OpenCloudOS-Kernel/drivers/iio/dac/ad5592r-base.c

689 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* AD5592R Digital <-> Analog converters driver
*
* Copyright 2014-2016 Analog Devices Inc.
* Author: Paul Cercueil <paul.cercueil@analog.com>
*/
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/iio/iio.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/regulator/consumer.h>
#include <linux/gpio/consumer.h>
#include <linux/gpio/driver.h>
#include <linux/property.h>
#include <dt-bindings/iio/adi,ad5592r.h>
#include "ad5592r-base.h"
static int ad5592r_gpio_get(struct gpio_chip *chip, unsigned offset)
{
struct ad5592r_state *st = gpiochip_get_data(chip);
int ret = 0;
u8 val;
mutex_lock(&st->gpio_lock);
if (st->gpio_out & BIT(offset))
val = st->gpio_val;
else
ret = st->ops->gpio_read(st, &val);
mutex_unlock(&st->gpio_lock);
if (ret < 0)
return ret;
return !!(val & BIT(offset));
}
static void ad5592r_gpio_set(struct gpio_chip *chip, unsigned offset, int value)
{
struct ad5592r_state *st = gpiochip_get_data(chip);
mutex_lock(&st->gpio_lock);
if (value)
st->gpio_val |= BIT(offset);
else
st->gpio_val &= ~BIT(offset);
st->ops->reg_write(st, AD5592R_REG_GPIO_SET, st->gpio_val);
mutex_unlock(&st->gpio_lock);
}
static int ad5592r_gpio_direction_input(struct gpio_chip *chip, unsigned offset)
{
struct ad5592r_state *st = gpiochip_get_data(chip);
int ret;
mutex_lock(&st->gpio_lock);
st->gpio_out &= ~BIT(offset);
st->gpio_in |= BIT(offset);
ret = st->ops->reg_write(st, AD5592R_REG_GPIO_OUT_EN, st->gpio_out);
if (ret < 0)
goto err_unlock;
ret = st->ops->reg_write(st, AD5592R_REG_GPIO_IN_EN, st->gpio_in);
err_unlock:
mutex_unlock(&st->gpio_lock);
return ret;
}
static int ad5592r_gpio_direction_output(struct gpio_chip *chip,
unsigned offset, int value)
{
struct ad5592r_state *st = gpiochip_get_data(chip);
int ret;
mutex_lock(&st->gpio_lock);
if (value)
st->gpio_val |= BIT(offset);
else
st->gpio_val &= ~BIT(offset);
st->gpio_in &= ~BIT(offset);
st->gpio_out |= BIT(offset);
ret = st->ops->reg_write(st, AD5592R_REG_GPIO_SET, st->gpio_val);
if (ret < 0)
goto err_unlock;
ret = st->ops->reg_write(st, AD5592R_REG_GPIO_OUT_EN, st->gpio_out);
if (ret < 0)
goto err_unlock;
ret = st->ops->reg_write(st, AD5592R_REG_GPIO_IN_EN, st->gpio_in);
err_unlock:
mutex_unlock(&st->gpio_lock);
return ret;
}
static int ad5592r_gpio_request(struct gpio_chip *chip, unsigned offset)
{
struct ad5592r_state *st = gpiochip_get_data(chip);
if (!(st->gpio_map & BIT(offset))) {
dev_err(st->dev, "GPIO %d is reserved by alternate function\n",
offset);
return -ENODEV;
}
return 0;
}
static int ad5592r_gpio_init(struct ad5592r_state *st)
{
if (!st->gpio_map)
return 0;
st->gpiochip.label = dev_name(st->dev);
st->gpiochip.base = -1;
st->gpiochip.ngpio = 8;
st->gpiochip.parent = st->dev;
st->gpiochip.can_sleep = true;
st->gpiochip.direction_input = ad5592r_gpio_direction_input;
st->gpiochip.direction_output = ad5592r_gpio_direction_output;
st->gpiochip.get = ad5592r_gpio_get;
st->gpiochip.set = ad5592r_gpio_set;
st->gpiochip.request = ad5592r_gpio_request;
st->gpiochip.owner = THIS_MODULE;
mutex_init(&st->gpio_lock);
return gpiochip_add_data(&st->gpiochip, st);
}
static void ad5592r_gpio_cleanup(struct ad5592r_state *st)
{
if (st->gpio_map)
gpiochip_remove(&st->gpiochip);
}
static int ad5592r_reset(struct ad5592r_state *st)
{
struct gpio_desc *gpio;
