1587 lines
43 KiB
C
1587 lines
43 KiB
C
/*
|
|
* Remote Processor Framework
|
|
*
|
|
* Copyright (C) 2011 Texas Instruments, Inc.
|
|
* Copyright (C) 2011 Google, Inc.
|
|
*
|
|
* Ohad Ben-Cohen <ohad@wizery.com>
|
|
* Brian Swetland <swetland@google.com>
|
|
* Mark Grosen <mgrosen@ti.com>
|
|
* Fernando Guzman Lugo <fernando.lugo@ti.com>
|
|
* Suman Anna <s-anna@ti.com>
|
|
* Robert Tivy <rtivy@ti.com>
|
|
* Armando Uribe De Leon <x0095078@ti.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* version 2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "%s: " fmt, __func__
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/device.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/firmware.h>
|
|
#include <linux/string.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/remoteproc.h>
|
|
#include <linux/iommu.h>
|
|
#include <linux/klist.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/virtio_ids.h>
|
|
#include <linux/virtio_ring.h>
|
|
#include <asm/byteorder.h>
|
|
|
|
#include "remoteproc_internal.h"
|
|
|
|
static void klist_rproc_get(struct klist_node *n);
|
|
static void klist_rproc_put(struct klist_node *n);
|
|
|
|
/*
|
|
* klist of the available remote processors.
|
|
*
|
|
* We need this in order to support name-based lookups (needed by the
|
|
* rproc_get_by_name()).
|
|
*
|
|
* That said, we don't use rproc_get_by_name() at this point.
|
|
* The use cases that do require its existence should be
|
|
* scrutinized, and hopefully migrated to rproc_boot() using device-based
|
|
* binding.
|
|
*
|
|
* If/when this materializes, we could drop the klist (and the by_name
|
|
* API).
|
|
*/
|
|
static DEFINE_KLIST(rprocs, klist_rproc_get, klist_rproc_put);
|
|
|
|
typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
|
|
struct resource_table *table, int len);
|
|
typedef int (*rproc_handle_resource_t)(struct rproc *rproc, void *, int avail);
|
|
|
|
/*
|
|
* This is the IOMMU fault handler we register with the IOMMU API
|
|
* (when relevant; not all remote processors access memory through
|
|
* an IOMMU).
|
|
*
|
|
* IOMMU core will invoke this handler whenever the remote processor
|
|
* will try to access an unmapped device address.
|
|
*
|
|
* Currently this is mostly a stub, but it will be later used to trigger
|
|
* the recovery of the remote processor.
|
|
*/
|
|
static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
|
|
unsigned long iova, int flags)
|
|
{
|
|
dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
|
|
|
|
/*
|
|
* Let the iommu core know we're not really handling this fault;
|
|
* we just plan to use this as a recovery trigger.
|
|
*/
|
|
return -ENOSYS;
|
|
}
|
|
|
|
static int rproc_enable_iommu(struct rproc *rproc)
|
|
{
|
|
struct iommu_domain *domain;
|
|
struct device *dev = rproc->dev;
|
|
int ret;
|
|
|
|
/*
|
|
* We currently use iommu_present() to decide if an IOMMU
|
|
* setup is needed.
|
|
*
|
|
* This works for simple cases, but will easily fail with
|
|
* platforms that do have an IOMMU, but not for this specific
|
|
* rproc.
|
|
*
|
|
* This will be easily solved by introducing hw capabilities
|
|
* that will be set by the remoteproc driver.
|
|
*/
|
|
if (!iommu_present(dev->bus)) {
|
|
dev_dbg(dev, "iommu not found\n");
|
|
return 0;
|
|
}
|
|
|
|
domain = iommu_domain_alloc(dev->bus);
|
|
if (!domain) {
|
|
dev_err(dev, "can't alloc iommu domain\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
iommu_set_fault_handler(domain, rproc_iommu_fault);
|
|
|
|
ret = iommu_attach_device(domain, dev);
|
|
if (ret) {
|
|
dev_err(dev, "can't attach iommu device: %d\n", ret);
|
|
goto free_domain;
|
|
}
|
|
|
|
rproc->domain = domain;
|
|
|
|
return 0;
|
|
|
|
free_domain:
|
|
iommu_domain_free(domain);
|
|
return ret;
|
|
}
|
|
|
|
static void rproc_disable_iommu(struct rproc *rproc)
|
|
{
|
|
struct iommu_domain *domain = rproc->domain;
|
|
struct device *dev = rproc->dev;
|
|
|
|
if (!domain)
|
|
return;
|
|
|
|
iommu_detach_device(domain, dev);
|
|
iommu_domain_free(domain);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Some remote processors will ask us to allocate them physically contiguous
|
|
* memory regions (which we call "carveouts"), and map them to specific
|
|
* device addresses (which are hardcoded in the firmware).
|
|
*
|
|
* They may then ask us to copy objects into specific device addresses (e.g.
|
|
* code/data sections) or expose us certain symbols in other device address
|
|
* (e.g. their trace buffer).
|
|
*
|
|
* This function is an internal helper with which we can go over the allocated
|
|
* carveouts and translate specific device address to kernel virtual addresses
|
|
* so we can access the referenced memory.
|
|
*
|
|
* Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
|
|
* but only on kernel direct mapped RAM memory. Instead, we're just using
|
|
* here the output of the DMA API, which should be more correct.
|
|
*/
|
|
static void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
|
|
{
|
|
struct rproc_mem_entry *carveout;
|
|
void *ptr = NULL;
|
|
|
|
list_for_each_entry(carveout, &rproc->carveouts, node) {
|
|
int offset = da - carveout->da;
|
|
|
|
/* try next carveout if da is too small */
|
|
if (offset < 0)
|
|
continue;
|
|
|
|
/* try next carveout if da is too large */
|
|
if (offset + len > carveout->len)
|
|
continue;
|
|
|
|
ptr = carveout->va + offset;
|
|
|
|
break;
|
|
}
|
|
|
|
return ptr;
|
|
}
|
|
|
|
/**
|
|
* rproc_load_segments() - load firmware segments to memory
|
|
* @rproc: remote processor which will be booted using these fw segments
|
|
* @elf_data: the content of the ELF firmware image
|
|
* @len: firmware size (in bytes)
|
|
*
|
|
* This function loads the firmware segments to memory, where the remote
|
|
* processor expects them.
|
|
*
|
|
* Some remote processors will expect their code and data to be placed
|
|
* in specific device addresses, and can't have them dynamically assigned.
|
|
*
|
|
* We currently support only those kind of remote processors, and expect
|
|
* the program header's paddr member to contain those addresses. We then go
|
|
* through the physically contiguous "carveout" memory regions which we
|
|
* allocated (and mapped) earlier on behalf of the remote processor,
|
|
* and "translate" device address to kernel addresses, so we can copy the
|
|
* segments where they are expected.
