OpenCloudOS-Kernel/kernel/jump_label.c

866 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* jump label support
*
* Copyright (C) 2009 Jason Baron <jbaron@redhat.com>
* Copyright (C) 2011 Peter Zijlstra
*
*/
#include <linux/memory.h>
#include <linux/uaccess.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/sort.h>
#include <linux/err.h>
#include <linux/static_key.h>
#include <linux/jump_label_ratelimit.h>
#include <linux/bug.h>
#include <linux/cpu.h>
#include <asm/sections.h>
/* mutex to protect coming/going of the jump_label table */
static DEFINE_MUTEX(jump_label_mutex);
void jump_label_lock(void)
{
mutex_lock(&jump_label_mutex);
}
void jump_label_unlock(void)
{
mutex_unlock(&jump_label_mutex);
}
static int jump_label_cmp(const void *a, const void *b)
{
const struct jump_entry *jea = a;
const struct jump_entry *jeb = b;
/*
* Entrires are sorted by key.
*/
if (jump_entry_key(jea) < jump_entry_key(jeb))
return -1;
if (jump_entry_key(jea) > jump_entry_key(jeb))
return 1;
/*
* In the batching mode, entries should also be sorted by the code
* inside the already sorted list of entries, enabling a bsearch in
* the vector.
*/
if (jump_entry_code(jea) < jump_entry_code(jeb))
return -1;
if (jump_entry_code(jea) > jump_entry_code(jeb))
return 1;
return 0;
}
static void jump_label_swap(void *a, void *b, int size)
{
long delta = (unsigned long)a - (unsigned long)b;
struct jump_entry *jea = a;
struct jump_entry *jeb = b;
struct jump_entry tmp = *jea;
jea->code = jeb->code - delta;
jea->target = jeb->target - delta;
jea->key = jeb->key - delta;
jeb->code = tmp.code + delta;
jeb->target = tmp.target + delta;
jeb->key = tmp.key + delta;
}
static void
jump_label_sort_entries(struct jump_entry *start, struct jump_entry *stop)
{
unsigned long size;
void *swapfn = NULL;
if (IS_ENABLED(CONFIG_HAVE_ARCH_JUMP_LABEL_RELATIVE))
swapfn = jump_label_swap;
size = (((unsigned long)stop - (unsigned long)start)
/ sizeof(struct jump_entry));
sort(start, size, sizeof(struct jump_entry), jump_label_cmp, swapfn);
}
static void jump_label_update(struct static_key *key);
/*
* There are similar definitions for the !CONFIG_JUMP_LABEL case in jump_label.h.
* The use of 'atomic_read()' requires atomic.h and its problematic for some
* kernel headers such as kernel.h and others. Since static_key_count() is not
* used in the branch statements as it is for the !CONFIG_JUMP_LABEL case its ok
* to have it be a function here. Similarly, for 'static_key_enable()' and
* 'static_key_disable()', which require bug.h. This should allow jump_label.h
* to be included from most/all places for CONFIG_JUMP_LABEL.
*/
int static_key_count(struct static_key *key)
{
/*
* -1 means the first static_key_slow_inc() is in progress.
* static_key_enabled() must return true, so return 1 here.
*/
int n = atomic_read(&key->enabled);
return n >= 0 ? n : 1;
}
EXPORT_SYMBOL_GPL(static_key_count);
void static_key_slow_inc_cpuslocked(struct static_key *key)
{
int v, v1;
STATIC_KEY_CHECK_USE(key);
lockdep_assert_cpus_held();
/*
* Careful if we get concurrent static_key_slow_inc() calls;
* later calls must wait for the first one to _finish_ the
* jump_label_update() process. At the same time, however,
* the jump_label_update() call below wants to see
* static_key_enabled(&key) for jumps to be updated properly.
*
* So give a special meaning to negative key->enabled: it sends
* static_key_slow_inc() down the slow path, and it is non-zero
* so it counts as "enabled" in jump_label_update(). Note that
* atomic_inc_unless_negative() checks >= 0, so roll our own.
