OpenCloudOS-Kernel/sound/soc/fsl/fsl_ssi.c

1706 lines
46 KiB
C

// SPDX-License-Identifier: GPL-2.0
//
// Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
//
// Author: Timur Tabi <timur@freescale.com>
//
// Copyright 2007-2010 Freescale Semiconductor, Inc.
//
// Some notes why imx-pcm-fiq is used instead of DMA on some boards:
//
// The i.MX SSI core has some nasty limitations in AC97 mode. While most
// sane processor vendors have a FIFO per AC97 slot, the i.MX has only
// one FIFO which combines all valid receive slots. We cannot even select
// which slots we want to receive. The WM9712 with which this driver
// was developed with always sends GPIO status data in slot 12 which
// we receive in our (PCM-) data stream. The only chance we have is to
// manually skip this data in the FIQ handler. With sampling rates different
// from 48000Hz not every frame has valid receive data, so the ratio
// between pcm data and GPIO status data changes. Our FIQ handler is not
// able to handle this, hence this driver only works with 48000Hz sampling
// rate.
// Reading and writing AC97 registers is another challenge. The core
// provides us status bits when the read register is updated with *another*
// value. When we read the same register two times (and the register still
// contains the same value) these status bits are not set. We work
// around this by not polling these bits but only wait a fixed delay.
#include <linux/init.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/clk.h>
#include <linux/ctype.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/initval.h>
#include <sound/soc.h>
#include <sound/dmaengine_pcm.h>
#include "fsl_ssi.h"
#include "imx-pcm.h"
/* Define RX and TX to index ssi->regvals array; Can be 0 or 1 only */
#define RX 0
#define TX 1
/**
* FSLSSI_I2S_FORMATS: audio formats supported by the SSI
*
* The SSI has a limitation in that the samples must be in the same byte
* order as the host CPU. This is because when multiple bytes are written
* to the STX register, the bytes and bits must be written in the same
* order. The STX is a shift register, so all the bits need to be aligned
* (bit-endianness must match byte-endianness). Processors typically write
* the bits within a byte in the same order that the bytes of a word are
* written in. So if the host CPU is big-endian, then only big-endian
* samples will be written to STX properly.
*/
#ifdef __BIG_ENDIAN
#define FSLSSI_I2S_FORMATS \
(SNDRV_PCM_FMTBIT_S8 | \
SNDRV_PCM_FMTBIT_S16_BE | \
SNDRV_PCM_FMTBIT_S18_3BE | \
SNDRV_PCM_FMTBIT_S20_3BE | \
SNDRV_PCM_FMTBIT_S24_3BE | \
SNDRV_PCM_FMTBIT_S24_BE)
#else
#define FSLSSI_I2S_FORMATS \
(SNDRV_PCM_FMTBIT_S8 | \
SNDRV_PCM_FMTBIT_S16_LE | \
SNDRV_PCM_FMTBIT_S18_3LE | \
SNDRV_PCM_FMTBIT_S20_3LE | \
SNDRV_PCM_FMTBIT_S24_3LE | \
SNDRV_PCM_FMTBIT_S24_LE)
#endif
/*
* In AC97 mode, TXDIR bit is forced to 0 and TFDIR bit is forced to 1:
* - SSI inputs external bit clock and outputs frame sync clock -- CBM_CFS
* - Also have NB_NF to mark these two clocks will not be inverted
*/
#define FSLSSI_AC97_DAIFMT \
(SND_SOC_DAIFMT_AC97 | \
SND_SOC_DAIFMT_CBM_CFS | \
SND_SOC_DAIFMT_NB_NF)
#define FSLSSI_SIER_DBG_RX_FLAGS \
(SSI_SIER_RFF0_EN | \
SSI_SIER_RLS_EN | \
SSI_SIER_RFS_EN | \
SSI_SIER_ROE0_EN | \
SSI_SIER_RFRC_EN)
#define FSLSSI_SIER_DBG_TX_FLAGS \
(SSI_SIER_TFE0_EN | \
SSI_SIER_TLS_EN | \
SSI_SIER_TFS_EN | \
SSI_SIER_TUE0_EN | \
SSI_SIER_TFRC_EN)
enum fsl_ssi_type {
FSL_SSI_MCP8610,
FSL_SSI_MX21,
FSL_SSI_MX35,
FSL_SSI_MX51,
};