|
|
*
|
|
* Currently we only support remote processors that required carveout
|
|
* allocations and got them mapped onto their iommus. Some processors
|
|
* might be different: they might not have iommus, and would prefer to
|
|
* directly allocate memory for every segment/resource. This is not yet
|
|
* supported, though.
|
|
*/
|
|
static int
|
|
rproc_load_segments(struct rproc *rproc, const u8 *elf_data, size_t len)
|
|
{
|
|
struct device *dev = rproc->dev;
|
|
struct elf32_hdr *ehdr;
|
|
struct elf32_phdr *phdr;
|
|
int i, ret = 0;
|
|
|
|
ehdr = (struct elf32_hdr *)elf_data;
|
|
phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff);
|
|
|
|
/* go through the available ELF segments */
|
|
for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
|
|
u32 da = phdr->p_paddr;
|
|
u32 memsz = phdr->p_memsz;
|
|
u32 filesz = phdr->p_filesz;
|
|
u32 offset = phdr->p_offset;
|
|
void *ptr;
|
|
|
|
if (phdr->p_type != PT_LOAD)
|
|
continue;
|
|
|
|
dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n",
|
|
phdr->p_type, da, memsz, filesz);
|
|
|
|
if (filesz > memsz) {
|
|
dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n",
|
|
filesz, memsz);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (offset + filesz > len) {
|
|
dev_err(dev, "truncated fw: need 0x%x avail 0x%x\n",
|
|
offset + filesz, len);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
/* grab the kernel address for this device address */
|
|
ptr = rproc_da_to_va(rproc, da, memsz);
|
|
if (!ptr) {
|
|
dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
/* put the segment where the remote processor expects it */
|
|
if (phdr->p_filesz)
|
|
memcpy(ptr, elf_data + phdr->p_offset, filesz);
|
|
|
|
/*
|
|
* Zero out remaining memory for this segment.
|
|
*
|
|
* This isn't strictly required since dma_alloc_coherent already
|
|
* did this for us. albeit harmless, we may consider removing
|
|
* this.
|
|
*/
|
|
if (memsz > filesz)
|
|
memset(ptr + filesz, 0, memsz - filesz);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
__rproc_handle_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
|
|
{
|
|
struct rproc *rproc = rvdev->rproc;
|
|
struct device *dev = rproc->dev;
|
|
struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
|
|
dma_addr_t dma;
|
|
void *va;
|
|
int ret, size, notifyid;
|
|
|
|
dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
|
|
i, vring->da, vring->num, vring->align);
|
|
|
|
/* make sure reserved bytes are zeroes */
|
|
if (vring->reserved) {
|
|
dev_err(dev, "vring rsc has non zero reserved bytes\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* verify queue size and vring alignment are sane */
|
|
if (!vring->num || !vring->align) {
|
|
dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
|
|
vring->num, vring->align);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* actual size of vring (in bytes) */
|
|
size = PAGE_ALIGN(vring_size(vring->num, vring->align));
|
|
|
|
if (!idr_pre_get(&rproc->notifyids, GFP_KERNEL)) {
|
|
dev_err(dev, "idr_pre_get failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* Allocate non-cacheable memory for the vring. In the future
|
|
* this call will also configure the IOMMU for us
|
|
*/
|
|
va = dma_alloc_coherent(dev, size, &dma, GFP_KERNEL);
|
|
if (!va) {
|
|
dev_err(dev, "dma_alloc_coherent failed\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* assign an rproc-wide unique index for this vring */
|
|
/* TODO: assign a notifyid for rvdev updates as well */
|
|
ret = idr_get_new(&rproc->notifyids, &rvdev->vring[i], ¬ifyid);
|
|
if (ret) {
|
|
dev_err(dev, "idr_get_new failed: %d\n", ret);
|
|
dma_free_coherent(dev, size, va, dma);
|
|
return ret;
|
|
}
|
|
|
|
/* let the rproc know the da and notifyid of this vring */
|
|
/* TODO: expose this to remote processor */
|
|
vring->da = dma;
|
|
vring->notifyid = notifyid;
|
|
|
|
dev_dbg(dev, "vring%d: va %p dma %x size %x idr %d\n", i, va,
|
|
dma, size, notifyid);
|
|
|
|
rvdev->vring[i].len = vring->num;
|
|
rvdev->vring[i].align = vring->align;
|
|
rvdev->vring[i].va = va;
|
|
rvdev->vring[i].dma = dma;
|
|
rvdev->vring[i].notifyid = notifyid;
|
|
rvdev->vring[i].rvdev = rvdev;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __rproc_free_vrings(struct rproc_vdev *rvdev, int i)
|
|
{
|
|
struct rproc *rproc = rvdev->rproc;
|
|
|
|
for (i--; i >= 0; i--) {
|
|
struct rproc_vring *rvring = &rvdev->vring[i];
|
|
int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
|
|
|
|
dma_free_coherent(rproc->dev, size, rvring->va, rvring->dma);
|
|
idr_remove(&rproc->notifyids, rvring->notifyid);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* rproc_handle_vdev() - handle a vdev fw resource
|
|
* @rproc: the remote processor
|
|
* @rsc: the vring resource descriptor
|
|
* @avail: size of available data (for sanity checking the image)
|
|
*
|
|
* This resource entry requests the host to statically register a virtio
|
|
* device (vdev), and setup everything needed to support it. It contains
|
|
* everything needed to make it possible: the virtio device id, virtio
|
|
* device features, vrings information, virtio config space, etc...
|
|
*
|
|
* Before registering the vdev, the vrings are allocated from non-cacheable
|
|
* physically contiguous memory. Currently we only support two vrings per
|
|
* remote processor (temporary limitation). We might also want to consider
|
|
* doing the vring allocation only later when ->find_vqs() is invoked, and
|
|
* then release them upon ->del_vqs().
|
|
*
|
|
* Note: @da is currently not really handled correctly: we dynamically
|
|
* allocate it using the DMA API, ignoring requested hard coded addresses,
|
|
* and we don't take care of any required IOMMU programming. This is all
|
|
* going to be taken care of when the generic iommu-based DMA API will be
|
|
* merged. Meanwhile, statically-addressed iommu-based firmware images should
|
|
* use RSC_DEVMEM resource entries to map their required @da to the physical
|
|
* address of their base CMA region (ouch, hacky!).