*/
for (v = atomic_read(&key->enabled); v > 0; v = v1) {
v1 = atomic_cmpxchg(&key->enabled, v, v + 1);
if (likely(v1 == v))
return;
}
jump_label_lock();
if (atomic_read(&key->enabled) == 0) {
atomic_set(&key->enabled, -1);
jump_label_update(key);
/*
* Ensure that if the above cmpxchg loop observes our positive
* value, it must also observe all the text changes.
*/
atomic_set_release(&key->enabled, 1);
} else {
atomic_inc(&key->enabled);
}
jump_label_unlock();
}
void static_key_slow_inc(struct static_key *key)
{
cpus_read_lock();
static_key_slow_inc_cpuslocked(key);
cpus_read_unlock();
}
EXPORT_SYMBOL_GPL(static_key_slow_inc);
void static_key_enable_cpuslocked(struct static_key *key)
{
STATIC_KEY_CHECK_USE(key);
lockdep_assert_cpus_held();
if (atomic_read(&key->enabled) > 0) {
WARN_ON_ONCE(atomic_read(&key->enabled) != 1);
return;
}
jump_label_lock();
if (atomic_read(&key->enabled) == 0) {
atomic_set(&key->enabled, -1);
jump_label_update(key);
/*
* See static_key_slow_inc().
*/
atomic_set_release(&key->enabled, 1);
}
jump_label_unlock();
}
EXPORT_SYMBOL_GPL(static_key_enable_cpuslocked);
void static_key_enable(struct static_key *key)
{
cpus_read_lock();
static_key_enable_cpuslocked(key);
cpus_read_unlock();
}
EXPORT_SYMBOL_GPL(static_key_enable);
void static_key_disable_cpuslocked(struct static_key *key)
{
STATIC_KEY_CHECK_USE(key);
lockdep_assert_cpus_held();
if (atomic_read(&key->enabled) != 1) {
WARN_ON_ONCE(atomic_read(&key->enabled) != 0);
return;
}
jump_label_lock();
if (atomic_cmpxchg(&key->enabled, 1, 0))
jump_label_update(key);
jump_label_unlock();
}
EXPORT_SYMBOL_GPL(static_key_disable_cpuslocked);
void static_key_disable(struct static_key *key)
{
cpus_read_lock();
static_key_disable_cpuslocked(key);
cpus_read_unlock();
}
EXPORT_SYMBOL_GPL(static_key_disable);
static bool static_key_slow_try_dec(struct static_key *key)
{
int val;
val = atomic_fetch_add_unless(&key->enabled, -1, 1);
if (val == 1)
return false;
/*
* The negative count check is valid even when a negative
* key->enabled is in use by static_key_slow_inc(); a
* __static_key_slow_dec() before the first static_key_slow_inc()
* returns is unbalanced, because all other static_key_slow_inc()
* instances block while the update is in progress.