struct fsl_ssi_regvals {
u32 sier;
u32 srcr;
u32 stcr;
u32 scr;
};
static bool fsl_ssi_readable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case REG_SSI_SACCEN:
case REG_SSI_SACCDIS:
return false;
default:
return true;
}
}
static bool fsl_ssi_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case REG_SSI_STX0:
case REG_SSI_STX1:
case REG_SSI_SRX0:
case REG_SSI_SRX1:
case REG_SSI_SISR:
case REG_SSI_SFCSR:
case REG_SSI_SACNT:
case REG_SSI_SACADD:
case REG_SSI_SACDAT:
case REG_SSI_SATAG:
case REG_SSI_SACCST:
case REG_SSI_SOR:
return true;
default:
return false;
}
}
static bool fsl_ssi_precious_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case REG_SSI_SRX0:
case REG_SSI_SRX1:
case REG_SSI_SISR:
case REG_SSI_SACADD:
case REG_SSI_SACDAT:
case REG_SSI_SATAG:
return true;
default:
return false;
}
}
static bool fsl_ssi_writeable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case REG_SSI_SRX0:
case REG_SSI_SRX1:
case REG_SSI_SACCST:
return false;
default:
return true;
}
}
static const struct regmap_config fsl_ssi_regconfig = {
.max_register = REG_SSI_SACCDIS,
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.val_format_endian = REGMAP_ENDIAN_NATIVE,
.num_reg_defaults_raw = REG_SSI_SACCDIS / sizeof(uint32_t) + 1,
.readable_reg = fsl_ssi_readable_reg,
.volatile_reg = fsl_ssi_volatile_reg,
.precious_reg = fsl_ssi_precious_reg,
.writeable_reg = fsl_ssi_writeable_reg,
.cache_type = REGCACHE_FLAT,
};
struct fsl_ssi_soc_data {
bool imx;
bool imx21regs; /* imx21-class SSI - no SACC{ST,EN,DIS} regs */
bool offline_config;
u32 sisr_write_mask;
};
/**
* fsl_ssi: per-SSI private data
*
* @regs: Pointer to the regmap registers
* @irq: IRQ of this SSI
* @cpu_dai_drv: CPU DAI driver for this device
*
* @dai_fmt: DAI configuration this device is currently used with
* @streams: Mask of current active streams: BIT(TX) and BIT(RX)
* @i2s_net: I2S and Network mode configurations of SCR register
* (this is the initial settings based on the DAI format)
* @synchronous: Use synchronous mode - both of TX and RX use STCK and SFCK
* @use_dma: DMA is used or FIQ with stream filter
* @use_dual_fifo: DMA with support for dual FIFO mode
* @has_ipg_clk_name: If "ipg" is in the clock name list of device tree
* @fifo_depth: Depth of the SSI FIFOs
* @slot_width: Width of each DAI slot
* @slots: Number of slots
* @regvals: Specific RX/TX register settings
*
* @clk: Clock source to access register
* @baudclk: Clock source to generate bit and frame-sync clocks
* @baudclk_streams: Active streams that are using baudclk
*
* @regcache_sfcsr: Cache sfcsr register value during suspend and resume
* @regcache_sacnt: Cache sacnt register value during suspend and resume
*
* @dma_params_tx: DMA transmit parameters
* @dma_params_rx: DMA receive parameters
* @ssi_phys: physical address of the SSI registers
*
* @fiq_params: FIQ stream filtering parameters
*
* @card_pdev: Platform_device pointer to register a sound card for PowerPC or
* to register a CODEC platform device for AC97
* @card_name: Platform_device name to register a sound card for PowerPC or
* to register a CODEC platform device for AC97
* @card_idx: The index of SSI to register a sound card for PowerPC or
* to register a CODEC platform device for AC97
*
* @dbg_stats: Debugging statistics
*
* @soc: SoC specific data
* @dev: Pointer to &pdev->dev
*
* @fifo_watermark: The FIFO watermark setting. Notifies DMA when there are
* @fifo_watermark or fewer words in TX fifo or
* @fifo_watermark or more empty words in RX fifo.