|
|
*
|
|
* Returns 0 on success, or an appropriate error code otherwise
|
|
*/
|
|
static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
|
|
int avail)
|
|
{
|
|
struct device *dev = rproc->dev;
|
|
struct rproc_vdev *rvdev;
|
|
int i, ret;
|
|
|
|
/* make sure resource isn't truncated */
|
|
if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
|
|
+ rsc->config_len > avail) {
|
|
dev_err(rproc->dev, "vdev rsc is truncated\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* make sure reserved bytes are zeroes */
|
|
if (rsc->reserved[0] || rsc->reserved[1]) {
|
|
dev_err(dev, "vdev rsc has non zero reserved bytes\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
|
|
rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
|
|
|
|
/* we currently support only two vrings per rvdev */
|
|
if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
|
|
dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
|
|
return -EINVAL;
|
|
}
|
|
|
|
rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
|
|
if (!rvdev)
|
|
return -ENOMEM;
|
|
|
|
rvdev->rproc = rproc;
|
|
|
|
/* allocate the vrings */
|
|
for (i = 0; i < rsc->num_of_vrings; i++) {
|
|
ret = __rproc_handle_vring(rvdev, rsc, i);
|
|
if (ret)
|
|
goto free_vrings;
|
|
}
|
|
|
|
/* remember the device features */
|
|
rvdev->dfeatures = rsc->dfeatures;
|
|
|
|
list_add_tail(&rvdev->node, &rproc->rvdevs);
|
|
|
|
/* it is now safe to add the virtio device */
|
|
ret = rproc_add_virtio_dev(rvdev, rsc->id);
|
|
if (ret)
|
|
goto free_vrings;
|
|
|
|
return 0;
|
|
|
|
free_vrings:
|
|
__rproc_free_vrings(rvdev, i);
|
|
kfree(rvdev);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* rproc_handle_trace() - handle a shared trace buffer resource
|
|
* @rproc: the remote processor
|
|
* @rsc: the trace resource descriptor
|
|
* @avail: size of available data (for sanity checking the image)
|
|
*
|
|
* In case the remote processor dumps trace logs into memory,
|
|
* export it via debugfs.
|
|
*
|
|
* Currently, the 'da' member of @rsc should contain the device address
|
|
* where the remote processor is dumping the traces. Later we could also
|
|
* support dynamically allocating this address using the generic
|
|
* DMA API (but currently there isn't a use case for that).
|
|
*
|
|
* Returns 0 on success, or an appropriate error code otherwise
|
|
*/
|
|
static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
|
|
int avail)
|
|
{
|
|
struct rproc_mem_entry *trace;
|
|
struct device *dev = rproc->dev;
|
|
void *ptr;
|
|
char name[15];
|
|
|
|
if (sizeof(*rsc) > avail) {
|
|
dev_err(rproc->dev, "trace rsc is truncated\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* make sure reserved bytes are zeroes */
|
|
if (rsc->reserved) {
|
|
dev_err(dev, "trace rsc has non zero reserved bytes\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* what's the kernel address of this resource ? */
|
|
ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
|
|
if (!ptr) {
|
|
dev_err(dev, "erroneous trace resource entry\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
trace = kzalloc(sizeof(*trace), GFP_KERNEL);
|
|
if (!trace) {
|
|
dev_err(dev, "kzalloc trace failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* set the trace buffer dma properties */
|
|
trace->len = rsc->len;
|
|
trace->va = ptr;
|
|
|
|
/* make sure snprintf always null terminates, even if truncating */
|
|
snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
|
|
|
|
/* create the debugfs entry */
|
|
trace->priv = rproc_create_trace_file(name, rproc, trace);
|
|
if (!trace->priv) {
|
|
trace->va = NULL;
|
|
kfree(trace);
|
|
return -EINVAL;
|
|
}
|
|
|
|
list_add_tail(&trace->node, &rproc->traces);
|
|
|
|
rproc->num_traces++;
|
|
|
|
dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
|
|
rsc->da, rsc->len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* rproc_handle_devmem() - handle devmem resource entry
|
|
* @rproc: remote processor handle
|
|
* @rsc: the devmem resource entry
|
|
* @avail: size of available data (for sanity checking the image)
|
|
*
|
|
* Remote processors commonly need to access certain on-chip peripherals.
|
|
*
|
|
* Some of these remote processors access memory via an iommu device,
|
|
* and might require us to configure their iommu before they can access
|
|
* the on-chip peripherals they need.
|
|
*
|
|
* This resource entry is a request to map such a peripheral device.
|
|
*
|
|
* These devmem entries will contain the physical address of the device in
|
|
* the 'pa' member. If a specific device address is expected, then 'da' will
|
|
* contain it (currently this is the only use case supported). 'len' will
|
|
* contain the size of the physical region we need to map.
|
|
*
|
|
* Currently we just "trust" those devmem entries to contain valid physical
|
|
* addresses, but this is going to change: we want the implementations to
|
|
* tell us ranges of physical addresses the firmware is allowed to request,
|
|
* and not allow firmwares to request access to physical addresses that
|
|
* are outside those ranges.
|
|
*/
|
|
static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
|
|
int avail)
|
|
{
|
|
struct rproc_mem_entry *mapping;
|
|
int ret;
|
|
|
|
/* no point in handling this resource without a valid iommu domain */
|
|
if (!rproc->domain)
|
|
return -EINVAL;
|
|
|
|
if (sizeof(*rsc) > avail) {
|
|
dev_err(rproc->dev, "devmem rsc is truncated\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* make sure reserved bytes are zeroes */
|
|
if (rsc->reserved) {
|
|
dev_err(rproc->dev, "devmem rsc has non zero reserved bytes\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
|
|
if (!mapping) {
|
|
dev_err(rproc->dev, "kzalloc mapping failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
|
|
if (ret) {
|
|
dev_err(rproc->dev, "failed to map devmem: %d\n", ret);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* We'll need this info later when we'll want to unmap everything
|
|
* (e.g. on shutdown).
|
|
*
|
|
* We can't trust the remote processor not to change the resource
|
|
* table, so we must maintain this info independently.
|
|
*/
|
|
mapping->da = rsc->da;
|
|
mapping->len = rsc->len;
|
|
list_add_tail(&mapping->node, &rproc->mappings);
|
|
|
|
dev_dbg(rproc->dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
|
|
rsc->pa, rsc->da, rsc->len);
|
|
|
|
return 0;
|
|
|
|
out:
|
|
kfree(mapping);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* rproc_handle_carveout() - handle phys contig memory allocation requests
|
|
* @rproc: rproc handle
|
|
* @rsc: the resource entry
|
|
* @avail: size of available data (for image validation)
|
|
*
|
|
* This function will handle firmware requests for allocation of physically
|
|
* contiguous memory regions.
|
|
*
|
|
* These request entries should come first in the firmware's resource table,
|
|
* as other firmware entries might request placing other data objects inside
|
|
* these memory regions (e.g. data/code segments, trace resource entries, ...).
