OpenCloudOS-Kernel/arch/powerpc/kernel/head_8xx.S

859 lines
24 KiB
ArmAsm

/*
* PowerPC version
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
* Rewritten by Cort Dougan (cort@cs.nmt.edu) for PReP
* Copyright (C) 1996 Cort Dougan <cort@cs.nmt.edu>
* Low-level exception handlers and MMU support
* rewritten by Paul Mackerras.
* Copyright (C) 1996 Paul Mackerras.
* MPC8xx modifications by Dan Malek
* Copyright (C) 1997 Dan Malek (dmalek@jlc.net).
*
* This file contains low-level support and setup for PowerPC 8xx
* embedded processors, including trap and interrupt dispatch.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <linux/config.h>
#include <asm/processor.h>
#include <asm/page.h>
#include <asm/mmu.h>
#include <asm/cache.h>
#include <asm/pgtable.h>
#include <asm/cputable.h>
#include <asm/thread_info.h>
#include <asm/ppc_asm.h>
#include <asm/asm-offsets.h>
/* Macro to make the code more readable. */
#ifdef CONFIG_8xx_CPU6
#define DO_8xx_CPU6(val, reg) \
li reg, val; \
stw reg, 12(r0); \
lwz reg, 12(r0);
#else
#define DO_8xx_CPU6(val, reg)
#endif
.text
.globl _stext
_stext:
.text
.globl _start
_start:
/* MPC8xx
* This port was done on an MBX board with an 860. Right now I only
* support an ELF compressed (zImage) boot from EPPC-Bug because the
* code there loads up some registers before calling us:
* r3: ptr to board info data
* r4: initrd_start or if no initrd then 0
* r5: initrd_end - unused if r4 is 0
* r6: Start of command line string
* r7: End of command line string
*
* I decided to use conditional compilation instead of checking PVR and
* adding more processor specific branches around code I don't need.
* Since this is an embedded processor, I also appreciate any memory
* savings I can get.
*
* The MPC8xx does not have any BATs, but it supports large page sizes.
* We first initialize the MMU to support 8M byte pages, then load one
* entry into each of the instruction and data TLBs to map the first
* 8M 1:1. I also mapped an additional I/O space 1:1 so we can get to
* the "internal" processor registers before MMU_init is called.
*
* The TLB code currently contains a major hack. Since I use the condition
* code register, I have to save and restore it. I am out of registers, so
* I just store it in memory location 0 (the TLB handlers are not reentrant).
* To avoid making any decisions, I need to use the "segment" valid bit
* in the first level table, but that would require many changes to the
* Linux page directory/table functions that I don't want to do right now.
*
* I used to use SPRG2 for a temporary register in the TLB handler, but it
* has since been put to other uses. I now use a hack to save a register
* and the CCR at memory location 0.....Someday I'll fix this.....
* -- Dan
*/
.globl __start
__start:
mr r31,r3 /* save parameters */
mr r30,r4
mr r29,r5
mr r28,r6
mr r27,r7
/* We have to turn on the MMU right away so we get cache modes
* set correctly.
*/
bl initial_mmu
/* We now have the lower 8 Meg mapped into TLB entries, and the caches
* ready to work.
*/
turn_on_mmu:
mfmsr r0
ori r0,r0,MSR_DR|MSR_IR
mtspr SPRN_SRR1,r0
lis r0,start_here@h
ori r0,r0,start_here@l
mtspr SPRN_SRR0,r0
SYNC
rfi /* enables MMU */
/*
* Exception entry code. This code runs with address translation
* turned off, i.e. using physical addresses.
* We assume sprg3 has the physical address of the current
* task's thread_struct.