* @dma_maxburst: Max number of words to transfer in one go. So far,
* this is always the same as fifo_watermark.
*
* @ac97_reg_lock: Mutex lock to serialize AC97 register access operations
*/
struct fsl_ssi {
struct regmap *regs;
int irq;
struct snd_soc_dai_driver cpu_dai_drv;
unsigned int dai_fmt;
u8 streams;
u8 i2s_net;
bool synchronous;
bool use_dma;
bool use_dual_fifo;
bool has_ipg_clk_name;
unsigned int fifo_depth;
unsigned int slot_width;
unsigned int slots;
struct fsl_ssi_regvals regvals[2];
struct clk *clk;
struct clk *baudclk;
unsigned int baudclk_streams;
u32 regcache_sfcsr;
u32 regcache_sacnt;
struct snd_dmaengine_dai_dma_data dma_params_tx;
struct snd_dmaengine_dai_dma_data dma_params_rx;
dma_addr_t ssi_phys;
struct imx_pcm_fiq_params fiq_params;
struct platform_device *card_pdev;
char card_name[32];
u32 card_idx;
struct fsl_ssi_dbg dbg_stats;
const struct fsl_ssi_soc_data *soc;
struct device *dev;
u32 fifo_watermark;
u32 dma_maxburst;
struct mutex ac97_reg_lock;
};
/*
* SoC specific data
*
* Notes:
* 1) SSI in earlier SoCS has critical bits in control registers that
* cannot be changed after SSI starts running -- a software reset
* (set SSIEN to 0) is required to change their values. So adding
* an offline_config flag for these SoCs.
* 2) SDMA is available since imx35. However, imx35 does not support
* DMA bits changing when SSI is running, so set offline_config.
* 3) imx51 and later versions support register configurations when
* SSI is running (SSIEN); For these versions, DMA needs to be
* configured before SSI sends DMA request to avoid an undefined
* DMA request on the SDMA side.
*/
static struct fsl_ssi_soc_data fsl_ssi_mpc8610 = {
.imx = false,
.offline_config = true,
.sisr_write_mask = SSI_SISR_RFRC | SSI_SISR_TFRC |
SSI_SISR_ROE0 | SSI_SISR_ROE1 |
SSI_SISR_TUE0 | SSI_SISR_TUE1,
};
static struct fsl_ssi_soc_data fsl_ssi_imx21 = {
.imx = true,
.imx21regs = true,
.offline_config = true,
.sisr_write_mask = 0,
};
static struct fsl_ssi_soc_data fsl_ssi_imx35 = {
.imx = true,
.offline_config = true,
.sisr_write_mask = SSI_SISR_RFRC | SSI_SISR_TFRC |
SSI_SISR_ROE0 | SSI_SISR_ROE1 |
SSI_SISR_TUE0 | SSI_SISR_TUE1,
};
static struct fsl_ssi_soc_data fsl_ssi_imx51 = {
.imx = true,
.offline_config = false,
.sisr_write_mask = SSI_SISR_ROE0 | SSI_SISR_ROE1 |
SSI_SISR_TUE0 | SSI_SISR_TUE1,
};
static const struct of_device_id fsl_ssi_ids[] = {
{ .compatible = "fsl,mpc8610-ssi", .data = &fsl_ssi_mpc8610 },
{ .compatible = "fsl,imx51-ssi", .data = &fsl_ssi_imx51 },
{ .compatible = "fsl,imx35-ssi", .data = &fsl_ssi_imx35 },
{ .compatible = "fsl,imx21-ssi", .data = &fsl_ssi_imx21 },
{}
};
MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
static bool fsl_ssi_is_ac97(struct fsl_ssi *ssi)
{
return (ssi->dai_fmt & SND_SOC_DAIFMT_FORMAT_MASK) ==
SND_SOC_DAIFMT_AC97;
}
static bool fsl_ssi_is_i2s_master(struct fsl_ssi *ssi)
{
return (ssi->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
SND_SOC_DAIFMT_CBS_CFS;
}
static bool fsl_ssi_is_i2s_cbm_cfs(struct fsl_ssi *ssi)
{