|
|
*
|
|
* Allocating memory this way helps utilizing the reserved physical memory
|
|
* (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
|
|
* needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
|
|
* pressure is important; it may have a substantial impact on performance.
|
|
*/
|
|
static int rproc_handle_carveout(struct rproc *rproc,
|
|
struct fw_rsc_carveout *rsc, int avail)
|
|
{
|
|
struct rproc_mem_entry *carveout, *mapping;
|
|
struct device *dev = rproc->dev;
|
|
dma_addr_t dma;
|
|
void *va;
|
|
int ret;
|
|
|
|
if (sizeof(*rsc) > avail) {
|
|
dev_err(rproc->dev, "carveout rsc is truncated\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* make sure reserved bytes are zeroes */
|
|
if (rsc->reserved) {
|
|
dev_err(dev, "carveout rsc has non zero reserved bytes\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
|
|
rsc->da, rsc->pa, rsc->len, rsc->flags);
|
|
|
|
mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
|
|
if (!mapping) {
|
|
dev_err(dev, "kzalloc mapping failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
|
|
if (!carveout) {
|
|
dev_err(dev, "kzalloc carveout failed\n");
|
|
ret = -ENOMEM;
|
|
goto free_mapping;
|
|
}
|
|
|
|
va = dma_alloc_coherent(dev, rsc->len, &dma, GFP_KERNEL);
|
|
if (!va) {
|
|
dev_err(dev, "failed to dma alloc carveout: %d\n", rsc->len);
|
|
ret = -ENOMEM;
|
|
goto free_carv;
|
|
}
|
|
|
|
dev_dbg(dev, "carveout va %p, dma %x, len 0x%x\n", va, dma, rsc->len);
|
|
|
|
/*
|
|
* Ok, this is non-standard.
|
|
*
|
|
* Sometimes we can't rely on the generic iommu-based DMA API
|
|
* to dynamically allocate the device address and then set the IOMMU
|
|
* tables accordingly, because some remote processors might
|
|
* _require_ us to use hard coded device addresses that their
|
|
* firmware was compiled with.
|
|
*
|
|
* In this case, we must use the IOMMU API directly and map
|
|
* the memory to the device address as expected by the remote
|
|
* processor.
|
|
*
|
|
* Obviously such remote processor devices should not be configured
|
|
* to use the iommu-based DMA API: we expect 'dma' to contain the
|
|
* physical address in this case.
|
|
*/
|
|
if (rproc->domain) {
|
|
ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
|
|
rsc->flags);
|
|
if (ret) {
|
|
dev_err(dev, "iommu_map failed: %d\n", ret);
|
|
goto dma_free;
|
|
}
|
|
|
|
/*
|
|
* We'll need this info later when we'll want to unmap
|
|
* everything (e.g. on shutdown).
|
|
*
|
|
* We can't trust the remote processor not to change the
|
|
* resource table, so we must maintain this info independently.
|
|
*/
|
|
mapping->da = rsc->da;
|
|
mapping->len = rsc->len;
|
|
list_add_tail(&mapping->node, &rproc->mappings);
|
|
|
|
dev_dbg(dev, "carveout mapped 0x%x to 0x%x\n", rsc->da, dma);
|
|
|
|
/*
|
|
* Some remote processors might need to know the pa
|
|
* even though they are behind an IOMMU. E.g., OMAP4's
|
|
* remote M3 processor needs this so it can control
|
|
* on-chip hardware accelerators that are not behind
|
|
* the IOMMU, and therefor must know the pa.
|
|
*
|
|
* Generally we don't want to expose physical addresses
|
|
* if we don't have to (remote processors are generally
|
|
* _not_ trusted), so we might want to do this only for
|
|
* remote processor that _must_ have this (e.g. OMAP4's
|
|
* dual M3 subsystem).
|
|
*/
|
|
rsc->pa = dma;
|
|
}
|
|
|
|
carveout->va = va;
|
|
carveout->len = rsc->len;
|
|
carveout->dma = dma;
|
|
carveout->da = rsc->da;
|
|
|
|
list_add_tail(&carveout->node, &rproc->carveouts);
|
|
|
|
return 0;
|
|
|
|
dma_free:
|
|
dma_free_coherent(dev, rsc->len, va, dma);
|
|
free_carv:
|
|
kfree(carveout);
|
|
free_mapping:
|
|
kfree(mapping);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* A lookup table for resource handlers. The indices are defined in
|
|
* enum fw_resource_type.
|
|
*/
|
|
static rproc_handle_resource_t rproc_handle_rsc[] = {
|
|
[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
|
|
[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
|
|
[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
|
|
[RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */
|
|
};
|
|
|
|
/* handle firmware resource entries before booting the remote processor */
|
|
static int
|
|
rproc_handle_boot_rsc(struct rproc *rproc, struct resource_table *table, int len)
|
|
{
|
|
struct device *dev = rproc->dev;
|
|
rproc_handle_resource_t handler;
|
|
int ret = 0, i;
|
|
|
|
for (i = 0; i < table->num; i++) {
|
|
int offset = table->offset[i];
|
|
struct fw_rsc_hdr *hdr = (void *)table + offset;
|
|
int avail = len - offset - sizeof(*hdr);
|
|
void *rsc = (void *)hdr + sizeof(*hdr);
|
|
|
|
/* make sure table isn't truncated */
|
|
if (avail < 0) {
|
|
dev_err(dev, "rsc table is truncated\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
dev_dbg(dev, "rsc: type %d\n", hdr->type);
|
|
|
|
if (hdr->type >= RSC_LAST) {
|
|
dev_warn(dev, "unsupported resource %d\n", hdr->type);
|
|
continue;
|
|
}
|
|
|
|
handler = rproc_handle_rsc[hdr->type];
|
|
if (!handler)
|
|
continue;
|
|
|
|
ret = handler(rproc, rsc, avail);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* handle firmware resource entries while registering the remote processor */
|
|
static int
|
|
rproc_handle_virtio_rsc(struct rproc *rproc, struct resource_table *table, int len)
|
|
{
|
|
struct device *dev = rproc->dev;
|
|
int ret = 0, i;
|
|
|
|
for (i = 0; i < table->num; i++) {
|
|
int offset = table->offset[i];
|
|
struct fw_rsc_hdr *hdr = (void *)table + offset;
|
|
int avail = len - offset - sizeof(*hdr);
|
|
struct fw_rsc_vdev *vrsc;
|
|
|
|
/* make sure table isn't truncated */
|
|
if (avail < 0) {
|
|
dev_err(dev, "rsc table is truncated\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
dev_dbg(dev, "%s: rsc type %d\n", __func__, hdr->type);
|
|
|
|
if (hdr->type != RSC_VDEV)
|
|
continue;
|
|
|
|
vrsc = (struct fw_rsc_vdev *)hdr->data;
|
|
|
|
ret = rproc_handle_vdev(rproc, vrsc, avail);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* rproc_find_rsc_table() - find the resource table
|
|
* @rproc: the rproc handle
|
|
* @elf_data: the content of the ELF firmware image
|
|
* @len: firmware size (in bytes)
|
|
* @tablesz: place holder for providing back the table size
|
|
*
|
|
* This function finds the resource table inside the remote processor's
|
|
* firmware. It is used both upon the registration of @rproc (in order
|
|
* to look for and register the supported virito devices), and when the
|
|
* @rproc is booted.