gpio = devm_gpiod_get_optional(st->dev, "reset", GPIOD_OUT_LOW);
if (IS_ERR(gpio))
return PTR_ERR(gpio);
if (gpio) {
udelay(1);
gpiod_set_value(gpio, 1);
} else {
mutex_lock(&st->lock);
/* Writing this magic value resets the device */
st->ops->reg_write(st, AD5592R_REG_RESET, 0xdac);
mutex_unlock(&st->lock);
}
udelay(250);
return 0;
}
static int ad5592r_get_vref(struct ad5592r_state *st)
{
int ret;
if (st->reg) {
ret = regulator_get_voltage(st->reg);
if (ret < 0)
return ret;
return ret / 1000;
} else {
return 2500;
}
}
static int ad5592r_set_channel_modes(struct ad5592r_state *st)
{
const struct ad5592r_rw_ops *ops = st->ops;
int ret;
unsigned i;
u8 pulldown = 0, tristate = 0, dac = 0, adc = 0;
u16 read_back;
for (i = 0; i < st->num_channels; i++) {
switch (st->channel_modes[i]) {
case CH_MODE_DAC:
dac |= BIT(i);
break;
case CH_MODE_ADC:
adc |= BIT(i);
break;
case CH_MODE_DAC_AND_ADC:
dac |= BIT(i);
adc |= BIT(i);
break;
case CH_MODE_GPIO:
st->gpio_map |= BIT(i);
st->gpio_in |= BIT(i); /* Default to input */
break;
case CH_MODE_UNUSED:
/* fall-through */
default:
switch (st->channel_offstate[i]) {
case CH_OFFSTATE_OUT_TRISTATE:
tristate |= BIT(i);
break;
case CH_OFFSTATE_OUT_LOW:
st->gpio_out |= BIT(i);
break;
case CH_OFFSTATE_OUT_HIGH:
st->gpio_out |= BIT(i);
st->gpio_val |= BIT(i);
break;
case CH_OFFSTATE_PULLDOWN:
/* fall-through */
default:
pulldown |= BIT(i);
break;
}
}
}
mutex_lock(&st->lock);
/* Pull down unused pins to GND */
ret = ops->reg_write(st, AD5592R_REG_PULLDOWN, pulldown);
if (ret)
goto err_unlock;
ret = ops->reg_write(st, AD5592R_REG_TRISTATE, tristate);
if (ret)
goto err_unlock;
/* Configure pins that we use */
ret = ops->reg_write(st, AD5592R_REG_DAC_EN, dac);
if (ret)
goto err_unlock;
ret = ops->reg_write(st, AD5592R_REG_ADC_EN, adc);
if (ret)
goto err_unlock;
ret = ops->reg_write(st, AD5592R_REG_GPIO_SET, st->gpio_val);
if (ret)
goto err_unlock;
ret = ops->reg_write(st, AD5592R_REG_GPIO_OUT_EN, st->gpio_out);
if (ret)
goto err_unlock;
ret = ops->reg_write(st, AD5592R_REG_GPIO_IN_EN, st->gpio_in);
if (ret)
goto err_unlock;
/* Verify that we can read back at least one register */
ret = ops->reg_read(st, AD5592R_REG_ADC_EN, &read_back);
if (!ret && (read_back & 0xff) != adc)
ret = -EIO;
err_unlock:
mutex_unlock(&st->lock);
return ret;
}
static int ad5592r_reset_channel_modes(struct ad5592r_state *st)
{
int i;
for (i = 0; i < ARRAY_SIZE(st->channel_modes); i++)
st->channel_modes[i] = CH_MODE_UNUSED;
return ad5592r_set_channel_modes(st);
}
static int ad5592r_write_raw(struct iio_dev *iio_dev,
struct iio_chan_spec const *chan, int val, int val2, long mask)
{
struct ad5592r_state *st = iio_priv(iio_dev);
int ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
if (val >= (1 << chan->scan_type.realbits) || val < 0)
return -EINVAL;
if (!chan->output)
return -EINVAL;
mutex_lock(&st->lock);
ret = st->ops->write_dac(st, chan->channel, val);
if (!ret)
st->cached_dac[chan->channel] = val;
mutex_unlock(&st->lock);
return ret;
case IIO_CHAN_INFO_SCALE:
if (chan->type == IIO_VOLTAGE) {
bool gain;
if (val == st->scale_avail[0][0] &&
val2 == st->scale_avail[0][1])
gain = false;
else if (val == st->scale_avail[1][0] &&
val2 == st->scale_avail[1][1])
gain = true;
else
return -EINVAL;
mutex_lock(&st->lock);
ret = st->ops->reg_read(st, AD5592R_REG_CTRL,
&st->cached_gp_ctrl);
if (ret < 0) {
mutex_unlock(&st->lock);
return ret;
}
if (chan->output) {
