|
|
|
|
while (1) {
|
|
|
|
while (1) {
|
|
if (get == ch_sn2->w_local_GP.get)
|
|
break;
|
|
|
|
msg = (struct xpc_msg *)((u64)ch->remote_msgqueue +
|
|
(get % ch->remote_nentries) *
|
|
ch->msg_size);
|
|
|
|
if (!(msg->flags & XPC_M_DONE))
|
|
break;
|
|
|
|
msg_flags |= msg->flags;
|
|
get++;
|
|
}
|
|
|
|
if (get == initial_get) {
|
|
/* nothing's changed */
|
|
break;
|
|
}
|
|
|
|
if (cmpxchg_rel(&ch_sn2->local_GP->get, initial_get, get) !=
|
|
initial_get) {
|
|
/* someone else beat us to it */
|
|
DBUG_ON(ch_sn2->local_GP->get <= initial_get);
|
|
break;
|
|
}
|
|
|
|
/* we just set the new value of local_GP->get */
|
|
|
|
dev_dbg(xpc_chan, "local_GP->get changed to %ld, partid=%d, "
|
|
"channel=%d\n", get, ch->partid, ch->number);
|
|
|
|
send_IPI = (msg_flags & XPC_M_INTERRUPT);
|
|
|
|
/*
|
|
* We need to ensure that the message referenced by
|
|
* local_GP->get is not XPC_M_DONE or that local_GP->get
|
|
* equals w_local_GP.get, so we'll go have a look.
|
|
*/
|
|
initial_get = get;
|
|
}
|
|
|
|
if (send_IPI)
|
|
xpc_send_channel_msgrequest_sn2(ch);
|
|
}
|
|
|
|
static void
|
|
xpc_received_msg_sn2(struct xpc_channel *ch, struct xpc_msg *msg)
|
|
{
|
|
s64 get;
|
|
s64 msg_number = msg->number;
|
|
|
|
dev_dbg(xpc_chan, "msg=0x%p, msg_number=%ld, partid=%d, channel=%d\n",
|
|
(void *)msg, msg_number, ch->partid, ch->number);
|
|
|
|
DBUG_ON((((u64)msg - (u64)ch->remote_msgqueue) / ch->msg_size) !=
|
|
msg_number % ch->remote_nentries);
|
|
DBUG_ON(msg->flags & XPC_M_DONE);
|
|
|
|
msg->flags |= XPC_M_DONE;
|
|
|
|
/*
|
|
* The preceding store of msg->flags must occur before the following
|
|
* load of local_GP->get.
|
|
*/
|
|
mb();
|
|
|
|
/*
|
|
* See if this message is next in line to be acknowledged as having
|
|
* been delivered.
|
|
*/
|
|
get = ch->sn.sn2.local_GP->get;
|
|
if (get == msg_number)
|
|
xpc_acknowledge_msgs_sn2(ch, get, msg->flags);
|
|
}
|
|
|
|
int
|
|
xpc_init_sn2(void)
|
|
{
|
|
int ret;
|
|
|
|
xpc_rsvd_page_init = xpc_rsvd_page_init_sn2;
|
|
xpc_increment_heartbeat = xpc_increment_heartbeat_sn2;
|
|
xpc_offline_heartbeat = xpc_offline_heartbeat_sn2;
|
|
xpc_online_heartbeat = xpc_online_heartbeat_sn2;
|
|
xpc_heartbeat_init = xpc_heartbeat_init_sn2;
|
|
xpc_heartbeat_exit = xpc_heartbeat_exit_sn2;
|
|
xpc_check_remote_hb = xpc_check_remote_hb_sn2;
|
|
|
|
xpc_request_partition_activation = xpc_request_partition_activation_sn2;
|
|
xpc_request_partition_reactivation =
|
|
xpc_request_partition_reactivation_sn2;
|
|
xpc_request_partition_deactivation =
|
|
xpc_request_partition_deactivation_sn2;
|
|
xpc_cancel_partition_deactivation_request =
|
|
xpc_cancel_partition_deactivation_request_sn2;
|
|
|
|
xpc_process_activate_IRQ_rcvd = xpc_process_activate_IRQ_rcvd_sn2;
|
|
xpc_setup_infrastructure = xpc_setup_infrastructure_sn2;
|
|
xpc_teardown_infrastructure = xpc_teardown_infrastructure_sn2;
|
|
xpc_make_first_contact = xpc_make_first_contact_sn2;
|
|
xpc_get_IPI_flags = xpc_get_IPI_flags_sn2;
|
|
xpc_notify_senders_of_disconnect = xpc_notify_senders_of_disconnect_sn2;
|
|
xpc_process_msg_IPI = xpc_process_msg_IPI_sn2;
|
|
xpc_n_of_deliverable_msgs = xpc_n_of_deliverable_msgs_sn2;
|
|
xpc_get_deliverable_msg = xpc_get_deliverable_msg_sn2;
|
|
|
|
xpc_indicate_partition_engaged = xpc_indicate_partition_engaged_sn2;
|
|
xpc_partition_engaged = xpc_partition_engaged_sn2;
|
|
xpc_any_partition_engaged = xpc_any_partition_engaged_sn2;
|
|
xpc_indicate_partition_disengaged =
|
|
xpc_indicate_partition_disengaged_sn2;
|
|
xpc_assume_partition_disengaged = xpc_assume_partition_disengaged_sn2;
|
|
|
|
xpc_send_channel_closerequest = xpc_send_channel_closerequest_sn2;
|
|
xpc_send_channel_closereply = xpc_send_channel_closereply_sn2;
|
|
xpc_send_channel_openrequest = xpc_send_channel_openrequest_sn2;
|
|
xpc_send_channel_openreply = xpc_send_channel_openreply_sn2;
|
|
|
|
xpc_send_msg = xpc_send_msg_sn2;
|
|
xpc_received_msg = xpc_received_msg_sn2;
|
|
|
|
/* open up protections for IPI and [potentially] AMO operations */
|
|
xpc_allow_IPI_ops_sn2();
|
|
xpc_allow_AMO_ops_shub_wars_1_1_sn2();
|
|
|
|
/*
|
|
* This is safe to do before the xpc_hb_checker thread has started
|
|
* because the handler releases a wait queue. If an interrupt is
|
|
* received before the thread is waiting, it will not go to sleep,
|
|
* but rather immediately process the interrupt.
|
|
*/
|
|
ret = request_irq(SGI_XPC_ACTIVATE, xpc_handle_activate_IRQ_sn2, 0,
|
|
"xpc hb", NULL);
|
|
if (ret != 0) {
|
|
dev_err(xpc_part, "can't register ACTIVATE IRQ handler, "
|
|
"errno=%d\n", -ret);
|
|
xpc_disallow_IPI_ops_sn2();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
xpc_exit_sn2(void)
|
|
{
|
|
free_irq(SGI_XPC_ACTIVATE, NULL);
|
|
xpc_disallow_IPI_ops_sn2();
|
|
}
|