2123 lines
52 KiB
C
2123 lines
52 KiB
C
/*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Copyright © 2019 Intel Corporation
|
|
*/
|
|
|
|
#include <drm/i915_drm.h>
|
|
|
|
#include "i915_drv.h"
|
|
#include "intel_breadcrumbs.h"
|
|
#include "intel_gt.h"
|
|
#include "intel_gt_clock_utils.h"
|
|
#include "intel_gt_irq.h"
|
|
#include "intel_gt_pm_irq.h"
|
|
#include "intel_rps.h"
|
|
#include "intel_sideband.h"
|
|
#include "../../../platform/x86/intel_ips.h"
|
|
|
|
#define BUSY_MAX_EI 20u /* ms */
|
|
|
|
/*
|
|
* Lock protecting IPS related data structures
|
|
*/
|
|
static DEFINE_SPINLOCK(mchdev_lock);
|
|
|
|
static struct intel_gt *rps_to_gt(struct intel_rps *rps)
|
|
{
|
|
return container_of(rps, struct intel_gt, rps);
|
|
}
|
|
|
|
static struct drm_i915_private *rps_to_i915(struct intel_rps *rps)
|
|
{
|
|
return rps_to_gt(rps)->i915;
|
|
}
|
|
|
|
static struct intel_uncore *rps_to_uncore(struct intel_rps *rps)
|
|
{
|
|
return rps_to_gt(rps)->uncore;
|
|
}
|
|
|
|
static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask)
|
|
{
|
|
return mask & ~rps->pm_intrmsk_mbz;
|
|
}
|
|
|
|
static inline void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val)
|
|
{
|
|
intel_uncore_write_fw(uncore, reg, val);
|
|
}
|
|
|
|
static void rps_timer(struct timer_list *t)
|
|
{
|
|
struct intel_rps *rps = from_timer(rps, t, timer);
|
|
struct intel_engine_cs *engine;
|
|
ktime_t dt, last, timestamp;
|
|
enum intel_engine_id id;
|
|
s64 max_busy[3] = {};
|
|
|
|
timestamp = 0;
|
|
for_each_engine(engine, rps_to_gt(rps), id) {
|
|
s64 busy;
|
|
int i;
|
|
|
|
dt = intel_engine_get_busy_time(engine, ×tamp);
|
|
last = engine->stats.rps;
|
|
engine->stats.rps = dt;
|
|
|
|
busy = ktime_to_ns(ktime_sub(dt, last));
|
|
for (i = 0; i < ARRAY_SIZE(max_busy); i++) {
|
|
if (busy > max_busy[i])
|
|
swap(busy, max_busy[i]);
|
|
}
|
|
}
|
|
last = rps->pm_timestamp;
|
|
rps->pm_timestamp = timestamp;
|
|
|
|
if (intel_rps_is_active(rps)) {
|
|
s64 busy;
|
|
int i;
|
|
|
|
dt = ktime_sub(timestamp, last);
|
|
|
|
/*
|
|
* Our goal is to evaluate each engine independently, so we run
|
|
* at the lowest clocks required to sustain the heaviest
|
|
* workload. However, a task may be split into sequential
|
|
* dependent operations across a set of engines, such that
|
|
* the independent contributions do not account for high load,
|
|
* but overall the task is GPU bound. For example, consider
|
|
* video decode on vcs followed by colour post-processing
|
|
* on vecs, followed by general post-processing on rcs.
|
|
* Since multi-engines being active does imply a single
|
|
* continuous workload across all engines, we hedge our
|
|
* bets by only contributing a factor of the distributed
|
|
* load into our busyness calculation.
|
|
*/
|
|
busy = max_busy[0];
|
|
for (i = 1; i < ARRAY_SIZE(max_busy); i++) {
|
|
if (!max_busy[i])
|
|
break;
|
|
|
|
busy += div_u64(max_busy[i], 1 << i);
|
|
}
|
|
GT_TRACE(rps_to_gt(rps),
|
|
"busy:%lld [%d%%], max:[%lld, %lld, %lld], interval:%d\n",
|
|
busy, (int)div64_u64(100 * busy, dt),
|
|
max_busy[0], max_busy[1], max_busy[2],
|
|
rps->pm_interval);
|
|
|
|
if (100 * busy > rps->power.up_threshold * dt &&
|
|
rps->cur_freq < rps->max_freq_softlimit) {
|
|
rps->pm_iir |= GEN6_PM_RP_UP_THRESHOLD;
|
|
rps->pm_interval = 1;
|
|
schedule_work(&rps->work);
|
|
} else if (100 * busy < rps->power.down_threshold * dt &&
|
|
rps->cur_freq > rps->min_freq_softlimit) {
|
|
rps->pm_iir |= GEN6_PM_RP_DOWN_THRESHOLD;
|
|
rps->pm_interval = 1;
|
|
schedule_work(&rps->work);
|
|
} else {
|
|
rps->last_adj = 0;
|
|
}
|
|
|
|
mod_timer(&rps->timer,
|
|
jiffies + msecs_to_jiffies(rps->pm_interval));
|
|
rps->pm_interval = min(rps->pm_interval * 2, BUSY_MAX_EI);
|
|
}
|
|
}
|
|
|
|
static void rps_start_timer(struct intel_rps *rps)
|
|
{
|
|
rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
|
|
rps->pm_interval = 1;
|
|
mod_timer(&rps->timer, jiffies + 1);
|
|
}
|
|
|
|
static void rps_stop_timer(struct intel_rps *rps)
|
|
{
|
|
del_timer_sync(&rps->timer);
|
|
rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
|
|
cancel_work_sync(&rps->work);
|
|
}
|
|
|
|
static u32 rps_pm_mask(struct intel_rps *rps, u8 val)
|
|
{
|
|
u32 mask = 0;
|
|
|
|
/* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */
|
|
if (val > rps->min_freq_softlimit)
|
|
mask |= (GEN6_PM_RP_UP_EI_EXPIRED |
|
|
GEN6_PM_RP_DOWN_THRESHOLD |
|
|
GEN6_PM_RP_DOWN_TIMEOUT);
|
|
|
|
if (val < rps->max_freq_softlimit)
|
|
mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
|
|
|
|
mask &= rps->pm_events;
|
|
|
|
return rps_pm_sanitize_mask(rps, ~mask);
|
|
}
|
|
|
|
static void rps_reset_ei(struct intel_rps *rps)
|
|
{
|
|
memset(&rps->ei, 0, sizeof(rps->ei));
|
|
}
|
|
|
|
static void rps_enable_interrupts(struct intel_rps *rps)
|
|
{
|
|
struct intel_gt *gt = rps_to_gt(rps);
|
|
|
|
GT_TRACE(gt, "interrupts:on rps->pm_events: %x, rps_pm_mask:%x\n",
|
|
rps->pm_events, rps_pm_mask(rps, rps->last_freq));
|
|
|
|
rps_reset_ei(rps);
|
|
|
|
spin_lock_irq(>->irq_lock);
|
|
gen6_gt_pm_enable_irq(gt, rps->pm_events);
|
|
spin_unlock_irq(>->irq_lock);
|
|
|
|
intel_uncore_write(gt->uncore,
|
|
GEN6_PMINTRMSK, rps_pm_mask(rps, rps->last_freq));
|
|
}
|
|
|
|
static void gen6_rps_reset_interrupts(struct intel_rps *rps)
|
|
{
|
|
gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS);
|
|
}
|
|
|
|
static void gen11_rps_reset_interrupts(struct intel_rps *rps)
|
|
{
|
|
while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM))
|
|
;
|
|
}
|
|
|
|
static void rps_reset_interrupts(struct intel_rps *rps)
|
|
{
|
|
struct intel_gt *gt = rps_to_gt(rps);
|
|
|
|
spin_lock_irq(>->irq_lock);
|
|
if (INTEL_GEN(gt->i915) >= 11)
|
|
gen11_rps_reset_interrupts(rps);
|
|
else
|
|
gen6_rps_reset_interrupts(rps);
|
|
|
|
rps->pm_iir = 0;
|
|
spin_unlock_irq(>->irq_lock);
|
|
}
|
|
|
|
static void rps_disable_interrupts(struct intel_rps *rps)
|
|
{
|
|
struct intel_gt *gt = rps_to_gt(rps);
|
|
|
|
intel_uncore_write(gt->uncore,
|
|
GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u));
|
|
|
|
spin_lock_irq(>->irq_lock);
|
|
gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
|
|
spin_unlock_irq(>->irq_lock);
|
|
|
|
intel_synchronize_irq(gt->i915);
|
|
|
|
/*
|
|
* Now that we will not be generating any more work, flush any
|
|
* outstanding tasks. As we are called on the RPS idle path,
|
|
* we will reset the GPU to minimum frequencies, so the current
|
|
* state of the worker can be discarded.