return (ssi->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
SND_SOC_DAIFMT_CBM_CFS;
}
/**
* Interrupt handler to gather states
*/
static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
{
struct fsl_ssi *ssi = dev_id;
struct regmap *regs = ssi->regs;
u32 sisr, sisr2;
regmap_read(regs, REG_SSI_SISR, &sisr);
sisr2 = sisr & ssi->soc->sisr_write_mask;
/* Clear the bits that we set */
if (sisr2)
regmap_write(regs, REG_SSI_SISR, sisr2);
fsl_ssi_dbg_isr(&ssi->dbg_stats, sisr);
return IRQ_HANDLED;
}
/**
* Set SCR, SIER, STCR and SRCR registers with cached values in regvals
*
* Notes:
* 1) For offline_config SoCs, enable all necessary bits of both streams
* when 1st stream starts, even if the opposite stream will not start
* 2) It also clears FIFO before setting regvals; SOR is safe to set online
*/
static void fsl_ssi_config_enable(struct fsl_ssi *ssi, bool tx)
{
struct fsl_ssi_regvals *vals = ssi->regvals;
int dir = tx ? TX : RX;
u32 sier, srcr, stcr;
/* Clear dirty data in the FIFO; It also prevents channel slipping */
regmap_update_bits(ssi->regs, REG_SSI_SOR,
SSI_SOR_xX_CLR(tx), SSI_SOR_xX_CLR(tx));
/*
* On offline_config SoCs, SxCR and SIER are already configured when
* the previous stream started. So skip all SxCR and SIER settings
* to prevent online reconfigurations, then jump to set SCR directly
*/
if (ssi->soc->offline_config && ssi->streams)
goto enable_scr;
if (ssi->soc->offline_config) {
/*
* Online reconfiguration not supported, so enable all bits for
* both streams at once to avoid necessity of reconfigurations
*/
srcr = vals[RX].srcr | vals[TX].srcr;
stcr = vals[RX].stcr | vals[TX].stcr;
sier = vals[RX].sier | vals[TX].sier;
} else {
/* Otherwise, only set bits for the current stream */
srcr = vals[dir].srcr;
stcr = vals[dir].stcr;
sier = vals[dir].sier;
}
/* Configure SRCR, STCR and SIER at once */
regmap_update_bits(ssi->regs, REG_SSI_SRCR, srcr, srcr);
regmap_update_bits(ssi->regs, REG_SSI_STCR, stcr, stcr);
regmap_update_bits(ssi->regs, REG_SSI_SIER, sier, sier);
enable_scr:
/*
* Start DMA before setting TE to avoid FIFO underrun
* which may cause a channel slip or a channel swap
*
* TODO: FIQ cases might also need this upon testing
*/
if (ssi->use_dma && tx) {
int try = 100;
u32 sfcsr;
/* Enable SSI first to send TX DMA request */
regmap_update_bits(ssi->regs, REG_SSI_SCR,
SSI_SCR_SSIEN, SSI_SCR_SSIEN);
/* Busy wait until TX FIFO not empty -- DMA working */
do {
regmap_read(ssi->regs, REG_SSI_SFCSR, &sfcsr);
if (SSI_SFCSR_TFCNT0(sfcsr))
break;
} while (--try);
/* FIFO still empty -- something might be wrong */
if (!SSI_SFCSR_TFCNT0(sfcsr))
dev_warn(ssi->dev, "Timeout waiting TX FIFO filling\n");
}
/* Enable all remaining bits in SCR */
regmap_update_bits(ssi->regs, REG_SSI_SCR,
vals[dir].scr, vals[dir].scr);
/* Log the enabled stream to the mask */
ssi->streams |= BIT(dir);
}
/**
* Exclude bits that are used by the opposite stream
*
* When both streams are active, disabling some bits for the current stream
* might break the other stream if these bits are used by it.