|
|
*
|
|
* Returns the pointer to the resource table if it is found, and write its
|
|
* size into @tablesz. If a valid table isn't found, NULL is returned
|
|
* (and @tablesz isn't set).
|
|
*/
|
|
static struct resource_table *
|
|
rproc_find_rsc_table(struct rproc *rproc, const u8 *elf_data, size_t len,
|
|
int *tablesz)
|
|
{
|
|
struct elf32_hdr *ehdr;
|
|
struct elf32_shdr *shdr;
|
|
const char *name_table;
|
|
struct device *dev = rproc->dev;
|
|
struct resource_table *table = NULL;
|
|
int i;
|
|
|
|
ehdr = (struct elf32_hdr *)elf_data;
|
|
shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff);
|
|
name_table = elf_data + shdr[ehdr->e_shstrndx].sh_offset;
|
|
|
|
/* look for the resource table and handle it */
|
|
for (i = 0; i < ehdr->e_shnum; i++, shdr++) {
|
|
int size = shdr->sh_size;
|
|
int offset = shdr->sh_offset;
|
|
|
|
if (strcmp(name_table + shdr->sh_name, ".resource_table"))
|
|
continue;
|
|
|
|
table = (struct resource_table *)(elf_data + offset);
|
|
|
|
/* make sure we have the entire table */
|
|
if (offset + size > len) {
|
|
dev_err(dev, "resource table truncated\n");
|
|
return NULL;
|
|
}
|
|
|
|
/* make sure table has at least the header */
|
|
if (sizeof(struct resource_table) > size) {
|
|
dev_err(dev, "header-less resource table\n");
|
|
return NULL;
|
|
}
|
|
|
|
/* we don't support any version beyond the first */
|
|
if (table->ver != 1) {
|
|
dev_err(dev, "unsupported fw ver: %d\n", table->ver);
|
|
return NULL;
|
|
}
|
|
|
|
/* make sure reserved bytes are zeroes */
|
|
if (table->reserved[0] || table->reserved[1]) {
|
|
dev_err(dev, "non zero reserved bytes\n");
|
|
return NULL;
|
|
}
|
|
|
|
/* make sure the offsets array isn't truncated */
|
|
if (table->num * sizeof(table->offset[0]) +
|
|
sizeof(struct resource_table) > size) {
|
|
dev_err(dev, "resource table incomplete\n");
|
|
return NULL;
|
|
}
|
|
|
|
*tablesz = shdr->sh_size;
|
|
break;
|
|
}
|
|
|
|
return table;
|
|
}
|
|
|
|
/**
|
|
* rproc_resource_cleanup() - clean up and free all acquired resources
|
|
* @rproc: rproc handle
|
|
*
|
|
* This function will free all resources acquired for @rproc, and it
|
|
* is called whenever @rproc either shuts down or fails to boot.
|
|
*/
|
|
static void rproc_resource_cleanup(struct rproc *rproc)
|
|
{
|
|
struct rproc_mem_entry *entry, *tmp;
|
|
struct device *dev = rproc->dev;
|
|
|
|
/* clean up debugfs trace entries */
|
|
list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
|
|
rproc_remove_trace_file(entry->priv);
|
|
rproc->num_traces--;
|
|
list_del(&entry->node);
|
|
kfree(entry);
|
|
}
|
|
|
|
/* clean up carveout allocations */
|
|
list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
|
|
dma_free_coherent(dev, entry->len, entry->va, entry->dma);
|
|
list_del(&entry->node);
|
|
kfree(entry);
|
|
}
|
|
|
|
/* clean up iommu mapping entries */
|
|
list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
|
|
size_t unmapped;
|
|
|
|
unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
|
|
if (unmapped != entry->len) {
|
|
/* nothing much to do besides complaining */
|
|
dev_err(dev, "failed to unmap %u/%u\n", entry->len,
|
|
unmapped);
|
|
}
|
|
|
|
list_del(&entry->node);
|
|
kfree(entry);
|
|
}
|
|
}
|
|
|
|
/* make sure this fw image is sane */
|
|
static int rproc_fw_sanity_check(struct rproc *rproc, const struct firmware *fw)
|
|
{
|
|
const char *name = rproc->firmware;
|
|
struct device *dev = rproc->dev;
|
|
struct elf32_hdr *ehdr;
|
|
char class;
|
|
|
|
if (!fw) {
|
|
dev_err(dev, "failed to load %s\n", name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (fw->size < sizeof(struct elf32_hdr)) {
|
|
dev_err(dev, "Image is too small\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ehdr = (struct elf32_hdr *)fw->data;
|
|
|
|
/* We only support ELF32 at this point */
|
|
class = ehdr->e_ident[EI_CLASS];
|
|
if (class != ELFCLASS32) {
|
|
dev_err(dev, "Unsupported class: %d\n", class);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* We assume the firmware has the same endianess as the host */
|
|
# ifdef __LITTLE_ENDIAN
|
|
if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB) {
|
|
# else /* BIG ENDIAN */
|
|
if (ehdr->e_ident[EI_DATA] != ELFDATA2MSB) {
|
|
# endif
|
|
dev_err(dev, "Unsupported firmware endianess\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (fw->size < ehdr->e_shoff + sizeof(struct elf32_shdr)) {
|
|
dev_err(dev, "Image is too small\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG)) {
|
|
dev_err(dev, "Image is corrupted (bad magic)\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ehdr->e_phnum == 0) {
|
|
dev_err(dev, "No loadable segments\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ehdr->e_phoff > fw->size) {
|
|
dev_err(dev, "Firmware size is too small\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* take a firmware and boot a remote processor with it.
|
|
*/
|
|
static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
|
|
{
|
|
struct device *dev = rproc->dev;
|
|
const char *name = rproc->firmware;
|
|
struct elf32_hdr *ehdr;
|
|
struct resource_table *table;
|
|
int ret, tablesz;
|
|
|
|
ret = rproc_fw_sanity_check(rproc, fw);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ehdr = (struct elf32_hdr *)fw->data;
|
|
|
|
dev_info(dev, "Booting fw image %s, size %d\n", name, fw->size);
|
|
|
|
/*
|
|
* if enabling an IOMMU isn't relevant for this rproc, this is
|
|
* just a nop
|
|
*/
|
|
ret = rproc_enable_iommu(rproc);
|
|
if (ret) {
|
|
dev_err(dev, "can't enable iommu: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* The ELF entry point is the rproc's boot addr (though this is not
|
|
* a configurable property of all remote processors: some will always
|
|
* boot at a specific hardcoded address).