|
|
*/
|
|
cancel_work_sync(&rps->work);
|
|
|
|
rps_reset_interrupts(rps);
|
|
GT_TRACE(gt, "interrupts:off\n");
|
|
}
|
|
|
|
static const struct cparams {
|
|
u16 i;
|
|
u16 t;
|
|
u16 m;
|
|
u16 c;
|
|
} cparams[] = {
|
|
{ 1, 1333, 301, 28664 },
|
|
{ 1, 1066, 294, 24460 },
|
|
{ 1, 800, 294, 25192 },
|
|
{ 0, 1333, 276, 27605 },
|
|
{ 0, 1066, 276, 27605 },
|
|
{ 0, 800, 231, 23784 },
|
|
};
|
|
|
|
static void gen5_rps_init(struct intel_rps *rps)
|
|
{
|
|
struct drm_i915_private *i915 = rps_to_i915(rps);
|
|
struct intel_uncore *uncore = rps_to_uncore(rps);
|
|
u8 fmax, fmin, fstart;
|
|
u32 rgvmodectl;
|
|
int c_m, i;
|
|
|
|
if (i915->fsb_freq <= 3200)
|
|
c_m = 0;
|
|
else if (i915->fsb_freq <= 4800)
|
|
c_m = 1;
|
|
else
|
|
c_m = 2;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(cparams); i++) {
|
|
if (cparams[i].i == c_m && cparams[i].t == i915->mem_freq) {
|
|
rps->ips.m = cparams[i].m;
|
|
rps->ips.c = cparams[i].c;
|
|
break;
|
|
}
|
|
}
|
|
|
|
rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
|
|
|
|
/* Set up min, max, and cur for interrupt handling */
|
|
fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
|
|
fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
|
|
fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
|
|
MEMMODE_FSTART_SHIFT;
|
|
drm_dbg(&i915->drm, "fmax: %d, fmin: %d, fstart: %d\n",
|
|
fmax, fmin, fstart);
|
|
|
|
rps->min_freq = fmax;
|
|
rps->efficient_freq = fstart;
|
|
rps->max_freq = fmin;
|
|
}
|
|
|
|
static unsigned long
|
|
__ips_chipset_val(struct intel_ips *ips)
|
|
{
|
|
struct intel_uncore *uncore =
|
|
rps_to_uncore(container_of(ips, struct intel_rps, ips));
|
|
unsigned long now = jiffies_to_msecs(jiffies), dt;
|
|
unsigned long result;
|
|
u64 total, delta;
|
|
|
|
lockdep_assert_held(&mchdev_lock);
|
|
|
|
/*
|
|
* Prevent division-by-zero if we are asking too fast.
|
|
* Also, we don't get interesting results if we are polling
|
|
* faster than once in 10ms, so just return the saved value
|
|
* in such cases.
|
|
*/
|
|
dt = now - ips->last_time1;
|
|
if (dt <= 10)
|
|
return ips->chipset_power;
|
|
|
|
/* FIXME: handle per-counter overflow */
|
|
total = intel_uncore_read(uncore, DMIEC);
|
|
total += intel_uncore_read(uncore, DDREC);
|
|
total += intel_uncore_read(uncore, CSIEC);
|
|
|
|
delta = total - ips->last_count1;
|
|
|
|
result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10);
|
|
|
|
ips->last_count1 = total;
|
|
ips->last_time1 = now;
|
|
|
|
ips->chipset_power = result;
|
|
|
|
return result;
|
|
}
|
|
|
|
static unsigned long ips_mch_val(struct intel_uncore *uncore)
|
|
{
|
|
unsigned int m, x, b;
|
|
u32 tsfs;
|
|
|
|
tsfs = intel_uncore_read(uncore, TSFS);
|
|
x = intel_uncore_read8(uncore, TR1);
|
|
|
|
b = tsfs & TSFS_INTR_MASK;
|
|
m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT;
|
|
|
|
return m * x / 127 - b;
|
|
}
|
|
|
|
static int _pxvid_to_vd(u8 pxvid)
|
|
{
|
|
if (pxvid == 0)
|
|
return 0;
|
|
|
|
if (pxvid >= 8 && pxvid < 31)
|
|
pxvid = 31;
|
|
|
|
return (pxvid + 2) * 125;
|
|
}
|
|
|
|
static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid)
|
|
{
|
|
const int vd = _pxvid_to_vd(pxvid);
|
|
|
|
if (INTEL_INFO(i915)->is_mobile)
|
|
return max(vd - 1125, 0);
|
|
|
|
return vd;
|
|
}
|
|
|
|
static void __gen5_ips_update(struct intel_ips *ips)
|
|
{
|
|
struct intel_uncore *uncore =
|
|
rps_to_uncore(container_of(ips, struct intel_rps, ips));
|
|
u64 now, delta, dt;
|
|
u32 count;
|
|
|
|
lockdep_assert_held(&mchdev_lock);
|
|
|
|
now = ktime_get_raw_ns();
|
|
dt = now - ips->last_time2;
|
|
do_div(dt, NSEC_PER_MSEC);
|
|
|
|
/* Don't divide by 0 */
|
|
if (dt <= 10)
|
|
return;
|
|
|
|
count = intel_uncore_read(uncore, GFXEC);
|
|
delta = count - ips->last_count2;
|
|
|
|
ips->last_count2 = count;
|
|
ips->last_time2 = now;
|
|
|
|
/* More magic constants... */
|
|
ips->gfx_power = div_u64(delta * 1181, dt * 10);
|
|
}
|
|
|
|
static void gen5_rps_update(struct intel_rps *rps)
|
|
{
|
|
spin_lock_irq(&mchdev_lock);
|
|
__gen5_ips_update(&rps->ips);
|
|
spin_unlock_irq(&mchdev_lock);
|
|
}
|
|
|
|
static unsigned int gen5_invert_freq(struct intel_rps *rps,
|
|
unsigned int val)
|
|
{
|
|
/* Invert the frequency bin into an ips delay */
|
|
val = rps->max_freq - val;
|
|
val = rps->min_freq + val;
|
|
|
|
return val;
|
|
}
|
|
|
|
static bool gen5_rps_set(struct intel_rps *rps, u8 val)
|
|
{
|
|
struct intel_uncore *uncore = rps_to_uncore(rps);
|
|
u16 rgvswctl;
|
|
|
|
lockdep_assert_held(&mchdev_lock);
|
|
|
|
rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
|
|
if (rgvswctl & MEMCTL_CMD_STS) {
|
|
DRM_DEBUG("gpu busy, RCS change rejected\n");
|
|
return false; /* still busy with another command */
|
|
}
|
|
|
|
/* Invert the frequency bin into an ips delay */
|
|
val = gen5_invert_freq(rps, val);
|
|
|
|
rgvswctl =
|
|
(MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
|
|
(val << MEMCTL_FREQ_SHIFT) |
|
|
MEMCTL_SFCAVM;
|
|
intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
|
|
intel_uncore_posting_read16(uncore, MEMSWCTL);
|
|
|
|
rgvswctl |= MEMCTL_CMD_STS;
|
|
intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
|
|
|
|
return true;
|
|
}
|
|
|
|
static unsigned long intel_pxfreq(u32 vidfreq)
|
|
{
|
|
int div = (vidfreq & 0x3f0000) >> 16;
|
|
int post = (vidfreq & 0x3000) >> 12;
|
|
int pre = (vidfreq & 0x7);
|
|
|
|
if (!pre)
|
|
return 0;
|
|
|
|
return div * 133333 / (pre << post);
|
|
}
|
|
|
|
static unsigned int init_emon(struct intel_uncore *uncore)
|
|
{
|
|
u8 pxw[16];
|
|
int i;
|
|
|
|
/* Disable to program */
|
|
intel_uncore_write(uncore, ECR, 0);
|
|
intel_uncore_posting_read(uncore, ECR);
|
|
|
|
/* Program energy weights for various events */
|
|
intel_uncore_write(uncore, SDEW, 0x15040d00);
|
|
intel_uncore_write(uncore, CSIEW0, 0x007f0000);
|
|
intel_uncore_write(uncore, CSIEW1, 0x1e220004);
|
|
intel_uncore_write(uncore, CSIEW2, 0x04000004);
|
|
|
|
for (i = 0; i < 5; i++)
|
|
intel_uncore_write(uncore, PEW(i), 0);
|
|
for (i = 0; i < 3; i++)
|
|
intel_uncore_write(uncore, DEW(i), 0);
|
|
|
|
/* Program P-state weights to account for frequency power adjustment */
|
|
for (i = 0; i < 16; i++) {
|
|
u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i));
|
|
unsigned int freq = intel_pxfreq(pxvidfreq);
|
|
unsigned int vid =
|
|
(pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
|
|
unsigned int val;
|
|
|
|
val = vid * vid * freq / 1000 * 255;
|
|
val /= 127 * 127 * 900;
|
|
|
|
pxw[i] = val;
|
|
}
|
|
/* Render standby states get 0 weight */
|
|
pxw[14] = 0;
|
|
pxw[15] = 0;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
intel_uncore_write(uncore, PXW(i),
|
|
pxw[i * 4 + 0] << 24 |
|
|
pxw[i * 4 + 1] << 16 |
|
|
pxw[i * 4 + 2] << 8 |
|
|
pxw[i * 4 + 3] << 0);
|
|
}
|
|
|
|
/* Adjust magic regs to magic values (more experimental results) */
|
|
intel_uncore_write(uncore, OGW0, 0);
|
|
intel_uncore_write(uncore, OGW1, 0);
|
|
intel_uncore_write(uncore, EG0, 0x00007f00);
|
|
intel_uncore_write(uncore, EG1, 0x0000000e);
|
|
intel_uncore_write(uncore, EG2, 0x000e0000);
|
|
intel_uncore_write(uncore, EG3, 0x68000300);
|
|
intel_uncore_write(uncore, EG4, 0x42000000);
|
|
intel_uncore_write(uncore, EG5, 0x00140031);
|
|
intel_uncore_write(uncore, EG6, 0);
|
|
intel_uncore_write(uncore, EG7, 0);
|
|
|
|
for (i = 0; i < 8; i++)
|
|
intel_uncore_write(uncore, PXWL(i), 0);
|
|
|
|
/* Enable PMON + select events */
|
|
intel_uncore_write(uncore, ECR, 0x80000019);
|
|
|
|
return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK;
|
|
}
|
|
|
|
static bool gen5_rps_enable(struct intel_rps *rps)
|
|
{
|
|
struct drm_i915_private *i915 = rps_to_i915(rps);
|
|
struct intel_uncore *uncore = rps_to_uncore(rps);
|
|
u8 fstart, vstart;
|
|
u32 rgvmodectl;
|
|
|
|
spin_lock_irq(&mchdev_lock);
|
|
|
|
rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
|
|
|
|
/* Enable temp reporting */
|
|
intel_uncore_write16(uncore, PMMISC,
|
|
intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN);
|
|
intel_uncore_write16(uncore, TSC1,
|
|
intel_uncore_read16(uncore, TSC1) | TSE);
|
|
|
|
/* 100ms RC evaluation intervals */
|
|
intel_uncore_write(uncore, RCUPEI, 100000);
|
|
intel_uncore_write(uncore, RCDNEI, 100000);
|
|
|
|
/* Set max/min thresholds to 90ms and 80ms respectively */
|
|
intel_uncore_write(uncore, RCBMAXAVG, 90000);
|
|
intel_uncore_write(uncore, RCBMINAVG, 80000);