*/
#define EXCEPTION_PROLOG \
mtspr SPRN_SPRG0,r10; \
mtspr SPRN_SPRG1,r11; \
mfcr r10; \
EXCEPTION_PROLOG_1; \
EXCEPTION_PROLOG_2
#define EXCEPTION_PROLOG_1 \
mfspr r11,SPRN_SRR1; /* check whether user or kernel */ \
andi. r11,r11,MSR_PR; \
tophys(r11,r1); /* use tophys(r1) if kernel */ \
beq 1f; \
mfspr r11,SPRN_SPRG3; \
lwz r11,THREAD_INFO-THREAD(r11); \
addi r11,r11,THREAD_SIZE; \
tophys(r11,r11); \
1: subi r11,r11,INT_FRAME_SIZE /* alloc exc. frame */
#define EXCEPTION_PROLOG_2 \
CLR_TOP32(r11); \
stw r10,_CCR(r11); /* save registers */ \
stw r12,GPR12(r11); \
stw r9,GPR9(r11); \
mfspr r10,SPRN_SPRG0; \
stw r10,GPR10(r11); \
mfspr r12,SPRN_SPRG1; \
stw r12,GPR11(r11); \
mflr r10; \
stw r10,_LINK(r11); \
mfspr r12,SPRN_SRR0; \
mfspr r9,SPRN_SRR1; \
stw r1,GPR1(r11); \
stw r1,0(r11); \
tovirt(r1,r11); /* set new kernel sp */ \
li r10,MSR_KERNEL & ~(MSR_IR|MSR_DR); /* can take exceptions */ \
MTMSRD(r10); /* (except for mach check in rtas) */ \
stw r0,GPR0(r11); \
SAVE_4GPRS(3, r11); \
SAVE_2GPRS(7, r11)
/*
* Note: code which follows this uses cr0.eq (set if from kernel),
* r11, r12 (SRR0), and r9 (SRR1).
*
* Note2: once we have set r1 we are in a position to take exceptions
* again, and we could thus set MSR:RI at that point.
*/
/*
* Exception vectors.
*/
#define EXCEPTION(n, label, hdlr, xfer) \
. = n; \
label: \
EXCEPTION_PROLOG; \
addi r3,r1,STACK_FRAME_OVERHEAD; \
xfer(n, hdlr)
#define EXC_XFER_TEMPLATE(n, hdlr, trap, copyee, tfer, ret) \
li r10,trap; \
stw r10,_TRAP(r11); \
li r10,MSR_KERNEL; \
copyee(r10, r9); \
bl tfer; \
i##n: \
.long hdlr; \
.long ret
#define COPY_EE(d, s) rlwimi d,s,0,16,16
#define NOCOPY(d, s)
#define EXC_XFER_STD(n, hdlr) \
EXC_XFER_TEMPLATE(n, hdlr, n, NOCOPY, transfer_to_handler_full, \
ret_from_except_full)
#define EXC_XFER_LITE(n, hdlr) \
EXC_XFER_TEMPLATE(n, hdlr, n+1, NOCOPY, transfer_to_handler, \
ret_from_except)
#define EXC_XFER_EE(n, hdlr) \
EXC_XFER_TEMPLATE(n, hdlr, n, COPY_EE, transfer_to_handler_full, \
ret_from_except_full)
#define EXC_XFER_EE_LITE(n, hdlr) \
EXC_XFER_TEMPLATE(n, hdlr, n+1, COPY_EE, transfer_to_handler, \
ret_from_except)
/* System reset */
EXCEPTION(0x100, Reset, unknown_exception, EXC_XFER_STD)
/* Machine check */
. = 0x200
MachineCheck:
EXCEPTION_PROLOG
mfspr r4,SPRN_DAR
stw r4,_DAR(r11)
mfspr r5,SPRN_DSISR
stw r5,_DSISR(r11)
addi r3,r1,STACK_FRAME_OVERHEAD
EXC_XFER_STD(0x200, machine_check_exception)
/* Data access exception.
* This is "never generated" by the MPC8xx. We jump to it for other
* translation errors.
*/
. = 0x300
DataAccess:
EXCEPTION_PROLOG
mfspr r10,SPRN_DSISR
stw r10,_DSISR(r11)
mr r5,r10
mfspr r4,SPRN_DAR
EXC_XFER_EE_LITE(0x300, handle_page_fault)
/* Instruction access exception.
