448 lines
10 KiB
C
448 lines
10 KiB
C
/*
|
|
* include/asm-xtensa/bitops.h
|
|
*
|
|
* Atomic operations that C can't guarantee us.Useful for resource counting etc.
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (C) 2001 - 2005 Tensilica Inc.
|
|
*/
|
|
|
|
#ifndef _XTENSA_BITOPS_H
|
|
#define _XTENSA_BITOPS_H
|
|
|
|
#ifdef __KERNEL__
|
|
|
|
#include <asm/processor.h>
|
|
#include <asm/byteorder.h>
|
|
#include <asm/system.h>
|
|
|
|
#ifdef CONFIG_SMP
|
|
# error SMP not supported on this architecture
|
|
#endif
|
|
|
|
static __inline__ void set_bit(int nr, volatile void * addr)
|
|
{
|
|
unsigned long mask = 1 << (nr & 0x1f);
|
|
unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
*a |= mask;
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static __inline__ void __set_bit(int nr, volatile unsigned long * addr)
|
|
{
|
|
unsigned long mask = 1 << (nr & 0x1f);
|
|
unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
|
|
|
|
*a |= mask;
|
|
}
|
|
|
|
static __inline__ void clear_bit(int nr, volatile void * addr)
|
|
{
|
|
unsigned long mask = 1 << (nr & 0x1f);
|
|
unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
*a &= ~mask;
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static __inline__ void __clear_bit(int nr, volatile unsigned long *addr)
|
|
{
|
|
unsigned long mask = 1 << (nr & 0x1f);
|
|
unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
|
|
|
|
*a &= ~mask;
|
|
}
|
|
|
|
/*
|
|
* clear_bit() doesn't provide any barrier for the compiler.
|
|
*/
|
|
|
|
#define smp_mb__before_clear_bit() barrier()
|
|
#define smp_mb__after_clear_bit() barrier()
|
|
|
|
static __inline__ void change_bit(int nr, volatile void * addr)
|
|
{
|
|
unsigned long mask = 1 << (nr & 0x1f);
|
|
unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
*a ^= mask;
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static __inline__ void __change_bit(int nr, volatile void * addr)
|
|
{
|
|
unsigned long mask = 1 << (nr & 0x1f);
|
|
unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
|
|
|
|
*a ^= mask;
|
|
}
|
|
|
|
static __inline__ int test_and_set_bit(int nr, volatile void * addr)
|
|
{
|
|
unsigned long retval;
|
|
unsigned long mask = 1 << (nr & 0x1f);
|
|
unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
retval = (mask & *a) != 0;
|
|
*a |= mask;
|
|
local_irq_restore(flags);
|
|
|
|
return retval;
|
|
}
|
|
|
|
static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
|
|
{
|
|
unsigned long retval;
|
|
unsigned long mask = 1 << (nr & 0x1f);
|
|
unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
|
|
|
|
retval = (mask & *a) != 0;
|
|
*a |= mask;
|
|
|
|
return retval;
|
|
}
|
|
|
|
static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
|
|
{
|
|
unsigned long retval;
|
|
unsigned long mask = 1 << (nr & 0x1f);
|
|
unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
retval = (mask & *a) != 0;
|
|
*a &= ~mask;
|
|
local_irq_restore(flags);
|
|
|
|
return retval;
|
|
}
|
|
|
|
static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
|
|
{
|
|
unsigned long mask = 1 << (nr & 0x1f);
|
|
unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
|
|
unsigned long old = *a;
|
|
|
|
*a = old & ~mask;
|
|
return (old & mask) != 0;
|
|
}
|
|
|
|
static __inline__ int test_and_change_bit(int nr, volatile void * addr)
|
|
{
|
|
unsigned long retval;
|
|
unsigned long mask = 1 << (nr & 0x1f);
|
|
unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
|
|
retval = (mask & *a) != 0;
|
|
*a ^= mask;
|
|
local_irq_restore(flags);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* non-atomic version; can be reordered
|
|
*/
|
|
|
|
static __inline__ int __test_and_change_bit(int nr, volatile void *addr)
|
|
{
|
|
unsigned long mask = 1 << (nr & 0x1f);
|
|
unsigned long *a = ((unsigned long *)addr) + (nr >> 5);
|
|
unsigned long old = *a;
|
|
|
|
*a = old ^ mask;
|
|
return (old & mask) != 0;
|
|
}
|
|
|
|
static __inline__ int test_bit(int nr, const volatile void *addr)
|
|
{
|
|
return 1UL & (((const volatile unsigned int *)addr)[nr>>5] >> (nr&31));
|
|
}
|
|
|
|
#if XCHAL_HAVE_NSA
|
|
|
|
static __inline__ int __cntlz (unsigned long x)
|
|
{
|
|
int lz;
|
|
asm ("nsau %0, %1" : "=r" (lz) : "r" (x));
|
|
return 31 - lz;
|
|
}
|
|
|
|
#else
|
|
|
|
static __inline__ int __cntlz (unsigned long x)
|
|
{
|
|
unsigned long sum, x1, x2, x4, x8, x16;
|
|
x1 = x & 0xAAAAAAAA;
|
|
x2 = x & 0xCCCCCCCC;
|
|
x4 = x & 0xF0F0F0F0;
|
|
x8 = x & 0xFF00FF00;
|
|
x16 = x & 0xFFFF0000;
|
|
sum = x2 ? 2 : 0;
|
|
sum += (x16 != 0) * 16;
|
|
sum += (x8 != 0) * 8;
|
|
sum += (x4 != 0) * 4;
|
|
sum += (x1 != 0);
|
|
|
|
return sum;
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* ffz: Find first zero in word. Undefined if no zero exists.