|
|
|
|
intel_uncore_write(uncore, MEMIHYST, 1);
|
|
|
|
/* Set up min, max, and cur for interrupt handling */
|
|
fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
|
|
MEMMODE_FSTART_SHIFT;
|
|
|
|
vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
|
|
PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
|
|
|
|
intel_uncore_write(uncore,
|
|
MEMINTREN,
|
|
MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
|
|
|
|
intel_uncore_write(uncore, VIDSTART, vstart);
|
|
intel_uncore_posting_read(uncore, VIDSTART);
|
|
|
|
rgvmodectl |= MEMMODE_SWMODE_EN;
|
|
intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
|
|
|
|
if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
|
|
MEMCTL_CMD_STS) == 0, 10))
|
|
drm_err(&uncore->i915->drm,
|
|
"stuck trying to change perf mode\n");
|
|
mdelay(1);
|
|
|
|
gen5_rps_set(rps, rps->cur_freq);
|
|
|
|
rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC);
|
|
rps->ips.last_count1 += intel_uncore_read(uncore, DDREC);
|
|
rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC);
|
|
rps->ips.last_time1 = jiffies_to_msecs(jiffies);
|
|
|
|
rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
|
|
rps->ips.last_time2 = ktime_get_raw_ns();
|
|
|
|
spin_lock(&i915->irq_lock);
|
|
ilk_enable_display_irq(i915, DE_PCU_EVENT);
|
|
spin_unlock(&i915->irq_lock);
|
|
|
|
spin_unlock_irq(&mchdev_lock);
|
|
|
|
rps->ips.corr = init_emon(uncore);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void gen5_rps_disable(struct intel_rps *rps)
|
|
{
|
|
struct drm_i915_private *i915 = rps_to_i915(rps);
|
|
struct intel_uncore *uncore = rps_to_uncore(rps);
|
|
u16 rgvswctl;
|
|
|
|
spin_lock_irq(&mchdev_lock);
|
|
|
|
spin_lock(&i915->irq_lock);
|
|
ilk_disable_display_irq(i915, DE_PCU_EVENT);
|
|
spin_unlock(&i915->irq_lock);
|
|
|
|
rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
|
|
|
|
/* Ack interrupts, disable EFC interrupt */
|
|
intel_uncore_write(uncore, MEMINTREN,
|
|
intel_uncore_read(uncore, MEMINTREN) &
|
|
~MEMINT_EVAL_CHG_EN);
|
|
intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
|
|
|
|
/* Go back to the starting frequency */
|
|
gen5_rps_set(rps, rps->idle_freq);
|
|
mdelay(1);
|
|
rgvswctl |= MEMCTL_CMD_STS;
|
|
intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
|
|
mdelay(1);
|
|
|
|
spin_unlock_irq(&mchdev_lock);
|
|
}
|
|
|
|
static u32 rps_limits(struct intel_rps *rps, u8 val)
|
|
{
|
|
u32 limits;
|
|
|
|
/*
|
|
* Only set the down limit when we've reached the lowest level to avoid
|
|
* getting more interrupts, otherwise leave this clear. This prevents a
|
|
* race in the hw when coming out of rc6: There's a tiny window where
|
|
* the hw runs at the minimal clock before selecting the desired
|
|
* frequency, if the down threshold expires in that window we will not
|
|
* receive a down interrupt.
|
|
*/
|
|
if (INTEL_GEN(rps_to_i915(rps)) >= 9) {
|
|
limits = rps->max_freq_softlimit << 23;
|
|
if (val <= rps->min_freq_softlimit)
|
|
limits |= rps->min_freq_softlimit << 14;
|
|
} else {
|
|
limits = rps->max_freq_softlimit << 24;
|
|
if (val <= rps->min_freq_softlimit)
|
|
limits |= rps->min_freq_softlimit << 16;
|
|
}
|
|
|
|
return limits;
|
|
}
|
|
|
|
static void rps_set_power(struct intel_rps *rps, int new_power)
|
|
{
|
|
struct intel_gt *gt = rps_to_gt(rps);
|
|
struct intel_uncore *uncore = gt->uncore;
|
|
u32 threshold_up = 0, threshold_down = 0; /* in % */
|
|
u32 ei_up = 0, ei_down = 0;
|
|
|
|
lockdep_assert_held(&rps->power.mutex);
|
|
|
|
if (new_power == rps->power.mode)
|
|
return;
|
|
|
|
threshold_up = 95;
|
|
threshold_down = 85;
|
|
|
|
/* Note the units here are not exactly 1us, but 1280ns. */
|
|
switch (new_power) {
|
|
case LOW_POWER:
|
|
ei_up = 16000;
|
|
ei_down = 32000;
|
|
break;
|
|
|
|
case BETWEEN:
|
|
ei_up = 13000;
|
|
ei_down = 32000;
|
|
break;
|
|
|
|
case HIGH_POWER:
|
|
ei_up = 10000;
|
|
ei_down = 32000;
|
|
break;
|
|
}
|
|
|
|
/* When byt can survive without system hang with dynamic
|
|
* sw freq adjustments, this restriction can be lifted.
|
|
*/
|
|
if (IS_VALLEYVIEW(gt->i915))
|
|
goto skip_hw_write;
|
|
|
|
GT_TRACE(gt,
|
|
"changing power mode [%d], up %d%% @ %dus, down %d%% @ %dus\n",
|
|
new_power, threshold_up, ei_up, threshold_down, ei_down);
|
|
|
|
set(uncore, GEN6_RP_UP_EI,
|
|
intel_gt_ns_to_pm_interval(gt, ei_up * 1000));
|
|
set(uncore, GEN6_RP_UP_THRESHOLD,
|
|
intel_gt_ns_to_pm_interval(gt, ei_up * threshold_up * 10));
|
|
|
|
set(uncore, GEN6_RP_DOWN_EI,
|
|
intel_gt_ns_to_pm_interval(gt, ei_down * 1000));
|
|
set(uncore, GEN6_RP_DOWN_THRESHOLD,
|
|
intel_gt_ns_to_pm_interval(gt, ei_down * threshold_down * 10));
|
|
|
|
set(uncore, GEN6_RP_CONTROL,
|
|
(INTEL_GEN(gt->i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
|
|
GEN6_RP_MEDIA_HW_NORMAL_MODE |
|
|
GEN6_RP_MEDIA_IS_GFX |
|
|
GEN6_RP_ENABLE |
|
|
GEN6_RP_UP_BUSY_AVG |
|
|
GEN6_RP_DOWN_IDLE_AVG);
|
|
|
|
skip_hw_write:
|
|
rps->power.mode = new_power;
|
|
rps->power.up_threshold = threshold_up;
|
|
rps->power.down_threshold = threshold_down;
|
|
}
|
|
|
|
static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val)
|
|
{
|
|
int new_power;
|
|
|
|
new_power = rps->power.mode;
|
|
switch (rps->power.mode) {
|
|
case LOW_POWER:
|
|
if (val > rps->efficient_freq + 1 &&
|
|
val > rps->cur_freq)
|
|
new_power = BETWEEN;
|
|
break;
|
|
|
|
case BETWEEN:
|
|
if (val <= rps->efficient_freq &&
|
|
val < rps->cur_freq)
|
|
new_power = LOW_POWER;
|
|
else if (val >= rps->rp0_freq &&
|
|
val > rps->cur_freq)
|
|
new_power = HIGH_POWER;
|
|
break;
|
|
|
|
case HIGH_POWER:
|
|
if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
|
|
val < rps->cur_freq)
|
|
new_power = BETWEEN;
|
|
break;
|
|
}
|
|
/* Max/min bins are special */
|
|
if (val <= rps->min_freq_softlimit)
|
|
new_power = LOW_POWER;
|
|
if (val >= rps->max_freq_softlimit)
|
|
new_power = HIGH_POWER;
|
|
|
|
mutex_lock(&rps->power.mutex);
|
|
if (rps->power.interactive)
|
|
new_power = HIGH_POWER;
|
|
rps_set_power(rps, new_power);
|
|
mutex_unlock(&rps->power.mutex);
|
|
}
|
|
|
|
void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive)
|
|
{
|
|
GT_TRACE(rps_to_gt(rps), "mark interactive: %s\n", yesno(interactive));
|
|
|
|
mutex_lock(&rps->power.mutex);
|
|
if (interactive) {
|
|
if (!rps->power.interactive++ && intel_rps_is_active(rps))
|
|
rps_set_power(rps, HIGH_POWER);
|
|
} else {
|
|
GEM_BUG_ON(!rps->power.interactive);
|
|
rps->power.interactive--;
|
|
}
|
|
mutex_unlock(&rps->power.mutex);
|
|
}
|
|
|
|
static int gen6_rps_set(struct intel_rps *rps, u8 val)
|
|
{
|
|
struct intel_uncore *uncore = rps_to_uncore(rps);
|
|
struct drm_i915_private *i915 = rps_to_i915(rps);
|
|
u32 swreq;
|
|
|
|
if (INTEL_GEN(i915) >= 9)
|
|
swreq = GEN9_FREQUENCY(val);
|
|
else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
|
|
swreq = HSW_FREQUENCY(val);
|
|
else
|
|
swreq = (GEN6_FREQUENCY(val) |
|
|
GEN6_OFFSET(0) |
|
|
GEN6_AGGRESSIVE_TURBO);
|
|
set(uncore, GEN6_RPNSWREQ, swreq);
|
|
|
|
GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d, swreq:%x\n",
|
|
val, intel_gpu_freq(rps, val), swreq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vlv_rps_set(struct intel_rps *rps, u8 val)
|
|
{
|
|
struct drm_i915_private *i915 = rps_to_i915(rps);
|
|
int err;
|
|
|
|
vlv_punit_get(i915);
|
|
err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val);
|
|
vlv_punit_put(i915);
|
|
|
|
GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d\n",
|
|
val, intel_gpu_freq(rps, val));
|
|
|
|
return err;
|
|
}
|
|
|
|
static int rps_set(struct intel_rps *rps, u8 val, bool update)
|
|
{
|
|
struct drm_i915_private *i915 = rps_to_i915(rps);
|
|
int err;
|
|
|
|
if (INTEL_GEN(i915) < 6)
|
|
return 0;
|
|
|
|
if (val == rps->last_freq)
|
|
return 0;
|
|
|
|
if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
|
|
err = vlv_rps_set(rps, val);
|
|
else
|
|
err = gen6_rps_set(rps, val);
|
|
if (err)
|
|
return err;
|
|
|
|
if (update)
|
|
gen6_rps_set_thresholds(rps, val);
|
|
rps->last_freq = val;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void intel_rps_unpark(struct intel_rps *rps)
|
|
{
|
|
if (!intel_rps_is_enabled(rps))
|
|
return;
|
|
|
|
GT_TRACE(rps_to_gt(rps), "unpark:%x\n", rps->cur_freq);
|
|
|
|
/*
|
|
* Use the user's desired frequency as a guide, but for better
|
|
* performance, jump directly to RPe as our starting frequency.