* This is "never generated" by the MPC8xx. We jump to it for other
* translation errors.
*/
. = 0x400
InstructionAccess:
EXCEPTION_PROLOG
mr r4,r12
mr r5,r9
EXC_XFER_EE_LITE(0x400, handle_page_fault)
/* External interrupt */
EXCEPTION(0x500, HardwareInterrupt, do_IRQ, EXC_XFER_LITE)
/* Alignment exception */
. = 0x600
Alignment:
EXCEPTION_PROLOG
mfspr r4,SPRN_DAR
stw r4,_DAR(r11)
mfspr r5,SPRN_DSISR
stw r5,_DSISR(r11)
addi r3,r1,STACK_FRAME_OVERHEAD
EXC_XFER_EE(0x600, alignment_exception)
/* Program check exception */
EXCEPTION(0x700, ProgramCheck, program_check_exception, EXC_XFER_STD)
/* No FPU on MPC8xx. This exception is not supposed to happen.
*/
EXCEPTION(0x800, FPUnavailable, unknown_exception, EXC_XFER_STD)
/* Decrementer */
EXCEPTION(0x900, Decrementer, timer_interrupt, EXC_XFER_LITE)
EXCEPTION(0xa00, Trap_0a, unknown_exception, EXC_XFER_EE)
EXCEPTION(0xb00, Trap_0b, unknown_exception, EXC_XFER_EE)
/* System call */
. = 0xc00
SystemCall:
EXCEPTION_PROLOG
EXC_XFER_EE_LITE(0xc00, DoSyscall)
/* Single step - not used on 601 */
EXCEPTION(0xd00, SingleStep, single_step_exception, EXC_XFER_STD)
EXCEPTION(0xe00, Trap_0e, unknown_exception, EXC_XFER_EE)
EXCEPTION(0xf00, Trap_0f, unknown_exception, EXC_XFER_EE)
/* On the MPC8xx, this is a software emulation interrupt. It occurs
* for all unimplemented and illegal instructions.
*/
EXCEPTION(0x1000, SoftEmu, SoftwareEmulation, EXC_XFER_STD)
. = 0x1100
/*
* For the MPC8xx, this is a software tablewalk to load the instruction
* TLB. It is modelled after the example in the Motorola manual. The task
* switch loads the M_TWB register with the pointer to the first level table.
* If we discover there is no second level table (value is zero) or if there
* is an invalid pte, we load that into the TLB, which causes another fault
* into the TLB Error interrupt where we can handle such problems.
* We have to use the MD_xxx registers for the tablewalk because the
* equivalent MI_xxx registers only perform the attribute functions.
*/
InstructionTLBMiss:
#ifdef CONFIG_8xx_CPU6
stw r3, 8(r0)
#endif
DO_8xx_CPU6(0x3f80, r3)
mtspr SPRN_M_TW, r10 /* Save a couple of working registers */
mfcr r10
stw r10, 0(r0)
stw r11, 4(r0)
mfspr r10, SPRN_SRR0 /* Get effective address of fault */
DO_8xx_CPU6(0x3780, r3)
mtspr SPRN_MD_EPN, r10 /* Have to use MD_EPN for walk, MI_EPN can't */
mfspr r10, SPRN_M_TWB /* Get level 1 table entry address */
/* If we are faulting a kernel address, we have to use the
* kernel page tables.
*/
andi. r11, r10, 0x0800 /* Address >= 0x80000000 */
beq 3f
lis r11, swapper_pg_dir@h
ori r11, r11, swapper_pg_dir@l
rlwimi r10, r11, 0, 2, 19
3:
lwz r11, 0(r10) /* Get the level 1 entry */
rlwinm. r10, r11,0,0,19 /* Extract page descriptor page address */
beq 2f /* If zero, don't try to find a pte */
/* We have a pte table, so load the MI_TWC with the attributes
* for this "segment."