*
* @vals : regvals of the current stream
* @avals: regvals of the opposite stream
* @aactive: active state of the opposite stream
*
* 1) XOR vals and avals to get the differences if the other stream is active;
* Otherwise, return current vals if the other stream is not active
* 2) AND the result of 1) with the current vals
*/
#define _ssi_xor_shared_bits(vals, avals, aactive) \
((vals) ^ ((avals) * (aactive)))
#define ssi_excl_shared_bits(vals, avals, aactive) \
((vals) & _ssi_xor_shared_bits(vals, avals, aactive))
/**
* Unset SCR, SIER, STCR and SRCR registers with cached values in regvals
*
* Notes:
* 1) For offline_config SoCs, to avoid online reconfigurations, disable all
* bits of both streams at once when the last stream is abort to end
* 2) It also clears FIFO after unsetting regvals; SOR is safe to set online
*/
static void fsl_ssi_config_disable(struct fsl_ssi *ssi, bool tx)
{
struct fsl_ssi_regvals *vals, *avals;
u32 sier, srcr, stcr, scr;
int adir = tx ? RX : TX;
int dir = tx ? TX : RX;
bool aactive;
/* Check if the opposite stream is active */
aactive = ssi->streams & BIT(adir);
vals = &ssi->regvals[dir];
/* Get regvals of the opposite stream to keep opposite stream safe */
avals = &ssi->regvals[adir];
/*
* To keep the other stream safe, exclude shared bits between
* both streams, and get safe bits to disable current stream
*/
scr = ssi_excl_shared_bits(vals->scr, avals->scr, aactive);
/* Disable safe bits of SCR register for the current stream */
regmap_update_bits(ssi->regs, REG_SSI_SCR, scr, 0);
/* Log the disabled stream to the mask */
ssi->streams &= ~BIT(dir);
/*
* On offline_config SoCs, if the other stream is active, skip
* SxCR and SIER settings to prevent online reconfigurations
*/
if (ssi->soc->offline_config && aactive)
goto fifo_clear;
if (ssi->soc->offline_config) {
/* Now there is only current stream active, disable all bits */
srcr = vals->srcr | avals->srcr;
stcr = vals->stcr | avals->stcr;
sier = vals->sier | avals->sier;
} else {
/*
* To keep the other stream safe, exclude shared bits between
* both streams, and get safe bits to disable current stream
*/
sier = ssi_excl_shared_bits(vals->sier, avals->sier, aactive);
srcr = ssi_excl_shared_bits(vals->srcr, avals->srcr, aactive);
stcr = ssi_excl_shared_bits(vals->stcr, avals->stcr, aactive);
}
/* Clear configurations of SRCR, STCR and SIER at once */
regmap_update_bits(ssi->regs, REG_SSI_SRCR, srcr, 0);