*/
WARN(val < 0, "jump label: negative count!\n");
return true;
}
static void __static_key_slow_dec_cpuslocked(struct static_key *key)
{
lockdep_assert_cpus_held();
if (static_key_slow_try_dec(key))
return;
jump_label_lock();
if (atomic_dec_and_test(&key->enabled))
jump_label_update(key);
jump_label_unlock();
}
static void __static_key_slow_dec(struct static_key *key)
{
cpus_read_lock();
__static_key_slow_dec_cpuslocked(key);
cpus_read_unlock();
}
void jump_label_update_timeout(struct work_struct *work)
{
struct static_key_deferred *key =
container_of(work, struct static_key_deferred, work.work);
__static_key_slow_dec(&key->key);
}
EXPORT_SYMBOL_GPL(jump_label_update_timeout);
void static_key_slow_dec(struct static_key *key)
{
STATIC_KEY_CHECK_USE(key);
__static_key_slow_dec(key);
}
EXPORT_SYMBOL_GPL(static_key_slow_dec);
void static_key_slow_dec_cpuslocked(struct static_key *key)
{
STATIC_KEY_CHECK_USE(key);
__static_key_slow_dec_cpuslocked(key);
}
void __static_key_slow_dec_deferred(struct static_key *key,
struct delayed_work *work,
unsigned long timeout)
{
STATIC_KEY_CHECK_USE(key);
if (static_key_slow_try_dec(key))
return;
schedule_delayed_work(work, timeout);
}
EXPORT_SYMBOL_GPL(__static_key_slow_dec_deferred);
void __static_key_deferred_flush(void *key, struct delayed_work *work)
{
STATIC_KEY_CHECK_USE(key);
flush_delayed_work(work);
}
EXPORT_SYMBOL_GPL(__static_key_deferred_flush);
void jump_label_rate_limit(struct static_key_deferred *key,
unsigned long rl)
{
STATIC_KEY_CHECK_USE(key);
key->timeout = rl;
INIT_DELAYED_WORK(&key->work, jump_label_update_timeout);
}
EXPORT_SYMBOL_GPL(jump_label_rate_limit);
static int addr_conflict(struct jump_entry *entry, void *start, void *end)
{
if (jump_entry_code(entry) <= (unsigned long)end &&
jump_entry_code(entry) + jump_entry_size(entry) > (unsigned long)start)
return 1;
return 0;
}
static int __jump_label_text_reserved(struct jump_entry *iter_start,
struct jump_entry *iter_stop, void *start, void *end)
{
struct jump_entry *iter;
iter = iter_start;
while (iter < iter_stop) {
if (addr_conflict(iter, start, end))
return 1;
iter++;
}
return 0;
}
/*
* Update code which is definitely not currently executing.
* Architectures which need heavyweight synchronization to modify
* running code can override this to make the non-live update case
* cheaper.
*/
void __weak __init_or_module arch_jump_label_transform_static(struct jump_entry *entry,
enum jump_label_type type)
{
arch_jump_label_transform(entry, type);
}
static inline struct jump_entry *static_key_entries(struct static_key *key)
{
WARN_ON_ONCE(key->type & JUMP_TYPE_LINKED);
return (struct jump_entry *)(key->type & ~JUMP_TYPE_MASK);
}
static inline bool static_key_type(struct static_key *key)
{
return key->type & JUMP_TYPE_TRUE;
}
static inline bool static_key_linked(struct static_key *key)
{
return key->type & JUMP_TYPE_LINKED;
}
static inline void static_key_clear_linked(struct static_key *key)
{
key->type &= ~JUMP_TYPE_LINKED;
}
static inline void static_key_set_linked(struct static_key *key)
{
key->type |= JUMP_TYPE_LINKED;
}
/***
* A 'struct static_key' uses a union such that it either points directly
* to a table of 'struct jump_entry' or to a linked list of modules which in
* turn point to 'struct jump_entry' tables.
*
* The two lower bits of the pointer are used to keep track of which pointer
* type is in use and to store the initial branch direction, we use an access
* function which preserves these bits.
*/
static void static_key_set_entries(struct static_key *key,
struct jump_entry *entries)
{
unsigned long type;
WARN_ON_ONCE((unsigned long)entries & JUMP_TYPE_MASK);
type = key->type & JUMP_TYPE_MASK;
key->entries = entries;
key->type |= type;
}
static enum jump_label_type jump_label_type(struct jump_entry *entry)
{
struct static_key *key = jump_entry_key(entry);
bool enabled = static_key_enabled(key);
bool branch = jump_entry_is_branch(entry);
/* See the comment in linux/jump_label.h */
return enabled ^ branch;
}
static bool jump_label_can_update(struct jump_entry *entry, bool init)
{
/*
* Cannot update code that was in an init text area.
*/
if (!init && jump_entry_is_init(entry))
return false;
if (!kernel_text_address(jump_entry_code(entry))) {
/*
* This skips patching built-in __exit, which
* is part of init_section_contains() but is
* not part of kernel_text_address().
*
* Skipping built-in __exit is fine since it
* will never be executed.