*/
ori r11,r11,1 /* Set valid bit */
DO_8xx_CPU6(0x2b80, r3)
mtspr SPRN_MI_TWC, r11 /* Set segment attributes */
DO_8xx_CPU6(0x3b80, r3)
mtspr SPRN_MD_TWC, r11 /* Load pte table base address */
mfspr r11, SPRN_MD_TWC /* ....and get the pte address */
lwz r10, 0(r11) /* Get the pte */
ori r10, r10, _PAGE_ACCESSED
stw r10, 0(r11)
/* The Linux PTE won't go exactly into the MMU TLB.
* Software indicator bits 21, 22 and 28 must be clear.
* Software indicator bits 24, 25, 26, and 27 must be
* set. All other Linux PTE bits control the behavior
* of the MMU.
*/
2: li r11, 0x00f0
rlwimi r10, r11, 0, 24, 28 /* Set 24-27, clear 28 */
DO_8xx_CPU6(0x2d80, r3)
mtspr SPRN_MI_RPN, r10 /* Update TLB entry */
mfspr r10, SPRN_M_TW /* Restore registers */
lwz r11, 0(r0)
mtcr r11
lwz r11, 4(r0)
#ifdef CONFIG_8xx_CPU6
lwz r3, 8(r0)
#endif
rfi
. = 0x1200
DataStoreTLBMiss:
#ifdef CONFIG_8xx_CPU6
stw r3, 8(r0)
#endif
DO_8xx_CPU6(0x3f80, r3)
mtspr SPRN_M_TW, r10 /* Save a couple of working registers */
mfcr r10
stw r10, 0(r0)
stw r11, 4(r0)
mfspr r10, SPRN_M_TWB /* Get level 1 table entry address */
/* If we are faulting a kernel address, we have to use the
* kernel page tables.
*/
andi. r11, r10, 0x0800
beq 3f
lis r11, swapper_pg_dir@h
ori r11, r11, swapper_pg_dir@l
rlwimi r10, r11, 0, 2, 19
3:
lwz r11, 0(r10) /* Get the level 1 entry */
rlwinm. r10, r11,0,0,19 /* Extract page descriptor page address */
beq 2f /* If zero, don't try to find a pte */
/* We have a pte table, so load fetch the pte from the table.
*/
ori r11, r11, 1 /* Set valid bit in physical L2 page */
DO_8xx_CPU6(0x3b80, r3)
mtspr SPRN_MD_TWC, r11 /* Load pte table base address */
mfspr r10, SPRN_MD_TWC /* ....and get the pte address */
lwz r10, 0(r10) /* Get the pte */
/* Insert the Guarded flag into the TWC from the Linux PTE.
* It is bit 27 of both the Linux PTE and the TWC (at least
* I got that right :-). It will be better when we can put
* this into the Linux pgd/pmd and load it in the operation
* above.
*/
rlwimi r11, r10, 0, 27, 27
DO_8xx_CPU6(0x3b80, r3)
mtspr SPRN_MD_TWC, r11
mfspr r11, SPRN_MD_TWC /* get the pte address again */
ori r10, r10, _PAGE_ACCESSED
stw r10, 0(r11)
/* The Linux PTE won't go exactly into the MMU TLB.
* Software indicator bits 21, 22 and 28 must be clear.
* Software indicator bits 24, 25, 26, and 27 must be
* set. All other Linux PTE bits control the behavior
* of the MMU.
*/
2: li r11, 0x00f0
rlwimi r10, r11, 0, 24, 28 /* Set 24-27, clear 28 */
DO_8xx_CPU6(0x3d80, r3)
mtspr SPRN_MD_RPN, r10 /* Update TLB entry */
mfspr r10, SPRN_M_TW /* Restore registers */
lwz r11, 0(r0)
mtcr r11
lwz r11, 4(r0)
#ifdef CONFIG_8xx_CPU6
lwz r3, 8(r0)
#endif
rfi
/* This is an instruction TLB error on the MPC8xx. This could be due
* to many reasons, such as executing guarded memory or illegal instruction
* addresses. There is nothing to do but handle a big time error fault.