|
|
*/
|
|
rproc->bootaddr = ehdr->e_entry;
|
|
|
|
/* look for the resource table */
|
|
table = rproc_find_rsc_table(rproc, fw->data, fw->size, &tablesz);
|
|
if (!table)
|
|
goto clean_up;
|
|
|
|
/* handle fw resources which are required to boot rproc */
|
|
ret = rproc_handle_boot_rsc(rproc, table, tablesz);
|
|
if (ret) {
|
|
dev_err(dev, "Failed to process resources: %d\n", ret);
|
|
goto clean_up;
|
|
}
|
|
|
|
/* load the ELF segments to memory */
|
|
ret = rproc_load_segments(rproc, fw->data, fw->size);
|
|
if (ret) {
|
|
dev_err(dev, "Failed to load program segments: %d\n", ret);
|
|
goto clean_up;
|
|
}
|
|
|
|
/* power up the remote processor */
|
|
ret = rproc->ops->start(rproc);
|
|
if (ret) {
|
|
dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
|
|
goto clean_up;
|
|
}
|
|
|
|
rproc->state = RPROC_RUNNING;
|
|
|
|
dev_info(dev, "remote processor %s is now up\n", rproc->name);
|
|
|
|
return 0;
|
|
|
|
clean_up:
|
|
rproc_resource_cleanup(rproc);
|
|
rproc_disable_iommu(rproc);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* take a firmware and look for virtio devices to register.
|
|
*
|
|
* Note: this function is called asynchronously upon registration of the
|
|
* remote processor (so we must wait until it completes before we try
|
|
* to unregister the device. one other option is just to use kref here,
|
|
* that might be cleaner).
|
|
*/
|
|
static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
|
|
{
|
|
struct rproc *rproc = context;
|
|
struct resource_table *table;
|
|
int ret, tablesz;
|
|
|
|
if (rproc_fw_sanity_check(rproc, fw) < 0)
|
|
goto out;
|
|
|
|
/* look for the resource table */
|
|
table = rproc_find_rsc_table(rproc, fw->data, fw->size, &tablesz);
|
|
if (!table)
|
|
goto out;
|
|
|
|
/* look for virtio devices and register them */
|
|
ret = rproc_handle_virtio_rsc(rproc, table, tablesz);
|
|
if (ret)
|
|
goto out;
|
|
|
|
out:
|
|
if (fw)
|
|
release_firmware(fw);
|
|
/* allow rproc_unregister() contexts, if any, to proceed */
|
|
complete_all(&rproc->firmware_loading_complete);
|
|
}
|
|
|
|
/**
|
|
* rproc_boot() - boot a remote processor
|
|
* @rproc: handle of a remote processor
|
|
*
|
|
* Boot a remote processor (i.e. load its firmware, power it on, ...).
|
|
*
|
|
* If the remote processor is already powered on, this function immediately
|
|
* returns (successfully).
|
|
*
|
|
* Returns 0 on success, and an appropriate error value otherwise.
|
|
*/
|
|
int rproc_boot(struct rproc *rproc)
|
|
{
|
|
const struct firmware *firmware_p;
|
|
struct device *dev;
|
|
int ret;
|
|
|
|
if (!rproc) {
|
|
pr_err("invalid rproc handle\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
dev = rproc->dev;
|
|
|
|
ret = mutex_lock_interruptible(&rproc->lock);
|
|
if (ret) {
|
|
dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
|
|
return ret;
|
|
}
|
|
|
|
/* loading a firmware is required */
|
|
if (!rproc->firmware) {
|
|
dev_err(dev, "%s: no firmware to load\n", __func__);
|
|
ret = -EINVAL;
|
|
goto unlock_mutex;
|
|
}
|
|
|
|
/* prevent underlying implementation from being removed */
|
|
if (!try_module_get(dev->driver->owner)) {
|
|
dev_err(dev, "%s: can't get owner\n", __func__);
|
|
ret = -EINVAL;
|
|
goto unlock_mutex;
|
|
}
|
|
|
|
/* skip the boot process if rproc is already powered up */
|
|
if (atomic_inc_return(&rproc->power) > 1) {
|
|
ret = 0;
|
|
goto unlock_mutex;
|
|
}
|
|
|
|
dev_info(dev, "powering up %s\n", rproc->name);
|
|
|
|
/* load firmware */
|
|
ret = request_firmware(&firmware_p, rproc->firmware, dev);
|
|
if (ret < 0) {
|
|
dev_err(dev, "request_firmware failed: %d\n", ret);
|
|
goto downref_rproc;
|
|
}
|
|
|
|
ret = rproc_fw_boot(rproc, firmware_p);
|
|
|
|
release_firmware(firmware_p);
|
|
|
|
downref_rproc:
|
|
if (ret) {
|
|
module_put(dev->driver->owner);
|
|
atomic_dec(&rproc->power);
|
|
}
|
|
unlock_mutex:
|
|
mutex_unlock(&rproc->lock);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(rproc_boot);
|
|
|
|
/**
|
|
* rproc_shutdown() - power off the remote processor
|
|
* @rproc: the remote processor
|
|
*
|
|
* Power off a remote processor (previously booted with rproc_boot()).
|
|
*
|
|
* In case @rproc is still being used by an additional user(s), then
|
|
* this function will just decrement the power refcount and exit,
|
|
* without really powering off the device.
|
|
*
|
|
* Every call to rproc_boot() must (eventually) be accompanied by a call
|
|
* to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
|
|
*
|
|
* Notes:
|
|
* - we're not decrementing the rproc's refcount, only the power refcount.
|
|
* which means that the @rproc handle stays valid even after rproc_shutdown()
|
|
* returns, and users can still use it with a subsequent rproc_boot(), if
|
|
* needed.
|
|
* - don't call rproc_shutdown() to unroll rproc_get_by_name(), exactly
|
|
* because rproc_shutdown() _does not_ decrement the refcount of @rproc.
|
|
* To decrement the refcount of @rproc, use rproc_put() (but _only_ if
|
|
* you acquired @rproc using rproc_get_by_name()).