*/
WARN_ONCE(!jump_entry_is_init(entry),
"can't patch jump_label at %pS",
(void *)jump_entry_code(entry));
return false;
}
return true;
}
#ifndef HAVE_JUMP_LABEL_BATCH
static void __jump_label_update(struct static_key *key,
struct jump_entry *entry,
struct jump_entry *stop,
bool init)
{
for (; (entry < stop) && (jump_entry_key(entry) == key); entry++) {
if (jump_label_can_update(entry, init))
arch_jump_label_transform(entry, jump_label_type(entry));
}
}
#else
static void __jump_label_update(struct static_key *key,
struct jump_entry *entry,
struct jump_entry *stop,
bool init)
{
for (; (entry < stop) && (jump_entry_key(entry) == key); entry++) {
if (!jump_label_can_update(entry, init))
continue;
if (!arch_jump_label_transform_queue(entry, jump_label_type(entry))) {
/*
* Queue is full: Apply the current queue and try again.
*/
arch_jump_label_transform_apply();
BUG_ON(!arch_jump_label_transform_queue(entry, jump_label_type(entry)));
}
}
arch_jump_label_transform_apply();
}
#endif
void __init jump_label_init(void)
{
struct jump_entry *iter_start = __start___jump_table;
struct jump_entry *iter_stop = __stop___jump_table;
struct static_key *key = NULL;
struct jump_entry *iter;
/*
* Since we are initializing the static_key.enabled field with
* with the 'raw' int values (to avoid pulling in atomic.h) in
* jump_label.h, let's make sure that is safe. There are only two
* cases to check since we initialize to 0 or 1.
*/
BUILD_BUG_ON((int)ATOMIC_INIT(0) != 0);
BUILD_BUG_ON((int)ATOMIC_INIT(1) != 1);
if (static_key_initialized)
return;
cpus_read_lock();
jump_label_lock();
jump_label_sort_entries(iter_start, iter_stop);
for (iter = iter_start; iter < iter_stop; iter++) {
struct static_key *iterk;
bool in_init;
/* rewrite NOPs */
if (jump_label_type(iter) == JUMP_LABEL_NOP)
arch_jump_label_transform_static(iter, JUMP_LABEL_NOP);
in_init = init_section_contains((void *)jump_entry_code(iter), 1);
jump_entry_set_init(iter, in_init);
iterk = jump_entry_key(iter);
if (iterk == key)
continue;
key = iterk;
static_key_set_entries(key, iter);
}
static_key_initialized = true;
jump_label_unlock();
cpus_read_unlock();
}
#ifdef CONFIG_MODULES
static enum jump_label_type jump_label_init_type(struct jump_entry *entry)
{
struct static_key *key = jump_entry_key(entry);
bool type = static_key_type(key);
bool branch = jump_entry_is_branch(entry);
/* See the comment in linux/jump_label.h */
return type ^ branch;
}
struct static_key_mod {
struct static_key_mod *next;
struct jump_entry *entries;
struct module *mod;
};
static inline struct static_key_mod *static_key_mod(struct static_key *key)
{
WARN_ON_ONCE(!static_key_linked(key));
return (struct static_key_mod *)(key->type & ~JUMP_TYPE_MASK);
}
/***
* key->type and key->next are the same via union.
* This sets key->next and preserves the type bits.
*
* See additional comments above static_key_set_entries().
*/
static void static_key_set_mod(struct static_key *key,
struct static_key_mod *mod)
{
unsigned long type;
WARN_ON_ONCE((unsigned long)mod & JUMP_TYPE_MASK);
type = key->type & JUMP_TYPE_MASK;
key->next = mod;
key->type |= type;
}
static int __jump_label_mod_text_reserved(void *start, void *end)
{
struct module *mod;
int ret;
preempt_disable();
mod = __module_text_address((unsigned long)start);
WARN_ON_ONCE(__module_text_address((unsigned long)end) != mod);
if (!try_module_get(mod))
mod = NULL;
preempt_enable();
if (!mod)
return 0;
ret = __jump_label_text_reserved(mod->jump_entries,
mod->jump_entries + mod->num_jump_entries,
start, end);
module_put(mod);
return ret;
}
static void __jump_label_mod_update(struct static_key *key)
{
struct static_key_mod *mod;
for (mod = static_key_mod(key); mod; mod = mod->next) {
struct jump_entry *stop;
struct module *m;
/*
* NULL if the static_key is defined in a module
* that does not use it
*/
if (!mod->entries)
continue;
m = mod->mod;
if (!m)
stop = __stop___jump_table;
else
stop = m->jump_entries + m->num_jump_entries;
__jump_label_update(key, mod->entries, stop,
m && m->state == MODULE_STATE_COMING);
}
}
/***
* apply_jump_label_nops - patch module jump labels with arch_get_jump_label_nop()
* @mod: module to patch
*
* Allow for run-time selection of the optimal nops. Before the module
* loads patch these with arch_get_jump_label_nop(), which is specified by
* the arch specific jump label code.