*/
. = 0x1300
InstructionTLBError:
b InstructionAccess
/* This is the data TLB error on the MPC8xx. This could be due to
* many reasons, including a dirty update to a pte. We can catch that
* one here, but anything else is an error. First, we track down the
* Linux pte. If it is valid, write access is allowed, but the
* page dirty bit is not set, we will set it and reload the TLB. For
* any other case, we bail out to a higher level function that can
* handle it.
*/
. = 0x1400
DataTLBError:
#ifdef CONFIG_8xx_CPU6
stw r3, 8(r0)
#endif
DO_8xx_CPU6(0x3f80, r3)
mtspr SPRN_M_TW, r10 /* Save a couple of working registers */
mfcr r10
stw r10, 0(r0)
stw r11, 4(r0)
/* First, make sure this was a store operation.
*/
mfspr r10, SPRN_DSISR
andis. r11, r10, 0x0200 /* If set, indicates store op */
beq 2f
/* The EA of a data TLB miss is automatically stored in the MD_EPN
* register. The EA of a data TLB error is automatically stored in
* the DAR, but not the MD_EPN register. We must copy the 20 most
* significant bits of the EA from the DAR to MD_EPN before we
* start walking the page tables. We also need to copy the CASID
* value from the M_CASID register.
* Addendum: The EA of a data TLB error is _supposed_ to be stored
* in DAR, but it seems that this doesn't happen in some cases, such
* as when the error is due to a dcbi instruction to a page with a
* TLB that doesn't have the changed bit set. In such cases, there
* does not appear to be any way to recover the EA of the error
* since it is neither in DAR nor MD_EPN. As a workaround, the
* _PAGE_HWWRITE bit is set for all kernel data pages when the PTEs
* are initialized in mapin_ram(). This will avoid the problem,
* assuming we only use the dcbi instruction on kernel addresses.
*/
mfspr r10, SPRN_DAR
rlwinm r11, r10, 0, 0, 19
ori r11, r11, MD_EVALID
mfspr r10, SPRN_M_CASID
rlwimi r11, r10, 0, 28, 31
DO_8xx_CPU6(0x3780, r3)
mtspr SPRN_MD_EPN, r11
mfspr r10, SPRN_M_TWB /* Get level 1 table entry address */
/* If we are faulting a kernel address, we have to use the
* kernel page tables.
*/
andi. r11, r10, 0x0800
beq 3f
lis r11, swapper_pg_dir@h
ori r11, r11, swapper_pg_dir@l
rlwimi r10, r11, 0, 2, 19
3:
lwz r11, 0(r10) /* Get the level 1 entry */
rlwinm. r10, r11,0,0,19 /* Extract page descriptor page address */
beq 2f /* If zero, bail */
/* We have a pte table, so fetch the pte from the table.
*/
ori r11, r11, 1 /* Set valid bit in physical L2 page */
DO_8xx_CPU6(0x3b80, r3)
mtspr SPRN_MD_TWC, r11 /* Load pte table base address */
mfspr r11, SPRN_MD_TWC /* ....and get the pte address */
lwz r10, 0(r11) /* Get the pte */
andi. r11, r10, _PAGE_RW /* Is it writeable? */
beq 2f /* Bail out if not */
/* Update 'changed', among others.
*/
ori r10, r10, _PAGE_DIRTY|_PAGE_ACCESSED|_PAGE_HWWRITE
mfspr r11, SPRN_MD_TWC /* Get pte address again */
stw r10, 0(r11) /* and update pte in table */
/* The Linux PTE won't go exactly into the MMU TLB.
* Software indicator bits 21, 22 and 28 must be clear.
* Software indicator bits 24, 25, 26, and 27 must be
* set. All other Linux PTE bits control the behavior
* of the MMU.