if (gain)
st->cached_gp_ctrl |=
AD5592R_REG_CTRL_DAC_RANGE;
else
st->cached_gp_ctrl &=
~AD5592R_REG_CTRL_DAC_RANGE;
} else {
if (gain)
st->cached_gp_ctrl |=
AD5592R_REG_CTRL_ADC_RANGE;
else
st->cached_gp_ctrl &=
~AD5592R_REG_CTRL_ADC_RANGE;
}
ret = st->ops->reg_write(st, AD5592R_REG_CTRL,
st->cached_gp_ctrl);
mutex_unlock(&st->lock);
return ret;
}
break;
default:
return -EINVAL;
}
return 0;
}
static int ad5592r_read_raw(struct iio_dev *iio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long m)
{
struct ad5592r_state *st = iio_priv(iio_dev);
u16 read_val;
int ret;
switch (m) {
case IIO_CHAN_INFO_RAW:
mutex_lock(&st->lock);
if (!chan->output) {
ret = st->ops->read_adc(st, chan->channel, &read_val);
if (ret)
goto unlock;
if ((read_val >> 12 & 0x7) != (chan->channel & 0x7)) {
dev_err(st->dev, "Error while reading channel %u\n",
chan->channel);
ret = -EIO;
goto unlock;
}
read_val &= GENMASK(11, 0);
} else {
read_val = st->cached_dac[chan->channel];
}
dev_dbg(st->dev, "Channel %u read: 0x%04hX\n",
chan->channel, read_val);
*val = (int) read_val;
ret = IIO_VAL_INT;
break;
case IIO_CHAN_INFO_SCALE:
*val = ad5592r_get_vref(st);
if (chan->type == IIO_TEMP) {
s64 tmp = *val * (3767897513LL / 25LL);
*val = div_s64_rem(tmp, 1000000000LL, val2);
return IIO_VAL_INT_PLUS_MICRO;
} else {
int mult;
mutex_lock(&st->lock);
if (chan->output)
mult = !!(st->cached_gp_ctrl &
AD5592R_REG_CTRL_DAC_RANGE);
else
mult = !!(st->cached_gp_ctrl &
AD5592R_REG_CTRL_ADC_RANGE);
*val *= ++mult;
*val2 = chan->scan_type.realbits;
ret = IIO_VAL_FRACTIONAL_LOG2;
}
break;
case IIO_CHAN_INFO_OFFSET:
ret = ad5592r_get_vref(st);
mutex_lock(&st->lock);
if (st->cached_gp_ctrl & AD5592R_REG_CTRL_ADC_RANGE)
*val = (-34365 * 25) / ret;
else
*val = (-75365 * 25) / ret;
ret = IIO_VAL_INT;
break;
default:
return -EINVAL;
}
unlock:
mutex_unlock(&st->lock);
return ret;
}
static int ad5592r_write_raw_get_fmt(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, long mask)
{
switch (mask) {
case IIO_CHAN_INFO_SCALE:
return IIO_VAL_INT_PLUS_NANO;
default:
return IIO_VAL_INT_PLUS_MICRO;
}
return -EINVAL;
}
static const struct iio_info ad5592r_info = {
.read_raw = ad5592r_read_raw,
.write_raw = ad5592r_write_raw,
.write_raw_get_fmt = ad5592r_write_raw_get_fmt,
};
static ssize_t ad5592r_show_scale_available(struct iio_dev *iio_dev,
uintptr_t private,
const struct iio_chan_spec *chan,
char *buf)
{
struct ad5592r_state *st = iio_priv(iio_dev);
return sprintf(buf, "%d.%09u %d.%09u\n",
st->scale_avail[0][0], st->scale_avail[0][1],
st->scale_avail[1][0], st->scale_avail[1][1]);
}
static const struct iio_chan_spec_ext_info ad5592r_ext_info[] = {
{
.name = "scale_available",
.read = ad5592r_show_scale_available,
.shared = true,
},
{},
};
static void ad5592r_setup_channel(struct iio_dev *iio_dev,
struct iio_chan_spec *chan, bool output, unsigned id)
{
chan->type = IIO_VOLTAGE;
chan->indexed = 1;
chan->output = output;
chan->channel = id;
chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE);
chan->scan_type.sign = 'u';
chan->scan_type.realbits = 12;
chan->scan_type.storagebits = 16;
chan->ext_info = ad5592r_ext_info;
}
static int ad5592r_alloc_channels(struct iio_dev *iio_dev)
{
struct ad5592r_state *st = iio_priv(iio_dev);
unsigned i, curr_channel = 0,
num_channels = st->num_channels;
struct iio_chan_spec *channels;
struct fwnode_handle *child;
u32 reg, tmp;
int ret;