*/
void jump_label_apply_nops(struct module *mod)
{
struct jump_entry *iter_start = mod->jump_entries;
struct jump_entry *iter_stop = iter_start + mod->num_jump_entries;
struct jump_entry *iter;
/* if the module doesn't have jump label entries, just return */
if (iter_start == iter_stop)
return;
for (iter = iter_start; iter < iter_stop; iter++) {
/* Only write NOPs for arch_branch_static(). */
if (jump_label_init_type(iter) == JUMP_LABEL_NOP)
arch_jump_label_transform_static(iter, JUMP_LABEL_NOP);
}
}
static int jump_label_add_module(struct module *mod)
{
struct jump_entry *iter_start = mod->jump_entries;
struct jump_entry *iter_stop = iter_start + mod->num_jump_entries;
struct jump_entry *iter;
struct static_key *key = NULL;
struct static_key_mod *jlm, *jlm2;
/* if the module doesn't have jump label entries, just return */
if (iter_start == iter_stop)
return 0;
jump_label_sort_entries(iter_start, iter_stop);
for (iter = iter_start; iter < iter_stop; iter++) {
struct static_key *iterk;
bool in_init;
in_init = within_module_init(jump_entry_code(iter), mod);
jump_entry_set_init(iter, in_init);
iterk = jump_entry_key(iter);
if (iterk == key)
continue;
key = iterk;
if (within_module((unsigned long)key, mod)) {
static_key_set_entries(key, iter);
continue;
}
jlm = kzalloc(sizeof(struct static_key_mod), GFP_KERNEL);
if (!jlm)
return -ENOMEM;
if (!static_key_linked(key)) {
jlm2 = kzalloc(sizeof(struct static_key_mod),
GFP_KERNEL);
if (!jlm2) {
kfree(jlm);
return -ENOMEM;
}
preempt_disable();
jlm2->mod = __module_address((unsigned long)key);
preempt_enable();
jlm2->entries = static_key_entries(key);
jlm2->next = NULL;
static_key_set_mod(key, jlm2);
static_key_set_linked(key);
}
jlm->mod = mod;
jlm->entries = iter;
jlm->next = static_key_mod(key);
static_key_set_mod(key, jlm);
static_key_set_linked(key);
/* Only update if we've changed from our initial state */
if (jump_label_type(iter) != jump_label_init_type(iter))
__jump_label_update(key, iter, iter_stop, true);
}
return 0;
}
static void jump_label_del_module(struct module *mod)
{
struct jump_entry *iter_start = mod->jump_entries;
struct jump_entry *iter_stop = iter_start + mod->num_jump_entries;
struct jump_entry *iter;
struct static_key *key = NULL;
struct static_key_mod *jlm, **prev;
for (iter = iter_start; iter < iter_stop; iter++) {
if (jump_entry_key(iter) == key)
continue;
key = jump_entry_key(iter);
if (within_module((unsigned long)key, mod))
continue;
/* No memory during module load */
if (WARN_ON(!static_key_linked(key)))
continue;
prev = &key->next;
jlm = static_key_mod(key);
while (jlm && jlm->mod != mod) {
prev = &jlm->next;
jlm = jlm->next;
}
/* No memory during module load */
if (WARN_ON(!jlm))
continue;
if (prev == &key->next)
static_key_set_mod(key, jlm->next);
else
*prev = jlm->next;
kfree(jlm);
jlm = static_key_mod(key);
/* if only one etry is left, fold it back into the static_key */
if (jlm->next == NULL) {
static_key_set_entries(key, jlm->entries);
static_key_clear_linked(key);
kfree(jlm);
}
}
}
static int