|
|
*/
|
|
void rproc_shutdown(struct rproc *rproc)
|
|
{
|
|
struct device *dev = rproc->dev;
|
|
int ret;
|
|
|
|
ret = mutex_lock_interruptible(&rproc->lock);
|
|
if (ret) {
|
|
dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
|
|
return;
|
|
}
|
|
|
|
/* if the remote proc is still needed, bail out */
|
|
if (!atomic_dec_and_test(&rproc->power))
|
|
goto out;
|
|
|
|
/* power off the remote processor */
|
|
ret = rproc->ops->stop(rproc);
|
|
if (ret) {
|
|
atomic_inc(&rproc->power);
|
|
dev_err(dev, "can't stop rproc: %d\n", ret);
|
|
goto out;
|
|
}
|
|
|
|
/* clean up all acquired resources */
|
|
rproc_resource_cleanup(rproc);
|
|
|
|
rproc_disable_iommu(rproc);
|
|
|
|
rproc->state = RPROC_OFFLINE;
|
|
|
|
dev_info(dev, "stopped remote processor %s\n", rproc->name);
|
|
|
|
out:
|
|
mutex_unlock(&rproc->lock);
|
|
if (!ret)
|
|
module_put(dev->driver->owner);
|
|
}
|
|
EXPORT_SYMBOL(rproc_shutdown);
|
|
|
|
/**
|
|
* rproc_release() - completely deletes the existence of a remote processor
|
|
* @kref: the rproc's kref
|
|
*
|
|
* This function should _never_ be called directly.
|
|
*
|
|
* The only reasonable location to use it is as an argument when kref_put'ing
|
|
* @rproc's refcount.
|
|
*
|
|
* This way it will be called when no one holds a valid pointer to this @rproc
|
|
* anymore (and obviously after it is removed from the rprocs klist).
|
|
*
|
|
* Note: this function is not static because rproc_vdev_release() needs it when
|
|
* it decrements @rproc's refcount.
|
|
*/
|
|
void rproc_release(struct kref *kref)
|
|
{
|
|
struct rproc *rproc = container_of(kref, struct rproc, refcount);
|
|
struct rproc_vdev *rvdev, *rvtmp;
|
|
|
|
dev_info(rproc->dev, "removing %s\n", rproc->name);
|
|
|
|
rproc_delete_debug_dir(rproc);
|
|
|
|
/* clean up remote vdev entries */
|
|
list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node) {
|
|
__rproc_free_vrings(rvdev, RVDEV_NUM_VRINGS);
|
|
list_del(&rvdev->node);
|
|
}
|
|
|
|
/*
|
|
* At this point no one holds a reference to rproc anymore,
|
|
* so we can directly unroll rproc_alloc()
|
|
*/
|
|
rproc_free(rproc);
|
|
}
|
|
|
|
/* will be called when an rproc is added to the rprocs klist */
|
|
static void klist_rproc_get(struct klist_node *n)
|
|
{
|
|
struct rproc *rproc = container_of(n, struct rproc, node);
|
|
|
|
kref_get(&rproc->refcount);
|
|
}
|
|
|
|
/* will be called when an rproc is removed from the rprocs klist */
|
|
static void klist_rproc_put(struct klist_node *n)
|
|
{
|
|
struct rproc *rproc = container_of(n, struct rproc, node);
|
|
|
|
kref_put(&rproc->refcount, rproc_release);
|
|
}
|
|
|
|
static struct rproc *next_rproc(struct klist_iter *i)
|
|
{
|
|
struct klist_node *n;
|
|
|
|
n = klist_next(i);
|
|
if (!n)
|
|
return NULL;
|
|
|
|
return container_of(n, struct rproc, node);
|
|
}
|
|
|
|
/**
|
|
* rproc_get_by_name() - find a remote processor by name and boot it
|
|
* @name: name of the remote processor
|
|
*
|
|
* Finds an rproc handle using the remote processor's name, and then
|
|
* boot it. If it's already powered on, then just immediately return
|
|
* (successfully).
|
|
*
|
|
* Returns the rproc handle on success, and NULL on failure.
|
|
*
|
|
* This function increments the remote processor's refcount, so always
|
|
* use rproc_put() to decrement it back once rproc isn't needed anymore.
|
|
*
|
|
* Note: currently this function (and its counterpart rproc_put()) are not
|
|
* being used. We need to scrutinize the use cases
|
|
* that still need them, and see if we can migrate them to use the non
|
|
* name-based boot/shutdown interface.
|
|
*/
|
|
struct rproc *rproc_get_by_name(const char *name)
|
|
{
|
|
struct rproc *rproc;
|
|
struct klist_iter i;
|
|
int ret;
|
|
|
|
/* find the remote processor, and upref its refcount */
|
|
klist_iter_init(&rprocs, &i);
|
|
while ((rproc = next_rproc(&i)) != NULL)
|
|
if (!strcmp(rproc->name, name)) {
|
|
kref_get(&rproc->refcount);
|
|
break;
|
|
}
|
|
klist_iter_exit(&i);
|
|
|
|
/* can't find this rproc ? */
|
|
if (!rproc) {
|
|
pr_err("can't find remote processor %s\n", name);
|
|
return NULL;
|
|
}
|
|
|
|
ret = rproc_boot(rproc);
|
|
if (ret < 0) {
|
|
kref_put(&rproc->refcount, rproc_release);
|
|
return NULL;
|
|
}
|
|
|
|
return rproc;
|
|
}
|
|
EXPORT_SYMBOL(rproc_get_by_name);
|
|
|
|
/**
|
|
* rproc_put() - decrement the refcount of a remote processor, and shut it down
|
|
* @rproc: the remote processor
|
|
*
|
|
* This function tries to shutdown @rproc, and it then decrements its
|
|
* refcount.
|
|
*
|
|
* After this function returns, @rproc may _not_ be used anymore, and its
|
|
* handle should be considered invalid.
|
|
*
|
|
* This function should be called _iff_ the @rproc handle was grabbed by
|
|
* calling rproc_get_by_name().
|
|
*/
|
|
void rproc_put(struct rproc *rproc)
|
|
{
|
|
/* try to power off the remote processor */
|
|
rproc_shutdown(rproc);
|
|
|
|
/* downref rproc's refcount */
|
|
kref_put(&rproc->refcount, rproc_release);
|
|
}
|
|
EXPORT_SYMBOL(rproc_put);
|
|
|
|
/**
|
|
* rproc_register() - register a remote processor
|
|
* @rproc: the remote processor handle to register
|
|
*
|
|
* Registers @rproc with the remoteproc framework, after it has been
|
|
* allocated with rproc_alloc().
|
|
*
|
|
* This is called by the platform-specific rproc implementation, whenever
|
|
* a new remote processor device is probed.
|
|
*
|
|
* Returns 0 on success and an appropriate error code otherwise.
|
|
*
|
|
* Note: this function initiates an asynchronous firmware loading
|
|
* context, which will look for virtio devices supported by the rproc's
|
|
* firmware.
|
|
*
|
|
* If found, those virtio devices will be created and added, so as a result
|
|
* of registering this remote processor, additional virtio drivers might be
|
|
* probed.
