Currently, tracing snapshots are context-free - they capture the ring
buffer contents at the time the tracing_snapshot() function was
invoked, and nothing else. Additionally, they're always taken
unconditionally - the calling code can decide whether or not to take a
snapshot, but the data used to make that decision is kept separately
from the snapshot itself.
This change adds the ability to associate with each trace instance
some user data, along with an 'update' function that can use that data
to determine whether or not to actually take a snapshot. The update
function can then update that data along with any other state (as part
of the data presumably), if warranted.
Because snapshots are 'global' per-instance, only one user can enable
and use a conditional snapshot for any given trace instance. To
enable a conditional snapshot (see details in the function and data
structure comments), the user calls tracing_snapshot_cond_enable().
Similarly, to disable a conditional snapshot and free it up for other
users, tracing_snapshot_cond_disable() should be called.
To actually initiate a conditional snapshot, tracing_snapshot_cond()
should be called. tracing_snapshot_cond() will invoke the update()
callback, allowing the user to decide whether or not to actually take
the snapshot and update the user-defined data associated with the
snapshot. If the callback returns 'true', tracing_snapshot_cond()
will then actually take the snapshot and return.
This scheme allows for flexibility in snapshot implementations - for
example, by implementing slightly different update() callbacks,
snapshots can be taken in situations where the user is only interested
in taking a snapshot when a new maximum in hit versus when a value
changes in any way at all. Future patches will demonstrate both
cases.
Link: http://lkml.kernel.org/r/1bea07828d5fd6864a585f83b1eed47ce097eb45.1550100284.git.tom.zanussi@linux.intel.com
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>