|
|
* bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
|
|
*/
|
|
|
|
static __inline__ int ffz(unsigned long x)
|
|
{
|
|
if ((x = ~x) == 0)
|
|
return 32;
|
|
return __cntlz(x & -x);
|
|
}
|
|
|
|
/*
|
|
* __ffs: Find first bit set in word. Return 0 for bit 0
|
|
*/
|
|
|
|
static __inline__ int __ffs(unsigned long x)
|
|
{
|
|
return __cntlz(x & -x);
|
|
}
|
|
|
|
/*
|
|
* ffs: Find first bit set in word. This is defined the same way as
|
|
* the libc and compiler builtin ffs routines, therefore
|
|
* differs in spirit from the above ffz (man ffs).
|
|
*/
|
|
|
|
static __inline__ int ffs(unsigned long x)
|
|
{
|
|
return __cntlz(x & -x) + 1;
|
|
}
|
|
|
|
/*
|
|
* fls: Find last (most-significant) bit set in word.
|
|
* Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
|
|
*/
|
|
|
|
static __inline__ int fls (unsigned int x)
|
|
{
|
|
return __cntlz(x);
|
|
}
|
|
#define fls64(x) generic_fls64(x)
|
|
|
|
static __inline__ int
|
|
find_next_bit(const unsigned long *addr, int size, int offset)
|
|
{
|
|
const unsigned long *p = addr + (offset >> 5);
|
|
unsigned long result = offset & ~31UL;
|
|
unsigned long tmp;
|
|
|
|
if (offset >= size)
|
|
return size;
|
|
size -= result;
|
|
offset &= 31UL;
|
|
if (offset) {
|
|
tmp = *p++;
|
|
tmp &= ~0UL << offset;
|
|
if (size < 32)
|
|
goto found_first;
|
|
if (tmp)
|
|
goto found_middle;
|
|
size -= 32;
|
|
result += 32;
|
|
}
|
|
while (size >= 32) {
|
|
if ((tmp = *p++) != 0)
|
|
goto found_middle;
|
|
result += 32;
|
|
size -= 32;
|
|
}
|
|
if (!size)
|
|
return result;
|
|
tmp = *p;
|
|
|
|
found_first:
|
|
tmp &= ~0UL >> (32 - size);
|
|
if (tmp == 0UL) /* Are any bits set? */
|
|
return result + size; /* Nope. */
|
|
found_middle:
|
|
return result + __ffs(tmp);
|
|
}
|
|
|
|
/**
|
|
* find_first_bit - find the first set bit in a memory region
|
|
* @addr: The address to start the search at
|
|
* @size: The maximum size to search
|
|
*
|
|
* Returns the bit-number of the first set bit, not the number of the byte
|
|
* containing a bit.