|
|
*/
|
|
int rproc_register(struct rproc *rproc)
|
|
{
|
|
struct device *dev = rproc->dev;
|
|
int ret = 0;
|
|
|
|
/* expose to rproc_get_by_name users */
|
|
klist_add_tail(&rproc->node, &rprocs);
|
|
|
|
dev_info(rproc->dev, "%s is available\n", rproc->name);
|
|
|
|
dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
|
|
dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
|
|
|
|
/* create debugfs entries */
|
|
rproc_create_debug_dir(rproc);
|
|
|
|
/* rproc_unregister() calls must wait until async loader completes */
|
|
init_completion(&rproc->firmware_loading_complete);
|
|
|
|
/*
|
|
* We must retrieve early virtio configuration info from
|
|
* the firmware (e.g. whether to register a virtio device,
|
|
* what virtio features does it support, ...).
|
|
*
|
|
* We're initiating an asynchronous firmware loading, so we can
|
|
* be built-in kernel code, without hanging the boot process.
|
|
*/
|
|
ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
|
|
rproc->firmware, dev, GFP_KERNEL,
|
|
rproc, rproc_fw_config_virtio);
|
|
if (ret < 0) {
|
|
dev_err(dev, "request_firmware_nowait failed: %d\n", ret);
|
|
complete_all(&rproc->firmware_loading_complete);
|
|
klist_remove(&rproc->node);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(rproc_register);
|
|
|
|
/**
|
|
* rproc_alloc() - allocate a remote processor handle
|
|
* @dev: the underlying device
|
|
* @name: name of this remote processor
|
|
* @ops: platform-specific handlers (mainly start/stop)
|
|
* @firmware: name of firmware file to load
|
|
* @len: length of private data needed by the rproc driver (in bytes)
|
|
*
|
|
* Allocates a new remote processor handle, but does not register
|
|
* it yet.
|
|
*
|
|
* This function should be used by rproc implementations during initialization
|
|
* of the remote processor.
|
|
*
|
|
* After creating an rproc handle using this function, and when ready,
|
|
* implementations should then call rproc_register() to complete
|
|
* the registration of the remote processor.
|
|
*
|
|
* On success the new rproc is returned, and on failure, NULL.
|
|
*
|
|
* Note: _never_ directly deallocate @rproc, even if it was not registered
|
|
* yet. Instead, if you just need to unroll rproc_alloc(), use rproc_free().
|
|
*/
|
|
struct rproc *rproc_alloc(struct device *dev, const char *name,
|
|
const struct rproc_ops *ops,
|
|
const char *firmware, int len)
|
|
{
|
|
struct rproc *rproc;
|
|
|
|
if (!dev || !name || !ops)
|
|
return NULL;
|
|
|
|
rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
|
|
if (!rproc) {
|
|
dev_err(dev, "%s: kzalloc failed\n", __func__);
|
|
return NULL;
|
|
}
|
|
|
|
rproc->dev = dev;
|
|
rproc->name = name;
|
|
rproc->ops = ops;
|
|
rproc->firmware = firmware;
|
|
rproc->priv = &rproc[1];
|
|
|
|
atomic_set(&rproc->power, 0);
|
|
|
|
kref_init(&rproc->refcount);
|
|
|
|
mutex_init(&rproc->lock);
|
|
|
|
idr_init(&rproc->notifyids);
|
|
|
|
INIT_LIST_HEAD(&rproc->carveouts);
|
|
INIT_LIST_HEAD(&rproc->mappings);
|
|
INIT_LIST_HEAD(&rproc->traces);
|
|
INIT_LIST_HEAD(&rproc->rvdevs);
|
|
|
|
rproc->state = RPROC_OFFLINE;
|
|
|
|
return rproc;
|
|
}
|
|
EXPORT_SYMBOL(rproc_alloc);
|
|
|
|
/**
|
|
* rproc_free() - free an rproc handle that was allocated by rproc_alloc
|
|
* @rproc: the remote processor handle
|
|
*
|
|
* This function should _only_ be used if @rproc was only allocated,
|
|
* but not registered yet.
|
|
*
|
|
* If @rproc was already successfully registered (by calling rproc_register()),
|
|
* then use rproc_unregister() instead.
|
|
*/
|
|
void rproc_free(struct rproc *rproc)
|
|
{
|
|
idr_remove_all(&rproc->notifyids);
|
|
idr_destroy(&rproc->notifyids);
|
|
|
|
kfree(rproc);
|
|
}
|
|
EXPORT_SYMBOL(rproc_free);
|
|
|
|
/**
|
|
* rproc_unregister() - unregister a remote processor
|
|
* @rproc: rproc handle to unregister
|
|
*
|
|
* Unregisters a remote processor, and decrements its refcount.
|
|
* If its refcount drops to zero, then @rproc will be freed. If not,
|
|
* it will be freed later once the last reference is dropped.
|
|
*
|
|
* This function should be called when the platform specific rproc
|
|
* implementation decides to remove the rproc device. it should
|
|
* _only_ be called if a previous invocation of rproc_register()
|
|
* has completed successfully.
|
|
*
|
|
* After rproc_unregister() returns, @rproc is _not_ valid anymore and
|
|
* it shouldn't be used. More specifically, don't call rproc_free()
|
|
* or try to directly free @rproc after rproc_unregister() returns;
|
|
* none of these are needed, and calling them is a bug.
|
|
*
|
|
* Returns 0 on success and -EINVAL if @rproc isn't valid.
|
|
*/
|
|
int rproc_unregister(struct rproc *rproc)
|
|
{
|
|
struct rproc_vdev *rvdev;
|
|
|
|
if (!rproc)
|
|
return -EINVAL;
|
|
|
|
/* if rproc is just being registered, wait */
|
|
wait_for_completion(&rproc->firmware_loading_complete);
|
|
|
|
/* clean up remote vdev entries */
|
|
list_for_each_entry(rvdev, &rproc->rvdevs, node)
|
|
rproc_remove_virtio_dev(rvdev);
|
|
|
|
/* the rproc is downref'ed as soon as it's removed from the klist */
|
|
klist_del(&rproc->node);
|
|
|
|
/* the rproc will only be released after its refcount drops to zero */
|
|
kref_put(&rproc->refcount, rproc_release);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(rproc_unregister);
|
|
|
|
static int __init remoteproc_init(void)
|
|
{
|
|
rproc_init_debugfs();
|
|
return 0;
|
|
}
|
|
module_init(remoteproc_init);
|
|
|
|
static void __exit remoteproc_exit(void)
|
|
{
|
|
rproc_exit_debugfs();
|
|
}
|
|
module_exit(remoteproc_exit);
|
|
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_DESCRIPTION("Generic Remote Processor Framework");
|