*/
li r11, 0x00f0
rlwimi r10, r11, 0, 24, 28 /* Set 24-27, clear 28 */
DO_8xx_CPU6(0x3d80, r3)
mtspr SPRN_MD_RPN, r10 /* Update TLB entry */
mfspr r10, SPRN_M_TW /* Restore registers */
lwz r11, 0(r0)
mtcr r11
lwz r11, 4(r0)
#ifdef CONFIG_8xx_CPU6
lwz r3, 8(r0)
#endif
rfi
2:
mfspr r10, SPRN_M_TW /* Restore registers */
lwz r11, 0(r0)
mtcr r11
lwz r11, 4(r0)
#ifdef CONFIG_8xx_CPU6
lwz r3, 8(r0)
#endif
b DataAccess
EXCEPTION(0x1500, Trap_15, unknown_exception, EXC_XFER_EE)
EXCEPTION(0x1600, Trap_16, unknown_exception, EXC_XFER_EE)
EXCEPTION(0x1700, Trap_17, unknown_exception, EXC_XFER_EE)
EXCEPTION(0x1800, Trap_18, unknown_exception, EXC_XFER_EE)
EXCEPTION(0x1900, Trap_19, unknown_exception, EXC_XFER_EE)
EXCEPTION(0x1a00, Trap_1a, unknown_exception, EXC_XFER_EE)
EXCEPTION(0x1b00, Trap_1b, unknown_exception, EXC_XFER_EE)
/* On the MPC8xx, these next four traps are used for development
* support of breakpoints and such. Someday I will get around to
* using them.
*/
EXCEPTION(0x1c00, Trap_1c, unknown_exception, EXC_XFER_EE)
EXCEPTION(0x1d00, Trap_1d, unknown_exception, EXC_XFER_EE)
EXCEPTION(0x1e00, Trap_1e, unknown_exception, EXC_XFER_EE)
EXCEPTION(0x1f00, Trap_1f, unknown_exception, EXC_XFER_EE)
. = 0x2000
.globl giveup_fpu
giveup_fpu:
blr
/*
* This is where the main kernel code starts.
*/
start_here:
/* ptr to current */
lis r2,init_task@h
ori r2,r2,init_task@l
/* ptr to phys current thread */
tophys(r4,r2)
addi r4,r4,THREAD /* init task's THREAD */
mtspr SPRN_SPRG3,r4
li r3,0
mtspr SPRN_SPRG2,r3 /* 0 => r1 has kernel sp */
/* stack */
lis r1,init_thread_union@ha
addi r1,r1,init_thread_union@l
li r0,0
stwu r0,THREAD_SIZE-STACK_FRAME_OVERHEAD(r1)
bl early_init /* We have to do this with MMU on */
/*
* Decide what sort of machine this is and initialize the MMU.
*/
mr r3,r31
mr r4,r30
mr r5,r29
mr r6,r28
mr r7,r27
bl machine_init
bl MMU_init
/*
* Go back to running unmapped so we can load up new values
* and change to using our exception vectors.
* On the 8xx, all we have to do is invalidate the TLB to clear
* the old 8M byte TLB mappings and load the page table base register.
*/
/* The right way to do this would be to track it down through
* init's THREAD like the context switch code does, but this is
* easier......until someone changes init's static structures.
*/
lis r6, swapper_pg_dir@h
ori r6, r6, swapper_pg_dir@l
tophys(r6,r6)
#ifdef CONFIG_8xx_CPU6
lis r4, cpu6_errata_word@h
ori r4, r4, cpu6_errata_word@l
li r3, 0x3980
stw r3, 12(r4)
lwz r3, 12(r4)
#endif
mtspr SPRN_M_TWB, r6
lis r4,2f@h
ori r4,r4,2f@l
tophys(r4,r4)
li r3,MSR_KERNEL & ~(MSR_IR|MSR_DR)
mtspr SPRN_SRR0,r4
mtspr SPRN_SRR1,r3
rfi
/* Load up the kernel context */
2:
SYNC /* Force all PTE updates to finish */
tlbia /* Clear all TLB entries */
sync /* wait for tlbia/tlbie to finish */
TLBSYNC /* ... on all CPUs */
/* set up the PTE pointers for the Abatron bdiGDB.