|
|
*/
|
|
|
|
#define find_first_bit(addr, size) \
|
|
find_next_bit((addr), (size), 0)
|
|
|
|
static __inline__ int
|
|
find_next_zero_bit(const unsigned long *addr, int size, int offset)
|
|
{
|
|
const unsigned long *p = addr + (offset >> 5);
|
|
unsigned long result = offset & ~31UL;
|
|
unsigned long tmp;
|
|
|
|
if (offset >= size)
|
|
return size;
|
|
size -= result;
|
|
offset &= 31UL;
|
|
if (offset) {
|
|
tmp = *p++;
|
|
tmp |= ~0UL >> (32-offset);
|
|
if (size < 32)
|
|
goto found_first;
|
|
if (~tmp)
|
|
goto found_middle;
|
|
size -= 32;
|
|
result += 32;
|
|
}
|
|
while (size & ~31UL) {
|
|
if (~(tmp = *p++))
|
|
goto found_middle;
|
|
result += 32;
|
|
size -= 32;
|
|
}
|
|
if (!size)
|
|
return result;
|
|
tmp = *p;
|
|
|
|
found_first:
|
|
tmp |= ~0UL << size;
|
|
found_middle:
|
|
return result + ffz(tmp);
|
|
}
|
|
|
|
#define find_first_zero_bit(addr, size) \
|
|
find_next_zero_bit((addr), (size), 0)
|
|
|
|
#ifdef __XTENSA_EL__
|
|
# define ext2_set_bit(nr,addr) __test_and_set_bit((nr), (addr))
|
|
# define ext2_set_bit_atomic(lock,nr,addr) test_and_set_bit((nr),(addr))
|
|
# define ext2_clear_bit(nr,addr) __test_and_clear_bit((nr), (addr))
|
|
# define ext2_clear_bit_atomic(lock,nr,addr) test_and_clear_bit((nr),(addr))
|
|
# define ext2_test_bit(nr,addr) test_bit((nr), (addr))
|
|
# define ext2_find_first_zero_bit(addr, size) find_first_zero_bit((addr),(size))
|
|
# define ext2_find_next_zero_bit(addr, size, offset) \
|
|
find_next_zero_bit((addr), (size), (offset))
|
|
#elif defined(__XTENSA_EB__)
|
|
# define ext2_set_bit(nr,addr) __test_and_set_bit((nr) ^ 0x18, (addr))
|
|
# define ext2_set_bit_atomic(lock,nr,addr) test_and_set_bit((nr) ^ 0x18, (addr))
|
|
# define ext2_clear_bit(nr,addr) __test_and_clear_bit((nr) ^ 18, (addr))
|
|
# define ext2_clear_bit_atomic(lock,nr,addr) test_and_clear_bit((nr)^0x18,(addr))
|
|
# define ext2_test_bit(nr,addr) test_bit((nr) ^ 0x18, (addr))
|
|
# define ext2_find_first_zero_bit(addr, size) \
|
|
ext2_find_next_zero_bit((addr), (size), 0)
|
|
|
|
static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset)
|
|
{
|
|
unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
|
|
unsigned long result = offset & ~31UL;
|
|
unsigned long tmp;
|
|
|
|
if (offset >= size)
|
|
return size;
|
|
size -= result;
|
|
offset &= 31UL;
|
|
if(offset) {
|
|
/* We hold the little endian value in tmp, but then the
|
|
* shift is illegal. So we could keep a big endian value
|
|
* in tmp, like this:
|
|
*
|
|
* tmp = __swab32(*(p++));
|
|
* tmp |= ~0UL >> (32-offset);
|
|
*
|
|
* but this would decrease preformance, so we change the
|
|
* shift:
|
|
*/
|
|
tmp = *(p++);
|
|
tmp |= __swab32(~0UL >> (32-offset));
|
|
if(size < 32)
|
|
goto found_first;
|
|
if(~tmp)
|
|
goto found_middle;
|
|
size -= 32;
|
|
result += 32;
|
|
}
|
|
while(size & ~31UL) {
|
|
if(~(tmp = *(p++)))
|
|
goto found_middle;
|
|
result += 32;
|
|
size -= 32;
|
|
}
|
|
if(!size)
|
|
return result;
|
|
tmp = *p;
|
|
|
|
found_first:
|
|
/* tmp is little endian, so we would have to swab the shift,
|
|
* see above. But then we have to swab tmp below for ffz, so
|
|
* we might as well do this here.
|
|
*/
|
|
return result + ffz(__swab32(tmp) | (~0UL << size));
|
|
found_middle:
|
|
return result + ffz(__swab32(tmp));
|
|
}
|
|
|
|
#else
|
|
# error processor byte order undefined!
|
|
#endif
|
|
|
|
|
|
#define hweight32(x) generic_hweight32(x)
|
|
#define hweight16(x) generic_hweight16(x)
|
|
#define hweight8(x) generic_hweight8(x)
|
|
|
|
/*
|
|
* Find the first bit set in a 140-bit bitmap.
|
|
* The first 100 bits are unlikely to be set.
|
|
*/
|
|
|
|
static inline int sched_find_first_bit(const unsigned long *b)
|
|
{
|
|
if (unlikely(b[0]))
|
|
return __ffs(b[0]);
|
|
if (unlikely(b[1]))
|
|
return __ffs(b[1]) + 32;
|
|
if (unlikely(b[2]))
|
|
return __ffs(b[2]) + 64;
|
|
if (b[3])
|
|
return __ffs(b[3]) + 96;
|
|
return __ffs(b[4]) + 128;
|
|
}
|
|
|
|
|
|
/* Bitmap functions for the minix filesystem. */
|
|
|
|
#define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)
|
|
#define minix_set_bit(nr,addr) set_bit(nr,addr)
|
|
#define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
|
|
#define minix_test_bit(nr,addr) test_bit(nr,addr)
|
|
#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
|
|
|
|
#endif /* __KERNEL__ */
|
|
|
|
#endif /* _XTENSA_BITOPS_H */
|