jump_label_module_notify(struct notifier_block *self, unsigned long val,
void *data)
{
struct module *mod = data;
int ret = 0;
cpus_read_lock();
jump_label_lock();
switch (val) {
case MODULE_STATE_COMING:
ret = jump_label_add_module(mod);
if (ret) {
WARN(1, "Failed to allocate memory: jump_label may not work properly.\n");
jump_label_del_module(mod);
}
break;
case MODULE_STATE_GOING:
jump_label_del_module(mod);
break;
}
jump_label_unlock();
cpus_read_unlock();
return notifier_from_errno(ret);
}
static struct notifier_block jump_label_module_nb = {
.notifier_call = jump_label_module_notify,
.priority = 1, /* higher than tracepoints */
};
static __init int jump_label_init_module(void)
{
return register_module_notifier(&jump_label_module_nb);
}
early_initcall(jump_label_init_module);
#endif /* CONFIG_MODULES */
/***
* jump_label_text_reserved - check if addr range is reserved
* @start: start text addr
* @end: end text addr
*
* checks if the text addr located between @start and @end
* overlaps with any of the jump label patch addresses. Code
* that wants to modify kernel text should first verify that
* it does not overlap with any of the jump label addresses.
* Caller must hold jump_label_mutex.
*
* returns 1 if there is an overlap, 0 otherwise
*/
int jump_label_text_reserved(void *start, void *end)
{
int ret = __jump_label_text_reserved(__start___jump_table,
__stop___jump_table, start, end);
if (ret)
return ret;
#ifdef CONFIG_MODULES
ret = __jump_label_mod_text_reserved(start, end);
#endif
return ret;
}
static void jump_label_update(struct static_key *key)
{
struct jump_entry *stop = __stop___jump_table;
bool init = system_state < SYSTEM_RUNNING;
struct jump_entry *entry;
#ifdef CONFIG_MODULES
struct module *mod;
if (static_key_linked(key)) {
__jump_label_mod_update(key);
return;
}
preempt_disable();
mod = __module_address((unsigned long)key);
if (mod) {
stop = mod->jump_entries + mod->num_jump_entries;
init = mod->state == MODULE_STATE_COMING;
}
preempt_enable();
#endif
entry = static_key_entries(key);
/* if there are no users, entry can be NULL */
if (entry)
__jump_label_update(key, entry, stop, init);
}
#ifdef CONFIG_STATIC_KEYS_SELFTEST
static DEFINE_STATIC_KEY_TRUE(sk_true);
static DEFINE_STATIC_KEY_FALSE(sk_false);
static __init int jump_label_test(void)
{
int i;
for (i = 0; i < 2; i++) {
WARN_ON(static_key_enabled(&sk_true.key) != true);
WARN_ON(static_key_enabled(&sk_false.key) != false);
WARN_ON(!static_branch_likely(&sk_true));
WARN_ON(!static_branch_unlikely(&sk_true));
WARN_ON(static_branch_likely(&sk_false));
WARN_ON(static_branch_unlikely(&sk_false));
static_branch_disable(&sk_true);
static_branch_enable(&sk_false);
WARN_ON(static_key_enabled(&sk_true.key) == true);
WARN_ON(static_key_enabled(&sk_false.key) == false);
WARN_ON(static_branch_likely(&sk_true));
WARN_ON(static_branch_unlikely(&sk_true));
WARN_ON(!static_branch_likely(&sk_false));
WARN_ON(!static_branch_unlikely(&sk_false));
static_branch_enable(&sk_true);
static_branch_disable(&sk_false);
}
return 0;
}
early_initcall(jump_label_test);
#endif /* STATIC_KEYS_SELFTEST */