|
|
*/
|
|
mutex_lock(&rps->lock);
|
|
|
|
intel_rps_set_active(rps);
|
|
intel_rps_set(rps,
|
|
clamp(rps->cur_freq,
|
|
rps->min_freq_softlimit,
|
|
rps->max_freq_softlimit));
|
|
|
|
mutex_unlock(&rps->lock);
|
|
|
|
rps->pm_iir = 0;
|
|
if (intel_rps_has_interrupts(rps))
|
|
rps_enable_interrupts(rps);
|
|
if (intel_rps_uses_timer(rps))
|
|
rps_start_timer(rps);
|
|
|
|
if (IS_GEN(rps_to_i915(rps), 5))
|
|
gen5_rps_update(rps);
|
|
}
|
|
|
|
void intel_rps_park(struct intel_rps *rps)
|
|
{
|
|
int adj;
|
|
|
|
if (!intel_rps_clear_active(rps))
|
|
return;
|
|
|
|
if (intel_rps_uses_timer(rps))
|
|
rps_stop_timer(rps);
|
|
if (intel_rps_has_interrupts(rps))
|
|
rps_disable_interrupts(rps);
|
|
|
|
if (rps->last_freq <= rps->idle_freq)
|
|
return;
|
|
|
|
/*
|
|
* The punit delays the write of the frequency and voltage until it
|
|
* determines the GPU is awake. During normal usage we don't want to
|
|
* waste power changing the frequency if the GPU is sleeping (rc6).
|
|
* However, the GPU and driver is now idle and we do not want to delay
|
|
* switching to minimum voltage (reducing power whilst idle) as we do
|
|
* not expect to be woken in the near future and so must flush the
|
|
* change by waking the device.
|
|
*
|
|
* We choose to take the media powerwell (either would do to trick the
|
|
* punit into committing the voltage change) as that takes a lot less
|
|
* power than the render powerwell.
|
|
*/
|
|
intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA);
|
|
rps_set(rps, rps->idle_freq, false);
|
|
intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA);
|
|
|
|
/*
|
|
* Since we will try and restart from the previously requested
|
|
* frequency on unparking, treat this idle point as a downclock
|
|
* interrupt and reduce the frequency for resume. If we park/unpark
|
|
* more frequently than the rps worker can run, we will not respond
|
|
* to any EI and never see a change in frequency.
|
|
*
|
|
* (Note we accommodate Cherryview's limitation of only using an
|
|
* even bin by applying it to all.)
|
|
*/
|
|
adj = rps->last_adj;
|
|
if (adj < 0)
|
|
adj *= 2;
|
|
else /* CHV needs even encode values */
|
|
adj = -2;
|
|
rps->last_adj = adj;
|
|
rps->cur_freq = max_t(int, rps->cur_freq + adj, rps->min_freq);
|
|
if (rps->cur_freq < rps->efficient_freq) {
|
|
rps->cur_freq = rps->efficient_freq;
|
|
rps->last_adj = 0;
|
|
}
|
|
|
|
GT_TRACE(rps_to_gt(rps), "park:%x\n", rps->cur_freq);
|
|
}
|
|
|
|
void intel_rps_boost(struct i915_request *rq)
|
|
{
|
|
struct intel_rps *rps = &READ_ONCE(rq->engine)->gt->rps;
|
|
unsigned long flags;
|
|
|
|
if (i915_request_signaled(rq) || !intel_rps_is_active(rps))
|
|
return;
|
|
|
|
/* Serializes with i915_request_retire() */
|
|
spin_lock_irqsave(&rq->lock, flags);
|
|
if (!i915_request_has_waitboost(rq) &&
|
|
!dma_fence_is_signaled_locked(&rq->fence)) {
|
|
set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags);
|
|
|
|
GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
|
|
rq->fence.context, rq->fence.seqno);
|
|
|
|
if (!atomic_fetch_inc(&rps->num_waiters) &&
|
|
READ_ONCE(rps->cur_freq) < rps->boost_freq)
|
|
schedule_work(&rps->work);
|
|
|
|
atomic_inc(&rps->boosts);
|
|
}
|
|
spin_unlock_irqrestore(&rq->lock, flags);
|
|
}
|
|
|
|
int intel_rps_set(struct intel_rps *rps, u8 val)
|
|
{
|
|
int err;
|
|
|
|
lockdep_assert_held(&rps->lock);
|
|
GEM_BUG_ON(val > rps->max_freq);
|
|
GEM_BUG_ON(val < rps->min_freq);
|
|
|
|
if (intel_rps_is_active(rps)) {
|
|
err = rps_set(rps, val, true);
|
|
if (err)
|
|
return err;
|
|
|
|
/*
|
|
* Make sure we continue to get interrupts
|
|
* until we hit the minimum or maximum frequencies.