device_for_each_child_node(st->dev, child) {
ret = fwnode_property_read_u32(child, "reg", &reg);
if (ret || reg >= ARRAY_SIZE(st->channel_modes))
continue;
ret = fwnode_property_read_u32(child, "adi,mode", &tmp);
if (!ret)
st->channel_modes[reg] = tmp;
fwnode_property_read_u32(child, "adi,off-state", &tmp);
if (!ret)
st->channel_offstate[reg] = tmp;
}
channels = devm_kcalloc(st->dev,
1 + 2 * num_channels, sizeof(*channels),
GFP_KERNEL);
if (!channels)
return -ENOMEM;
for (i = 0; i < num_channels; i++) {
switch (st->channel_modes[i]) {
case CH_MODE_DAC:
ad5592r_setup_channel(iio_dev, &channels[curr_channel],
true, i);
curr_channel++;
break;
case CH_MODE_ADC:
ad5592r_setup_channel(iio_dev, &channels[curr_channel],
false, i);
curr_channel++;
break;
case CH_MODE_DAC_AND_ADC:
ad5592r_setup_channel(iio_dev, &channels[curr_channel],
true, i);
curr_channel++;
ad5592r_setup_channel(iio_dev, &channels[curr_channel],
false, i);
curr_channel++;
break;
default:
continue;
}
}
channels[curr_channel].type = IIO_TEMP;
channels[curr_channel].channel = 8;
channels[curr_channel].info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_OFFSET);
curr_channel++;
iio_dev->num_channels = curr_channel;
iio_dev->channels = channels;
return 0;
}
static void ad5592r_init_scales(struct ad5592r_state *st, int vref_mV)
{
s64 tmp = (s64)vref_mV * 1000000000LL >> 12;
st->scale_avail[0][0] =
div_s64_rem(tmp, 1000000000LL, &st->scale_avail[0][1]);
st->scale_avail[1][0] =
div_s64_rem(tmp * 2, 1000000000LL, &st->scale_avail[1][1]);
}
int ad5592r_probe(struct device *dev, const char *name,
const struct ad5592r_rw_ops *ops)
{
struct iio_dev *iio_dev;
struct ad5592r_state *st;
int ret;
iio_dev = devm_iio_device_alloc(dev, sizeof(*st));
if (!iio_dev)
return -ENOMEM;
st = iio_priv(iio_dev);
st->dev = dev;
st->ops = ops;
st->num_channels = 8;
dev_set_drvdata(dev, iio_dev);
st->reg = devm_regulator_get_optional(dev, "vref");
if (IS_ERR(st->reg)) {
if ((PTR_ERR(st->reg) != -ENODEV) && dev->of_node)
return PTR_ERR(st->reg);
st->reg = NULL;
} else {
ret = regulator_enable(st->reg);
if (ret)
return ret;
}
iio_dev->name = name;
iio_dev->info = &ad5592r_info;
iio_dev->modes = INDIO_DIRECT_MODE;
mutex_init(&st->lock);
ad5592r_init_scales(st, ad5592r_get_vref(st));
ret = ad5592r_reset(st);
if (ret)
goto error_disable_reg;
ret = ops->reg_write(st, AD5592R_REG_PD,
(st->reg == NULL) ? AD5592R_REG_PD_EN_REF : 0);
if (ret)
goto error_disable_reg;
ret = ad5592r_alloc_channels(iio_dev);
if (ret)
goto error_disable_reg;
ret = ad5592r_set_channel_modes(st);
if (ret)
goto error_reset_ch_modes;
ret = iio_device_register(iio_dev);
if (ret)
goto error_reset_ch_modes;
ret = ad5592r_gpio_init(st);
if (ret)
goto error_dev_unregister;
return 0;
error_dev_unregister:
iio_device_unregister(iio_dev);
error_reset_ch_modes:
ad5592r_reset_channel_modes(st);
error_disable_reg:
if (st->reg)
regulator_disable(st->reg);
return ret;
}
EXPORT_SYMBOL_GPL(ad5592r_probe);
int ad5592r_remove(struct device *dev)
{
struct iio_dev *iio_dev = dev_get_drvdata(dev);
struct ad5592r_state *st = iio_priv(iio_dev);
iio_device_unregister(iio_dev);
ad5592r_reset_channel_modes(st);
ad5592r_gpio_cleanup(st);
if (st->reg)
regulator_disable(st->reg);
return 0;
}
EXPORT_SYMBOL_GPL(ad5592r_remove);
MODULE_AUTHOR("Paul Cercueil <paul.cercueil@analog.com>");
MODULE_DESCRIPTION("Analog Devices AD5592R multi-channel converters");
MODULE_LICENSE("GPL v2");