regmap_update_bits(ssi->regs, REG_SSI_STCR, stcr, 0);
regmap_update_bits(ssi->regs, REG_SSI_SIER, sier, 0);
fifo_clear:
/* Clear remaining data in the FIFO */
regmap_update_bits(ssi->regs, REG_SSI_SOR,
SSI_SOR_xX_CLR(tx), SSI_SOR_xX_CLR(tx));
}
static void fsl_ssi_tx_ac97_saccst_setup(struct fsl_ssi *ssi)
{
struct regmap *regs = ssi->regs;
/* no SACC{ST,EN,DIS} regs on imx21-class SSI */
if (!ssi->soc->imx21regs) {
/* Disable all channel slots */
regmap_write(regs, REG_SSI_SACCDIS, 0xff);
/* Enable slots 3 & 4 -- PCM Playback Left & Right channels */
regmap_write(regs, REG_SSI_SACCEN, 0x300);
}
}
/**
* Cache critical bits of SIER, SRCR, STCR and SCR to later set them safely
*/
static void fsl_ssi_setup_regvals(struct fsl_ssi *ssi)
{
struct fsl_ssi_regvals *vals = ssi->regvals;
vals[RX].sier = SSI_SIER_RFF0_EN | FSLSSI_SIER_DBG_RX_FLAGS;
vals[RX].srcr = SSI_SRCR_RFEN0;
vals[RX].scr = SSI_SCR_SSIEN | SSI_SCR_RE;
vals[TX].sier = SSI_SIER_TFE0_EN | FSLSSI_SIER_DBG_TX_FLAGS;
vals[TX].stcr = SSI_STCR_TFEN0;
vals[TX].scr = SSI_SCR_SSIEN | SSI_SCR_TE;
/* AC97 has already enabled SSIEN, RE and TE, so ignore them */
if (fsl_ssi_is_ac97(ssi))
vals[RX].scr = vals[TX].scr = 0;
if (ssi->use_dual_fifo) {
vals[RX].srcr |= SSI_SRCR_RFEN1;
vals[TX].stcr |= SSI_STCR_TFEN1;
}
if (ssi->use_dma) {
vals[RX].sier |= SSI_SIER_RDMAE;
vals[TX].sier |= SSI_SIER_TDMAE;
} else {
vals[RX].sier |= SSI_SIER_RIE;
vals[TX].sier |= SSI_SIER_TIE;
}
}
static void fsl_ssi_setup_ac97(struct fsl_ssi *ssi)
{
struct regmap *regs = ssi->regs;
/* Setup the clock control register */
regmap_write(regs, REG_SSI_STCCR, SSI_SxCCR_WL(17) | SSI_SxCCR_DC(13));
regmap_write(regs, REG_SSI_SRCCR, SSI_SxCCR_WL(17) | SSI_SxCCR_DC(13));
/* Enable AC97 mode and startup the SSI */
regmap_write(regs, REG_SSI_SACNT, SSI_SACNT_AC97EN | SSI_SACNT_FV);
/* AC97 has to communicate with codec before starting a stream */
regmap_update_bits(regs, REG_SSI_SCR,
SSI_SCR_SSIEN | SSI_SCR_TE | SSI_SCR_RE,
SSI_SCR_SSIEN | SSI_SCR_TE | SSI_SCR_RE);
regmap_write(regs, REG_SSI_SOR, SSI_SOR_WAIT(3));
}
static int fsl_ssi_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(rtd->cpu_dai);
int ret;
ret = clk_prepare_enable(ssi->clk);
if (ret)
return ret;
/*
* When using dual fifo mode, it is safer to ensure an even period
* size. If appearing to an odd number while DMA always starts its
* task from fifo0, fifo1 would be neglected at the end of each
* period. But SSI would still access fifo1 with an invalid data.