*/
tovirt(r6,r6)
lis r5, abatron_pteptrs@h
ori r5, r5, abatron_pteptrs@l
stw r5, 0xf0(r0) /* Must match your Abatron config file */
tophys(r5,r5)
stw r6, 0(r5)
/* Now turn on the MMU for real! */
li r4,MSR_KERNEL
lis r3,start_kernel@h
ori r3,r3,start_kernel@l
mtspr SPRN_SRR0,r3
mtspr SPRN_SRR1,r4
rfi /* enable MMU and jump to start_kernel */
/* Set up the initial MMU state so we can do the first level of
* kernel initialization. This maps the first 8 MBytes of memory 1:1
* virtual to physical. Also, set the cache mode since that is defined
* by TLB entries and perform any additional mapping (like of the IMMR).
* If configured to pin some TLBs, we pin the first 8 Mbytes of kernel,
* 24 Mbytes of data, and the 8M IMMR space. Anything not covered by
* these mappings is mapped by page tables.
*/
initial_mmu:
tlbia /* Invalidate all TLB entries */
#ifdef CONFIG_PIN_TLB
lis r8, MI_RSV4I@h
ori r8, r8, 0x1c00
#else
li r8, 0
#endif
mtspr SPRN_MI_CTR, r8 /* Set instruction MMU control */
#ifdef CONFIG_PIN_TLB
lis r10, (MD_RSV4I | MD_RESETVAL)@h
ori r10, r10, 0x1c00
mr r8, r10
#else
lis r10, MD_RESETVAL@h
#endif
#ifndef CONFIG_8xx_COPYBACK
oris r10, r10, MD_WTDEF@h
#endif
mtspr SPRN_MD_CTR, r10 /* Set data TLB control */
/* Now map the lower 8 Meg into the TLBs. For this quick hack,
* we can load the instruction and data TLB registers with the
* same values.
*/
lis r8, KERNELBASE@h /* Create vaddr for TLB */
ori r8, r8, MI_EVALID /* Mark it valid */
mtspr SPRN_MI_EPN, r8
mtspr SPRN_MD_EPN, r8
li r8, MI_PS8MEG /* Set 8M byte page */
ori r8, r8, MI_SVALID /* Make it valid */
mtspr SPRN_MI_TWC, r8
mtspr SPRN_MD_TWC, r8
li r8, MI_BOOTINIT /* Create RPN for address 0 */
mtspr SPRN_MI_RPN, r8 /* Store TLB entry */
mtspr SPRN_MD_RPN, r8
lis r8, MI_Kp@h /* Set the protection mode */
mtspr SPRN_MI_AP, r8
mtspr SPRN_MD_AP, r8
/* Map another 8 MByte at the IMMR to get the processor
* internal registers (among other things).
*/
#ifdef CONFIG_PIN_TLB
addi r10, r10, 0x0100
mtspr SPRN_MD_CTR, r10
#endif
mfspr r9, 638 /* Get current IMMR */
andis. r9, r9, 0xff80 /* Get 8Mbyte boundary */
mr r8, r9 /* Create vaddr for TLB */
ori r8, r8, MD_EVALID /* Mark it valid */
mtspr SPRN_MD_EPN, r8
li r8, MD_PS8MEG /* Set 8M byte page */
ori r8, r8, MD_SVALID /* Make it valid */
mtspr SPRN_MD_TWC, r8
mr r8, r9 /* Create paddr for TLB */
ori r8, r8, MI_BOOTINIT|0x2 /* Inhibit cache -- Cort */
mtspr SPRN_MD_RPN, r8
#ifdef CONFIG_PIN_TLB
/* Map two more 8M kernel data pages.