|
|
*/
|
|
if (intel_rps_has_interrupts(rps)) {
|
|
struct intel_uncore *uncore = rps_to_uncore(rps);
|
|
|
|
set(uncore,
|
|
GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val));
|
|
|
|
set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val));
|
|
}
|
|
}
|
|
|
|
rps->cur_freq = val;
|
|
return 0;
|
|
}
|
|
|
|
static void gen6_rps_init(struct intel_rps *rps)
|
|
{
|
|
struct drm_i915_private *i915 = rps_to_i915(rps);
|
|
struct intel_uncore *uncore = rps_to_uncore(rps);
|
|
|
|
/* All of these values are in units of 50MHz */
|
|
|
|
/* static values from HW: RP0 > RP1 > RPn (min_freq) */
|
|
if (IS_GEN9_LP(i915)) {
|
|
u32 rp_state_cap = intel_uncore_read(uncore, BXT_RP_STATE_CAP);
|
|
|
|
rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
|
|
rps->rp1_freq = (rp_state_cap >> 8) & 0xff;
|
|
rps->min_freq = (rp_state_cap >> 0) & 0xff;
|
|
} else {
|
|
u32 rp_state_cap = intel_uncore_read(uncore, GEN6_RP_STATE_CAP);
|
|
|
|
rps->rp0_freq = (rp_state_cap >> 0) & 0xff;
|
|
rps->rp1_freq = (rp_state_cap >> 8) & 0xff;
|
|
rps->min_freq = (rp_state_cap >> 16) & 0xff;
|
|
}
|
|
|
|
/* hw_max = RP0 until we check for overclocking */
|
|
rps->max_freq = rps->rp0_freq;
|
|
|
|
rps->efficient_freq = rps->rp1_freq;
|
|
if (IS_HASWELL(i915) || IS_BROADWELL(i915) ||
|
|
IS_GEN9_BC(i915) || INTEL_GEN(i915) >= 10) {
|
|
u32 ddcc_status = 0;
|
|
|
|
if (sandybridge_pcode_read(i915,
|
|
HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
|
|
&ddcc_status, NULL) == 0)
|
|
rps->efficient_freq =
|
|
clamp_t(u8,
|
|
(ddcc_status >> 8) & 0xff,
|
|
rps->min_freq,
|
|
rps->max_freq);
|
|
}
|
|
|
|
if (IS_GEN9_BC(i915) || INTEL_GEN(i915) >= 10) {
|
|
/* Store the frequency values in 16.66 MHZ units, which is
|
|
* the natural hardware unit for SKL
|
|
*/
|
|
rps->rp0_freq *= GEN9_FREQ_SCALER;
|
|
rps->rp1_freq *= GEN9_FREQ_SCALER;
|
|
rps->min_freq *= GEN9_FREQ_SCALER;
|
|
rps->max_freq *= GEN9_FREQ_SCALER;
|
|
rps->efficient_freq *= GEN9_FREQ_SCALER;
|
|
}
|
|
}
|
|
|
|
static bool rps_reset(struct intel_rps *rps)
|
|
{
|
|
struct drm_i915_private *i915 = rps_to_i915(rps);
|
|
|
|
/* force a reset */
|
|
rps->power.mode = -1;
|
|
rps->last_freq = -1;
|
|
|
|
if (rps_set(rps, rps->min_freq, true)) {
|
|
drm_err(&i915->drm, "Failed to reset RPS to initial values\n");
|
|
return false;
|
|
}
|
|
|
|
rps->cur_freq = rps->min_freq;
|
|
return true;
|
|
}
|
|
|
|
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
|
|
static bool gen9_rps_enable(struct intel_rps *rps)
|
|
{
|
|
struct intel_gt *gt = rps_to_gt(rps);
|
|
struct intel_uncore *uncore = gt->uncore;
|
|
|
|
/* Program defaults and thresholds for RPS */
|
|
if (IS_GEN(gt->i915, 9))
|
|
intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
|
|
GEN9_FREQUENCY(rps->rp1_freq));
|
|
|
|
intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa);
|
|
|
|
rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
|
|
|
|
return rps_reset(rps);
|
|
}
|
|
|
|
static bool gen8_rps_enable(struct intel_rps *rps)
|
|
{
|
|
struct intel_uncore *uncore = rps_to_uncore(rps);
|
|
|
|
intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
|
|
HSW_FREQUENCY(rps->rp1_freq));
|
|
|
|
intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
|
|
|
|
rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
|
|
|
|
return rps_reset(rps);
|
|
}
|
|
|
|
static bool gen6_rps_enable(struct intel_rps *rps)
|
|
{
|
|
struct intel_uncore *uncore = rps_to_uncore(rps);
|
|
|
|
/* Power down if completely idle for over 50ms */
|
|
intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000);
|
|
intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
|
|
|
|
rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
|
|
GEN6_PM_RP_DOWN_THRESHOLD |
|
|
GEN6_PM_RP_DOWN_TIMEOUT);
|
|
|
|
return rps_reset(rps);
|
|
}
|
|
|
|
static int chv_rps_max_freq(struct intel_rps *rps)
|
|
{
|
|
struct drm_i915_private *i915 = rps_to_i915(rps);
|
|
struct intel_gt *gt = rps_to_gt(rps);
|
|
u32 val;
|
|
|
|
val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
|
|
|
|
switch (gt->info.sseu.eu_total) {
|
|
case 8:
|
|
/* (2 * 4) config */
|
|
val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT;
|
|
break;
|
|
case 12:
|
|
/* (2 * 6) config */
|
|
val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT;
|
|
break;
|
|
case 16:
|
|
/* (2 * 8) config */
|
|
default:
|
|
/* Setting (2 * 8) Min RP0 for any other combination */
|
|
val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT;
|
|
break;
|
|
}
|
|
|
|
return val & FB_GFX_FREQ_FUSE_MASK;
|
|
}
|
|
|
|
static int chv_rps_rpe_freq(struct intel_rps *rps)
|
|
{
|
|
struct drm_i915_private *i915 = rps_to_i915(rps);
|
|
u32 val;
|
|
|
|
val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG);
|
|
val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT;
|
|
|
|
return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
|
|
}
|
|
|
|
static int chv_rps_guar_freq(struct intel_rps *rps)
|
|
{
|
|
struct drm_i915_private *i915 = rps_to_i915(rps);
|
|
u32 val;
|
|
|
|
val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
|
|
|
|
return val & FB_GFX_FREQ_FUSE_MASK;
|
|
}
|
|
|
|
static u32 chv_rps_min_freq(struct intel_rps *rps)
|
|
{
|
|
struct drm_i915_private *i915 = rps_to_i915(rps);
|
|
u32 val;
|
|
|
|
val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE);
|
|
val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT;
|
|
|
|
return val & FB_GFX_FREQ_FUSE_MASK;
|
|
}
|
|
|
|
static bool chv_rps_enable(struct intel_rps *rps)
|
|
{
|
|
struct intel_uncore *uncore = rps_to_uncore(rps);
|
|
struct drm_i915_private *i915 = rps_to_i915(rps);
|
|
u32 val;
|
|
|
|
/* 1: Program defaults and thresholds for RPS*/
|
|
intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
|
|
intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
|
|
intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
|
|
intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
|
|
intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
|
|
|
|
intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
|
|
|
|
/* 2: Enable RPS */
|
|
intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
|
|
GEN6_RP_MEDIA_HW_NORMAL_MODE |
|
|
GEN6_RP_MEDIA_IS_GFX |
|
|
GEN6_RP_ENABLE |
|
|
GEN6_RP_UP_BUSY_AVG |
|
|
GEN6_RP_DOWN_IDLE_AVG);
|
|
|
|
rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
|
|
GEN6_PM_RP_DOWN_THRESHOLD |
|
|
GEN6_PM_RP_DOWN_TIMEOUT);
|
|
|
|
/* Setting Fixed Bias */
|
|
vlv_punit_get(i915);
|
|
|
|
val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
|
|
vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
|
|
|
|
val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
|
|
|
|
vlv_punit_put(i915);
|
|
|
|
/* RPS code assumes GPLL is used */
|
|
drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
|
|
"GPLL not enabled\n");
|
|
|
|
drm_dbg(&i915->drm, "GPLL enabled? %s\n", yesno(val & GPLLENABLE));
|
|
drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
|
|
|
|
return rps_reset(rps);
|
|
}
|
|
|
|
static int vlv_rps_guar_freq(struct intel_rps *rps)
|
|
{
|
|
struct drm_i915_private *i915 = rps_to_i915(rps);
|
|
u32 val, rp1;
|
|
|
|
val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
|
|
|
|
rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK;
|
|
rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
|
|
|
|
return rp1;
|
|
}
|
|
|
|
static int vlv_rps_max_freq(struct intel_rps *rps)
|
|
{
|
|
struct drm_i915_private *i915 = rps_to_i915(rps);
|
|
u32 val, rp0;
|
|
|
|
val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
|
|
|
|
rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
|
|
/* Clamp to max */
|
|
rp0 = min_t(u32, rp0, 0xea);
|
|
|
|
return rp0;
|
|
}
|
|
|
|
static int vlv_rps_rpe_freq(struct intel_rps *rps)
|
|
{
|
|
struct drm_i915_private *i915 = rps_to_i915(rps);
|
|
u32 val, rpe;
|
|
|
|
val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
|
|
rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
|
|
val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
|
|
rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
|
|
|
|
return rpe;
|
|
}
|
|
|
|
static int vlv_rps_min_freq(struct intel_rps *rps)
|
|
{
|
|
struct drm_i915_private *i915 = rps_to_i915(rps);
|
|
u32 val;
|
|
|
|
val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff;
|
|
/*
|
|
* According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
|
|
* for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
|
|
* a BYT-M B0 the above register contains 0xbf. Moreover when setting
|
|
* a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
|
|
* to make sure it matches what Punit accepts.