*/
if (ssi->use_dual_fifo)
snd_pcm_hw_constraint_step(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
return 0;
}
static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(rtd->cpu_dai);
clk_disable_unprepare(ssi->clk);
}
/**
* Configure Digital Audio Interface bit clock
*
* Note: This function can be only called when using SSI as DAI master
*
* Quick instruction for parameters:
* freq: Output BCLK frequency = samplerate * slots * slot_width
* (In 2-channel I2S Master mode, slot_width is fixed 32)
*/
static int fsl_ssi_set_bclk(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai,
struct snd_pcm_hw_params *hw_params)
{
bool tx2, tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
struct regmap *regs = ssi->regs;
u32 pm = 999, div2, psr, stccr, mask, afreq, factor, i;
unsigned long clkrate, baudrate, tmprate;
unsigned int slots = params_channels(hw_params);
unsigned int slot_width = 32;
u64 sub, savesub = 100000;
unsigned int freq;
bool baudclk_is_used;
int ret;
/* Override slots and slot_width if being specifically set... */
if (ssi->slots)
slots = ssi->slots;
/* ...but keep 32 bits if slots is 2 -- I2S Master mode */
if (ssi->slot_width && slots != 2)
slot_width = ssi->slot_width;
/* Generate bit clock based on the slot number and slot width */
freq = slots * slot_width * params_rate(hw_params);
/* Don't apply it to any non-baudclk circumstance */
if (IS_ERR(ssi->baudclk))
return -EINVAL;
/*
* Hardware limitation: The bclk rate must be
* never greater than 1/5 IPG clock rate
*/
if (freq * 5 > clk_get_rate(ssi->clk)) {
dev_err(dai->dev, "bitclk > ipgclk / 5\n");
return -EINVAL;
}
baudclk_is_used = ssi->baudclk_streams & ~(BIT(substream->stream));
/* It should be already enough to divide clock by setting pm alone */
psr = 0;
div2 = 0;
factor = (div2 + 1) * (7 * psr + 1) * 2;
for (i = 0; i < 255; i++) {
tmprate = freq * factor * (i + 1);
if (baudclk_is_used)
clkrate = clk_get_rate(ssi->baudclk);
else
clkrate = clk_round_rate(ssi->baudclk, tmprate);
clkrate /= factor;
afreq = clkrate / (i + 1);
if (freq == afreq)
sub = 0;
else if (freq / afreq == 1)
sub = freq - afreq;
else if (afreq / freq == 1)
sub = afreq - freq;
else
continue;
/* Calculate the fraction */
sub *= 100000;
do_div(sub, freq);
if (sub < savesub && !(i == 0 && psr == 0 && div2 == 0)) {
baudrate = tmprate;
savesub = sub;
pm = i;
}
/* We are lucky */
if (savesub == 0)
break;
}
/* No proper pm found if it is still remaining the initial value */
if (pm == 999) {
dev_err(dai->dev, "failed to handle the required sysclk\n");
return -EINVAL;
}
stccr = SSI_SxCCR_PM(pm + 1) | (div2 ? SSI_SxCCR_DIV2 : 0) |
(psr ? SSI_SxCCR_PSR : 0);
mask = SSI_SxCCR_PM_MASK | SSI_SxCCR_DIV2 | SSI_SxCCR_PSR;
/* STCCR is used for RX in synchronous mode */
tx2 = tx || ssi->synchronous;
regmap_update_bits(regs, REG_SSI_SxCCR(tx2), mask, stccr);
if (!baudclk_is_used) {
ret = clk_set_rate(ssi->baudclk, baudrate);
if (ret) {
dev_err(dai->dev, "failed to set baudclk rate\n");
return -EINVAL;
}
}
return 0;
}
/**
* Configure SSI based on PCM hardware parameters
*
* Notes:
* 1) SxCCR.WL bits are critical bits that require SSI to be temporarily
* disabled on offline_config SoCs. Even for online configurable SoCs
* running in synchronous mode (both TX and RX use STCCR), it is not
* safe to re-configure them when both two streams start running.
* 2) SxCCR.PM, SxCCR.DIV2 and SxCCR.PSR bits will be configured in the
* fsl_ssi_set_bclk() if SSI is the DAI clock master.
*/
static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params,
struct snd_soc_dai *dai)
{
bool tx2, tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
struct regmap *regs = ssi->regs;
unsigned int channels = params_channels(hw_params);
unsigned int sample_size = params_width(hw_params);
u32 wl = SSI_SxCCR_WL(sample_size);
int ret;
/*
* SSI is properly configured if it is enabled and running in
* the synchronous mode; Note that AC97 mode is an exception
* that should set separate configurations for STCCR and SRCCR
* despite running in the synchronous mode.