*/
addi r10, r10, 0x0100
mtspr SPRN_MD_CTR, r10
lis r8, KERNELBASE@h /* Create vaddr for TLB */
addis r8, r8, 0x0080 /* Add 8M */
ori r8, r8, MI_EVALID /* Mark it valid */
mtspr SPRN_MD_EPN, r8
li r9, MI_PS8MEG /* Set 8M byte page */
ori r9, r9, MI_SVALID /* Make it valid */
mtspr SPRN_MD_TWC, r9
li r11, MI_BOOTINIT /* Create RPN for address 0 */
addis r11, r11, 0x0080 /* Add 8M */
mtspr SPRN_MD_RPN, r8
addis r8, r8, 0x0080 /* Add 8M */
mtspr SPRN_MD_EPN, r8
mtspr SPRN_MD_TWC, r9
addis r11, r11, 0x0080 /* Add 8M */
mtspr SPRN_MD_RPN, r8
#endif
/* Since the cache is enabled according to the information we
* just loaded into the TLB, invalidate and enable the caches here.
* We should probably check/set other modes....later.
*/
lis r8, IDC_INVALL@h
mtspr SPRN_IC_CST, r8
mtspr SPRN_DC_CST, r8
lis r8, IDC_ENABLE@h
mtspr SPRN_IC_CST, r8
#ifdef CONFIG_8xx_COPYBACK
mtspr SPRN_DC_CST, r8
#else
/* For a debug option, I left this here to easily enable
* the write through cache mode
*/
lis r8, DC_SFWT@h
mtspr SPRN_DC_CST, r8
lis r8, IDC_ENABLE@h
mtspr SPRN_DC_CST, r8
#endif
blr
/*
* Set up to use a given MMU context.
* r3 is context number, r4 is PGD pointer.
*
* We place the physical address of the new task page directory loaded
* into the MMU base register, and set the ASID compare register with
* the new "context."
*/
_GLOBAL(set_context)
#ifdef CONFIG_BDI_SWITCH
/* Context switch the PTE pointer for the Abatron BDI2000.
* The PGDIR is passed as second argument.
*/
lis r5, KERNELBASE@h
lwz r5, 0xf0(r5)
stw r4, 0x4(r5)
#endif
#ifdef CONFIG_8xx_CPU6
lis r6, cpu6_errata_word@h
ori r6, r6, cpu6_errata_word@l
tophys (r4, r4)
li r7, 0x3980
stw r7, 12(r6)
lwz r7, 12(r6)
mtspr SPRN_M_TWB, r4 /* Update MMU base address */
li r7, 0x3380
stw r7, 12(r6)
lwz r7, 12(r6)
mtspr SPRN_M_CASID, r3 /* Update context */
#else
mtspr SPRN_M_CASID,r3 /* Update context */
tophys (r4, r4)
mtspr SPRN_M_TWB, r4 /* and pgd */
#endif
SYNC
blr
#ifdef CONFIG_8xx_CPU6
/* It's here because it is unique to the 8xx.
* It is important we get called with interrupts disabled. I used to
* do that, but it appears that all code that calls this already had
* interrupt disabled.
*/
.globl set_dec_cpu6
set_dec_cpu6:
lis r7, cpu6_errata_word@h
ori r7, r7, cpu6_errata_word@l
li r4, 0x2c00
stw r4, 8(r7)
lwz r4, 8(r7)
mtspr 22, r3 /* Update Decrementer */
SYNC
blr
#endif
/*
* We put a few things here that have to be page-aligned.
* This stuff goes at the beginning of the data segment,
* which is page-aligned.
*/
.data
.globl sdata
sdata:
.globl empty_zero_page
empty_zero_page:
.space 4096
.globl swapper_pg_dir
swapper_pg_dir:
.space 4096
/*
* This space gets a copy of optional info passed to us by the bootstrap
* Used to pass parameters into the kernel like root=/dev/sda1, etc.
*/
.globl cmd_line
cmd_line:
.space 512
/* Room for two PTE table poiners, usually the kernel and current user
* pointer to their respective root page table (pgdir).
*/
abatron_pteptrs:
.space 8
#ifdef CONFIG_8xx_CPU6
.globl cpu6_errata_word
cpu6_errata_word:
.space 16
#endif