|
|
*/
|
|
return max_t(u32, val, 0xc0);
|
|
}
|
|
|
|
static bool vlv_rps_enable(struct intel_rps *rps)
|
|
{
|
|
struct intel_uncore *uncore = rps_to_uncore(rps);
|
|
struct drm_i915_private *i915 = rps_to_i915(rps);
|
|
u32 val;
|
|
|
|
intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
|
|
intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
|
|
intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
|
|
intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
|
|
intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
|
|
|
|
intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
|
|
|
|
intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
|
|
GEN6_RP_MEDIA_TURBO |
|
|
GEN6_RP_MEDIA_HW_NORMAL_MODE |
|
|
GEN6_RP_MEDIA_IS_GFX |
|
|
GEN6_RP_ENABLE |
|
|
GEN6_RP_UP_BUSY_AVG |
|
|
GEN6_RP_DOWN_IDLE_CONT);
|
|
|
|
/* WaGsvRC0ResidencyMethod:vlv */
|
|
rps->pm_events = GEN6_PM_RP_UP_EI_EXPIRED;
|
|
|
|
vlv_punit_get(i915);
|
|
|
|
/* Setting Fixed Bias */
|
|
val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
|
|
vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
|
|
|
|
val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
|
|
|
|
vlv_punit_put(i915);
|
|
|
|
/* RPS code assumes GPLL is used */
|
|
drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
|
|
"GPLL not enabled\n");
|
|
|
|
drm_dbg(&i915->drm, "GPLL enabled? %s\n", yesno(val & GPLLENABLE));
|
|
drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
|
|
|
|
return rps_reset(rps);
|
|
}
|
|
|
|
static unsigned long __ips_gfx_val(struct intel_ips *ips)
|
|
{
|
|
struct intel_rps *rps = container_of(ips, typeof(*rps), ips);
|
|
struct intel_uncore *uncore = rps_to_uncore(rps);
|
|
unsigned int t, state1, state2;
|
|
u32 pxvid, ext_v;
|
|
u64 corr, corr2;
|
|
|
|
lockdep_assert_held(&mchdev_lock);
|
|
|
|
pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq));
|
|
pxvid = (pxvid >> 24) & 0x7f;
|
|
ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid);
|
|
|
|
state1 = ext_v;
|
|
|
|
/* Revel in the empirically derived constants */
|
|
|
|
/* Correction factor in 1/100000 units */
|
|
t = ips_mch_val(uncore);
|
|
if (t > 80)
|
|
corr = t * 2349 + 135940;
|
|
else if (t >= 50)
|
|
corr = t * 964 + 29317;
|
|
else /* < 50 */
|
|
corr = t * 301 + 1004;
|
|
|
|
corr = div_u64(corr * 150142 * state1, 10000) - 78642;
|
|
corr2 = div_u64(corr, 100000) * ips->corr;
|
|
|
|
state2 = div_u64(corr2 * state1, 10000);
|
|
state2 /= 100; /* convert to mW */
|
|
|
|
__gen5_ips_update(ips);
|
|
|
|
return ips->gfx_power + state2;
|
|
}
|
|
|
|
static bool has_busy_stats(struct intel_rps *rps)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
|
|
for_each_engine(engine, rps_to_gt(rps), id) {
|
|
if (!intel_engine_supports_stats(engine))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void intel_rps_enable(struct intel_rps *rps)
|
|
{
|
|
struct drm_i915_private *i915 = rps_to_i915(rps);
|
|
struct intel_uncore *uncore = rps_to_uncore(rps);
|
|
bool enabled = false;
|
|
|
|
if (!HAS_RPS(i915))
|
|
return;
|
|
|
|
intel_gt_check_clock_frequency(rps_to_gt(rps));
|
|
|
|
intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
|
|
if (rps->max_freq <= rps->min_freq)
|
|
/* leave disabled, no room for dynamic reclocking */;
|
|
else if (IS_CHERRYVIEW(i915))
|
|
enabled = chv_rps_enable(rps);
|
|
else if (IS_VALLEYVIEW(i915))
|
|
enabled = vlv_rps_enable(rps);
|
|
else if (INTEL_GEN(i915) >= 9)
|
|
enabled = gen9_rps_enable(rps);
|
|
else if (INTEL_GEN(i915) >= 8)
|
|
enabled = gen8_rps_enable(rps);
|
|
else if (INTEL_GEN(i915) >= 6)
|
|
enabled = gen6_rps_enable(rps);
|
|
else if (IS_IRONLAKE_M(i915))
|
|
enabled = gen5_rps_enable(rps);
|
|
else
|
|
MISSING_CASE(INTEL_GEN(i915));
|
|
intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
|
|
if (!enabled)
|
|
return;
|
|
|
|
GT_TRACE(rps_to_gt(rps),
|
|
"min:%x, max:%x, freq:[%d, %d]\n",
|
|
rps->min_freq, rps->max_freq,
|
|
intel_gpu_freq(rps, rps->min_freq),
|
|
intel_gpu_freq(rps, rps->max_freq));
|
|
|
|
GEM_BUG_ON(rps->max_freq < rps->min_freq);
|
|
GEM_BUG_ON(rps->idle_freq > rps->max_freq);
|
|
|
|
GEM_BUG_ON(rps->efficient_freq < rps->min_freq);
|
|
GEM_BUG_ON(rps->efficient_freq > rps->max_freq);
|
|
|
|
if (has_busy_stats(rps))
|
|
intel_rps_set_timer(rps);
|
|
else if (INTEL_GEN(i915) >= 6)
|
|
intel_rps_set_interrupts(rps);
|
|
else
|
|
/* Ironlake currently uses intel_ips.ko */ {}
|
|
|
|
intel_rps_set_enabled(rps);
|
|
}
|
|
|
|
static void gen6_rps_disable(struct intel_rps *rps)
|
|
{
|
|
set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0);
|
|
}
|
|
|
|
void intel_rps_disable(struct intel_rps *rps)
|
|
{
|
|
struct drm_i915_private *i915 = rps_to_i915(rps);
|
|
|
|
intel_rps_clear_enabled(rps);
|
|
intel_rps_clear_interrupts(rps);
|
|
intel_rps_clear_timer(rps);
|
|
|
|
if (INTEL_GEN(i915) >= 6)
|
|
gen6_rps_disable(rps);
|
|
else if (IS_IRONLAKE_M(i915))
|
|
gen5_rps_disable(rps);
|
|
}
|
|
|
|
static int byt_gpu_freq(struct intel_rps *rps, int val)
|
|
{
|
|
/*
|
|
* N = val - 0xb7
|
|
* Slow = Fast = GPLL ref * N
|
|
*/
|
|
return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
|
|
}
|
|
|
|
static int byt_freq_opcode(struct intel_rps *rps, int val)
|
|
{
|
|
return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
|
|
}
|
|
|
|
static int chv_gpu_freq(struct intel_rps *rps, int val)
|
|
{
|
|
/*
|
|
* N = val / 2
|
|
* CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
|
|
*/
|
|
return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
|
|
}
|
|
|
|
static int chv_freq_opcode(struct intel_rps *rps, int val)
|
|
{
|
|
/* CHV needs even values */
|
|
return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
|
|
}
|
|
|
|
int intel_gpu_freq(struct intel_rps *rps, int val)
|
|
{
|
|
struct drm_i915_private *i915 = rps_to_i915(rps);
|
|
|
|
if (INTEL_GEN(i915) >= 9)
|
|
return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
|
|
GEN9_FREQ_SCALER);
|
|
else if (IS_CHERRYVIEW(i915))
|
|
return chv_gpu_freq(rps, val);
|
|
else if (IS_VALLEYVIEW(i915))
|
|
return byt_gpu_freq(rps, val);
|
|
else if (INTEL_GEN(i915) >= 6)
|
|
return val * GT_FREQUENCY_MULTIPLIER;
|
|
else
|
|
return val;
|
|
}
|
|
|
|
int intel_freq_opcode(struct intel_rps *rps, int val)
|
|
{
|
|
struct drm_i915_private *i915 = rps_to_i915(rps);
|
|
|
|
if (INTEL_GEN(i915) >= 9)
|
|
return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
|
|
GT_FREQUENCY_MULTIPLIER);
|
|
else if (IS_CHERRYVIEW(i915))
|
|
return chv_freq_opcode(rps, val);
|
|
else if (IS_VALLEYVIEW(i915))
|
|
return byt_freq_opcode(rps, val);
|
|
else if (INTEL_GEN(i915) >= 6)
|
|
return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
|
|
else
|
|
return val;
|
|
}
|
|
|
|
static void vlv_init_gpll_ref_freq(struct intel_rps *rps)
|
|
{
|
|
struct drm_i915_private *i915 = rps_to_i915(rps);
|
|
|
|
rps->gpll_ref_freq =
|
|
vlv_get_cck_clock(i915, "GPLL ref",
|
|
CCK_GPLL_CLOCK_CONTROL,
|
|
i915->czclk_freq);
|
|
|
|
drm_dbg(&i915->drm, "GPLL reference freq: %d kHz\n",
|
|
rps->gpll_ref_freq);
|
|
}
|
|
|
|
static void vlv_rps_init(struct intel_rps *rps)
|
|
{
|
|
struct drm_i915_private *i915 = rps_to_i915(rps);
|
|
u32 val;
|
|
|
|
vlv_iosf_sb_get(i915,
|
|
BIT(VLV_IOSF_SB_PUNIT) |
|
|
BIT(VLV_IOSF_SB_NC) |
|
|
BIT(VLV_IOSF_SB_CCK));
|
|
|
|
vlv_init_gpll_ref_freq(rps);
|
|
|
|
val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
|
|
switch ((val >> 6) & 3) {
|
|
case 0:
|
|
case 1:
|
|
i915->mem_freq = 800;
|
|
break;
|
|
case 2:
|
|
i915->mem_freq = 1066;
|
|
break;
|
|
case 3:
|
|
i915->mem_freq = 1333;
|
|
break;
|
|
}
|
|
drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
|
|
|
|
rps->max_freq = vlv_rps_max_freq(rps);
|
|
rps->rp0_freq = rps->max_freq;
|
|
drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
|
|
intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
|
|
|
|
rps->efficient_freq = vlv_rps_rpe_freq(rps);
|
|
drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
|
|
intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
|
|
|
|
rps->rp1_freq = vlv_rps_guar_freq(rps);
|
|
drm_dbg(&i915->drm, "RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
|
|
intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
|
|
|
|
rps->min_freq = vlv_rps_min_freq(rps);
|
|
drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
|
|
intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
|
|
|
|
vlv_iosf_sb_put(i915,
|
|
BIT(VLV_IOSF_SB_PUNIT) |
|
|
BIT(VLV_IOSF_SB_NC) |
|
|
BIT(VLV_IOSF_SB_CCK));
|
|
}
|
|
|
|
static void chv_rps_init(struct intel_rps *rps)
|
|
{
|
|
struct drm_i915_private *i915 = rps_to_i915(rps);
|
|
u32 val;
|
|
|
|
vlv_iosf_sb_get(i915,
|
|
BIT(VLV_IOSF_SB_PUNIT) |
|
|
BIT(VLV_IOSF_SB_NC) |
|
|
BIT(VLV_IOSF_SB_CCK));
|
|
|
|
vlv_init_gpll_ref_freq(rps);
|
|
|
|
val = vlv_cck_read(i915, CCK_FUSE_REG);
|
|
|
|
switch ((val >> 2) & 0x7) {
|
|
case 3:
|
|
i915->mem_freq = 2000;
|
|
break;
|
|
default:
|
|
i915->mem_freq = 1600;
|
|
break;
|
|
}
|
|
drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
|
|
|
|
rps->max_freq = chv_rps_max_freq(rps);
|
|
rps->rp0_freq = rps->max_freq;
|
|
drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
|
|
intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
|
|
|
|
rps->efficient_freq = chv_rps_rpe_freq(rps);
|
|
drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
|
|
intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
|
|
|
|
rps->rp1_freq = chv_rps_guar_freq(rps);
|
|
drm_dbg(&i915->drm, "RP1(Guar) GPU freq: %d MHz (%u)\n",
|
|
intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
|
|
|
|
rps->min_freq = chv_rps_min_freq(rps);
|
|
drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
|
|
intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
|
|
|
|
vlv_iosf_sb_put(i915,
|
|
BIT(VLV_IOSF_SB_PUNIT) |
|
|
BIT(VLV_IOSF_SB_NC) |
|
|
BIT(VLV_IOSF_SB_CCK));
|
|
|
|
drm_WARN_ONCE(&i915->drm, (rps->max_freq | rps->efficient_freq |
|
|
rps->rp1_freq | rps->min_freq) & 1,
|
|
"Odd GPU freq values\n");
|
|
}
|
|
|
|
static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei)
|
|
{
|
|
ei->ktime = ktime_get_raw();
|
|
ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT);
|
|
ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT);
|
|
}
|
|
|
|
static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir)
|
|
{
|
|
struct intel_uncore *uncore = rps_to_uncore(rps);
|
|
const struct intel_rps_ei *prev = &rps->ei;
|
|
struct intel_rps_ei now;
|
|
u32 events = 0;
|
|
|
|
if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
|
|
return 0;
|
|
|
|
vlv_c0_read(uncore, &now);
|
|
|
|
if (prev->ktime) {
|
|
u64 time, c0;
|
|
u32 render, media;
|
|
|
|
time = ktime_us_delta(now.ktime, prev->ktime);
|
|
|
|
time *= rps_to_i915(rps)->czclk_freq;
|
|
|
|
/* Workload can be split between render + media,
|
|
* e.g. SwapBuffers being blitted in X after being rendered in
|
|
* mesa. To account for this we need to combine both engines
|
|
* into our activity counter.
|
|
*/
|
|
render = now.render_c0 - prev->render_c0;
|
|
media = now.media_c0 - prev->media_c0;
|
|
c0 = max(render, media);
|
|
c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
|
|
|
|
if (c0 > time * rps->power.up_threshold)
|
|
events = GEN6_PM_RP_UP_THRESHOLD;
|
|
else if (c0 < time * rps->power.down_threshold)
|
|
events = GEN6_PM_RP_DOWN_THRESHOLD;
|
|
}
|
|
|
|
rps->ei = now;
|
|
return events;
|
|
}
|
|
|
|
static void rps_work(struct work_struct *work)
|
|
{
|
|
struct intel_rps *rps = container_of(work, typeof(*rps), work);
|
|
struct intel_gt *gt = rps_to_gt(rps);
|
|
struct drm_i915_private *i915 = rps_to_i915(rps);
|
|
bool client_boost = false;
|
|
int new_freq, adj, min, max;
|
|
u32 pm_iir = 0;
|
|
|
|
spin_lock_irq(>->irq_lock);
|
|
pm_iir = fetch_and_zero(&rps->pm_iir) & rps->pm_events;
|
|
client_boost = atomic_read(&rps->num_waiters);
|
|
spin_unlock_irq(>->irq_lock);
|
|
|
|
/* Make sure we didn't queue anything we're not going to process. */
|
|
if (!pm_iir && !client_boost)
|
|
goto out;
|
|
|
|
mutex_lock(&rps->lock);
|
|
if (!intel_rps_is_active(rps)) {
|
|
mutex_unlock(&rps->lock);
|
|
return;
|
|
}
|
|
|
|
pm_iir |= vlv_wa_c0_ei(rps, pm_iir);
|
|
|
|
adj = rps->last_adj;
|
|
new_freq = rps->cur_freq;
|
|
min = rps->min_freq_softlimit;
|
|
max = rps->max_freq_softlimit;
|
|
if (client_boost)
|
|
max = rps->max_freq;
|
|
|
|
GT_TRACE(gt,
|
|
"pm_iir:%x, client_boost:%s, last:%d, cur:%x, min:%x, max:%x\n",
|
|
pm_iir, yesno(client_boost),
|
|
adj, new_freq, min, max);
|
|
|
|
if (client_boost && new_freq < rps->boost_freq) {
|
|
new_freq = rps->boost_freq;
|
|
adj = 0;
|
|
} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
|
|
if (adj > 0)
|
|
adj *= 2;
|
|
else /* CHV needs even encode values */
|
|
adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1;
|
|
|
|
if (new_freq >= rps->max_freq_softlimit)
|
|
adj = 0;
|
|
} else if (client_boost) {
|
|
adj = 0;
|
|
} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
|
|
if (rps->cur_freq > rps->efficient_freq)
|
|
new_freq = rps->efficient_freq;
|
|
else if (rps->cur_freq > rps->min_freq_softlimit)
|
|
new_freq = rps->min_freq_softlimit;
|
|
adj = 0;
|
|
} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
|
|
if (adj < 0)
|
|
adj *= 2;
|
|
else /* CHV needs even encode values */
|
|
adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1;
|
|
|
|
if (new_freq <= rps->min_freq_softlimit)
|
|
adj = 0;
|
|
} else { /* unknown event */
|
|
adj = 0;
|
|
}
|
|
|
|
/*
|
|
* sysfs frequency limits may have snuck in while
|
|
* servicing the interrupt
|
|
*/
|
|
new_freq += adj;
|
|
new_freq = clamp_t(int, new_freq, min, max);
|
|
|
|
if (intel_rps_set(rps, new_freq)) {
|
|
drm_dbg(&i915->drm, "Failed to set new GPU frequency\n");
|
|
adj = 0;
|
|
}
|
|
rps->last_adj = adj;
|
|
|
|
mutex_unlock(&rps->lock);
|
|
|
|
out:
|
|
spin_lock_irq(>->irq_lock);
|
|
gen6_gt_pm_unmask_irq(gt, rps->pm_events);
|
|
spin_unlock_irq(>->irq_lock);
|
|
}
|
|
|
|
void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
|
|
{
|
|
struct intel_gt *gt = rps_to_gt(rps);
|
|
const u32 events = rps->pm_events & pm_iir;
|
|
|
|
lockdep_assert_held(>->irq_lock);
|
|
|
|
if (unlikely(!events))
|
|
return;
|
|
|
|
GT_TRACE(gt, "irq events:%x\n", events);
|
|
|
|
gen6_gt_pm_mask_irq(gt, events);
|
|
|
|
rps->pm_iir |= events;
|
|
schedule_work(&rps->work);
|
|
}
|
|
|
|
void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
|
|
{
|
|
struct intel_gt *gt = rps_to_gt(rps);
|
|
u32 events;
|
|
|
|
events = pm_iir & rps->pm_events;
|
|
if (events) {
|
|
spin_lock(>->irq_lock);
|
|
|
|
GT_TRACE(gt, "irq events:%x\n", events);
|
|
|
|
gen6_gt_pm_mask_irq(gt, events);
|
|
rps->pm_iir |= events;
|
|
|
|
schedule_work(&rps->work);
|
|
spin_unlock(>->irq_lock);
|
|
}
|
|
|
|
if (INTEL_GEN(gt->i915) >= 8)
|
|
return;
|
|
|
|
if (pm_iir & PM_VEBOX_USER_INTERRUPT)
|
|
intel_engine_signal_breadcrumbs(gt->engine[VECS0]);
|
|
|
|
if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
|
|
DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
|
|
}
|
|
|
|
void gen5_rps_irq_handler(struct intel_rps *rps)
|
|
{
|
|
struct intel_uncore *uncore = rps_to_uncore(rps);
|
|
u32 busy_up, busy_down, max_avg, min_avg;
|
|
u8 new_freq;
|
|
|
|
spin_lock(&mchdev_lock);
|
|
|
|
intel_uncore_write16(uncore,
|
|
MEMINTRSTS,
|
|
intel_uncore_read(uncore, MEMINTRSTS));
|
|
|
|
intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
|
|
busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
|
|
busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
|
|
max_avg = intel_uncore_read(uncore, RCBMAXAVG);
|
|
min_avg = intel_uncore_read(uncore, RCBMINAVG);
|
|
|
|
/* Handle RCS change request from hw */
|
|
new_freq = rps->cur_freq;
|
|
if (busy_up > max_avg)
|
|
new_freq++;
|
|
else if (busy_down < min_avg)
|
|
new_freq--;
|
|
new_freq = clamp(new_freq,
|
|
rps->min_freq_softlimit,
|
|
rps->max_freq_softlimit);
|
|
|
|
if (new_freq != rps->cur_freq && gen5_rps_set(rps, new_freq))
|
|
rps->cur_freq = new_freq;
|
|
|
|
spin_unlock(&mchdev_lock);
|
|
}
|
|
|
|
void intel_rps_init_early(struct intel_rps *rps)
|
|
{
|
|
mutex_init(&rps->lock);
|
|
mutex_init(&rps->power.mutex);
|
|
|
|
INIT_WORK(&rps->work, rps_work);
|
|
timer_setup(&rps->timer, rps_timer, 0);
|
|
|
|
atomic_set(&rps->num_waiters, 0);
|
|
}
|
|
|
|
void intel_rps_init(struct intel_rps *rps)
|
|
{
|
|
struct drm_i915_private *i915 = rps_to_i915(rps);
|
|
|
|
if (IS_CHERRYVIEW(i915))
|
|
chv_rps_init(rps);
|
|
else if (IS_VALLEYVIEW(i915))
|
|
vlv_rps_init(rps);
|
|
else if (INTEL_GEN(i915) >= 6)
|
|
gen6_rps_init(rps);
|
|
else if (IS_IRONLAKE_M(i915))
|
|
gen5_rps_init(rps);
|
|
|
|
/* Derive initial user preferences/limits from the hardware limits */
|
|
rps->max_freq_softlimit = rps->max_freq;
|
|
rps->min_freq_softlimit = rps->min_freq;
|
|
|
|
/* After setting max-softlimit, find the overclock max freq */
|
|
if (IS_GEN(i915, 6) || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) {
|
|
u32 params = 0;
|
|
|
|
sandybridge_pcode_read(i915, GEN6_READ_OC_PARAMS,
|
|
¶ms, NULL);
|
|
if (params & BIT(31)) { /* OC supported */
|
|
drm_dbg(&i915->drm,
|
|
"Overclocking supported, max: %dMHz, overclock: %dMHz\n",
|
|
(rps->max_freq & 0xff) * 50,
|
|
(params & 0xff) * 50);
|
|
rps->max_freq = params & 0xff;
|
|
}
|
|
}
|
|
|
|
/* Finally allow us to boost to max by default */
|
|
rps->boost_freq = rps->max_freq;
|
|
rps->idle_freq = rps->min_freq;
|
|
|
|
/* Start in the middle, from here we will autotune based on workload */
|
|
rps->cur_freq = rps->efficient_freq;
|
|
|
|
rps->pm_intrmsk_mbz = 0;
|
|
|
|
/*
|
|
* SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
|
|
* if GEN6_PM_UP_EI_EXPIRED is masked.
|
|
*
|
|
* TODO: verify if this can be reproduced on VLV,CHV.
|
|
*/
|
|
if (INTEL_GEN(i915) <= 7)
|
|
rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
|
|
|
|
if (INTEL_GEN(i915) >= 8 && INTEL_GEN(i915) < 11)
|
|
rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
|
|
}
|
|
|
|
void intel_rps_sanitize(struct intel_rps *rps)
|
|
{
|
|
if (INTEL_GEN(rps_to_i915(rps)) >= 6)
|
|
rps_disable_interrupts(rps);
|
|
}
|
|
|
|
u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat)
|
|
{
|
|
struct drm_i915_private *i915 = rps_to_i915(rps);
|
|
u32 cagf;
|
|
|
|
if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
|
|
cagf = (rpstat >> 8) & 0xff;
|
|
else if (INTEL_GEN(i915) >= 9)
|
|
cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
|
|
else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
|
|
cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
|
|
else if (INTEL_GEN(i915) >= 6)
|
|
cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
|
|
else
|
|
cagf = gen5_invert_freq(rps, (rpstat & MEMSTAT_PSTATE_MASK) >>
|
|
MEMSTAT_PSTATE_SHIFT);
|
|
|
|
return cagf;
|
|
}
|
|
|
|
static u32 read_cagf(struct intel_rps *rps)
|
|
{
|
|
struct drm_i915_private *i915 = rps_to_i915(rps);
|
|
struct intel_uncore *uncore = rps_to_uncore(rps);
|
|
u32 freq;
|
|
|
|
if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
|
|
vlv_punit_get(i915);
|
|
freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
|
|
vlv_punit_put(i915);
|
|
} else if (INTEL_GEN(i915) >= 6) {
|
|
freq = intel_uncore_read(uncore, GEN6_RPSTAT1);
|
|
} else {
|
|
freq = intel_uncore_read(uncore, MEMSTAT_ILK);
|
|
}
|
|
|
|
return intel_rps_get_cagf(rps, freq);
|
|
}
|
|
|
|
u32 intel_rps_read_actual_frequency(struct intel_rps *rps)
|
|
{
|
|
struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
|
|
intel_wakeref_t wakeref;
|
|
u32 freq = 0;
|
|
|
|
with_intel_runtime_pm_if_in_use(rpm, wakeref)
|
|
freq = intel_gpu_freq(rps, read_cagf(rps));
|
|
|
|
return freq;
|
|
}
|
|
|
|
/* External interface for intel_ips.ko */
|
|
|
|
static struct drm_i915_private __rcu *ips_mchdev;
|
|
|
|
/**
|
|
* Tells the intel_ips driver that the i915 driver is now loaded, if
|
|
* IPS got loaded first.
|
|
*
|
|
* This awkward dance is so that neither module has to depend on the
|
|
* other in order for IPS to do the appropriate communication of
|
|
* GPU turbo limits to i915.
|
|
*/
|
|
static void
|
|
ips_ping_for_i915_load(void)
|
|
{
|
|
void (*link)(void);
|
|
|
|
link = symbol_get(ips_link_to_i915_driver);
|
|
if (link) {
|
|
link();
|
|
symbol_put(ips_link_to_i915_driver);
|
|
}
|
|
}
|
|
|
|
void intel_rps_driver_register(struct intel_rps *rps)
|
|
{
|
|
struct intel_gt *gt = rps_to_gt(rps);
|
|
|
|
/*
|
|
* We only register the i915 ips part with intel-ips once everything is
|
|
* set up, to avoid intel-ips sneaking in and reading bogus values.
|
|
*/
|
|
if (IS_GEN(gt->i915, 5)) {
|
|
GEM_BUG_ON(ips_mchdev);
|
|
rcu_assign_pointer(ips_mchdev, gt->i915);
|
|
ips_ping_for_i915_load();
|
|
}
|
|
}
|
|
|
|
void intel_rps_driver_unregister(struct intel_rps *rps)
|
|
{
|
|
if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps))
|
|
rcu_assign_pointer(ips_mchdev, NULL);
|
|
}
|
|
|
|
static struct drm_i915_private *mchdev_get(void)
|
|
{
|
|
struct drm_i915_private *i915;
|
|
|
|
rcu_read_lock();
|
|
i915 = rcu_dereference(ips_mchdev);
|
|
if (i915 && !kref_get_unless_zero(&i915->drm.ref))
|
|
i915 = NULL;
|
|
rcu_read_unlock();
|
|
|
|
return i915;
|
|
}
|
|
|
|
/**
|
|
* i915_read_mch_val - return value for IPS use
|
|
*
|
|
* Calculate and return a value for the IPS driver to use when deciding whether
|
|
* we have thermal and power headroom to increase CPU or GPU power budget.
|
|
*/
|
|
unsigned long i915_read_mch_val(void)
|
|
{
|
|
struct drm_i915_private *i915;
|
|
unsigned long chipset_val = 0;
|
|
unsigned long graphics_val = 0;
|
|
intel_wakeref_t wakeref;
|
|
|
|
i915 = mchdev_get();
|
|
if (!i915)
|
|
return 0;
|
|
|
|
with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
|
|
struct intel_ips *ips = &i915->gt.rps.ips;
|
|
|
|
spin_lock_irq(&mchdev_lock);
|
|
chipset_val = __ips_chipset_val(ips);
|
|
graphics_val = __ips_gfx_val(ips);
|
|
spin_unlock_irq(&mchdev_lock);
|
|
}
|
|
|
|
drm_dev_put(&i915->drm);
|
|
return chipset_val + graphics_val;
|
|
}
|
|
EXPORT_SYMBOL_GPL(i915_read_mch_val);
|
|
|
|
/**
|
|
* i915_gpu_raise - raise GPU frequency limit
|
|
*
|
|
* Raise the limit; IPS indicates we have thermal headroom.
|
|
*/
|
|
bool i915_gpu_raise(void)
|
|
{
|
|
struct drm_i915_private *i915;
|
|
struct intel_rps *rps;
|
|
|
|
i915 = mchdev_get();
|
|
if (!i915)
|
|
return false;
|
|
|
|
rps = &i915->gt.rps;
|
|
|
|
spin_lock_irq(&mchdev_lock);
|
|
if (rps->max_freq_softlimit < rps->max_freq)
|
|
rps->max_freq_softlimit++;
|
|
spin_unlock_irq(&mchdev_lock);
|
|
|
|
drm_dev_put(&i915->drm);
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL_GPL(i915_gpu_raise);
|
|
|
|
/**
|
|
* i915_gpu_lower - lower GPU frequency limit
|
|
*
|
|
* IPS indicates we're close to a thermal limit, so throttle back the GPU
|
|
* frequency maximum.
|
|
*/
|
|
bool i915_gpu_lower(void)
|
|
{
|
|
struct drm_i915_private *i915;
|
|
struct intel_rps *rps;
|
|
|
|
i915 = mchdev_get();
|
|
if (!i915)
|
|
return false;
|
|
|
|
rps = &i915->gt.rps;
|
|
|
|
spin_lock_irq(&mchdev_lock);
|
|
if (rps->max_freq_softlimit > rps->min_freq)
|
|
rps->max_freq_softlimit--;
|
|
spin_unlock_irq(&mchdev_lock);
|
|
|
|
drm_dev_put(&i915->drm);
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL_GPL(i915_gpu_lower);
|
|
|
|
/**
|
|
* i915_gpu_busy - indicate GPU business to IPS
|
|
*
|
|
* Tell the IPS driver whether or not the GPU is busy.
|
|
*/
|
|
bool i915_gpu_busy(void)
|
|
{
|
|
struct drm_i915_private *i915;
|
|
bool ret;
|
|
|
|
i915 = mchdev_get();
|
|
if (!i915)
|
|
return false;
|
|
|
|
ret = i915->gt.awake;
|
|
|
|
drm_dev_put(&i915->drm);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(i915_gpu_busy);
|
|
|
|
/**
|
|
* i915_gpu_turbo_disable - disable graphics turbo
|
|
*
|
|
* Disable graphics turbo by resetting the max frequency and setting the
|
|
* current frequency to the default.
|
|
*/
|
|
bool i915_gpu_turbo_disable(void)
|
|
{
|
|
struct drm_i915_private *i915;
|
|
struct intel_rps *rps;
|
|
bool ret;
|
|
|
|
i915 = mchdev_get();
|
|
if (!i915)
|
|
return false;
|
|
|
|
rps = &i915->gt.rps;
|
|
|
|
spin_lock_irq(&mchdev_lock);
|
|
rps->max_freq_softlimit = rps->min_freq;
|
|
ret = gen5_rps_set(&i915->gt.rps, rps->min_freq);
|
|
spin_unlock_irq(&mchdev_lock);
|
|
|
|
drm_dev_put(&i915->drm);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
|
|
|
|
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
|
|
#include "selftest_rps.c"
|
|
#endif
|