*/
if (ssi->streams && ssi->synchronous)
return 0;
if (fsl_ssi_is_i2s_master(ssi)) {
ret = fsl_ssi_set_bclk(substream, dai, hw_params);
if (ret)
return ret;
/* Do not enable the clock if it is already enabled */
if (!(ssi->baudclk_streams & BIT(substream->stream))) {
ret = clk_prepare_enable(ssi->baudclk);
if (ret)
return ret;
ssi->baudclk_streams |= BIT(substream->stream);
}
}
if (!fsl_ssi_is_ac97(ssi)) {
/*
* Keep the ssi->i2s_net intact while having a local variable
* to override settings for special use cases. Otherwise, the
* ssi->i2s_net will lose the settings for regular use cases.
*/
u8 i2s_net = ssi->i2s_net;
/* Normal + Network mode to send 16-bit data in 32-bit frames */
if (fsl_ssi_is_i2s_cbm_cfs(ssi) && sample_size == 16)
i2s_net = SSI_SCR_I2S_MODE_NORMAL | SSI_SCR_NET;
/* Use Normal mode to send mono data at 1st slot of 2 slots */
if (channels == 1)
i2s_net = SSI_SCR_I2S_MODE_NORMAL;
regmap_update_bits(regs, REG_SSI_SCR,
SSI_SCR_I2S_NET_MASK, i2s_net);
}
/* In synchronous mode, the SSI uses STCCR for capture */
tx2 = tx || ssi->synchronous;
regmap_update_bits(regs, REG_SSI_SxCCR(tx2), SSI_SxCCR_WL_MASK, wl);
return 0;
}
static int fsl_ssi_hw_free(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(rtd->cpu_dai);
if (fsl_ssi_is_i2s_master(ssi) &&
ssi->baudclk_streams & BIT(substream->stream)) {
clk_disable_unprepare(ssi->baudclk);
ssi->baudclk_streams &= ~BIT(substream->stream);
}
return 0;
}
static int _fsl_ssi_set_dai_fmt(struct fsl_ssi *ssi, unsigned int fmt)
{
u32 strcr = 0, scr = 0, stcr, srcr, mask;
ssi->dai_fmt = fmt;
/* Synchronize frame sync clock for TE to avoid data slipping */
scr |= SSI_SCR_SYNC_TX_FS;
/* Set to default shifting settings: LSB_ALIGNED */
strcr |= SSI_STCR_TXBIT0;
/* Use Network mode as default */
ssi->i2s_net = SSI_SCR_NET;
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBS_CFS:
if (IS_ERR(ssi->baudclk)) {
dev_err(ssi->dev,
"missing baudclk for master mode\n");
return -EINVAL;
}
/* fall through */
case SND_SOC_DAIFMT_CBM_CFS:
ssi->i2s_net |= SSI_SCR_I2S_MODE_MASTER;
break;
case SND_SOC_DAIFMT_CBM_CFM:
ssi->i2s_net |= SSI_SCR_I2S_MODE_SLAVE;
break;
default:
return -EINVAL;
}
regmap_update_bits(ssi->regs, REG_SSI_STCCR,
SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(2));
regmap_update_bits(ssi->regs, REG_SSI_SRCCR,
SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(2));
/* Data on rising edge of bclk, frame low, 1clk before data */
strcr |= SSI_STCR_TFSI | SSI_STCR_TSCKP | SSI_STCR_TEFS;
break;
case SND_SOC_DAIFMT_LEFT_J:
/* Data on rising edge of bclk, frame high */
strcr |= SSI_STCR_TSCKP;
break;
case SND_SOC_DAIFMT_DSP_A:
/* Data on rising edge of bclk, frame high, 1clk before data */
strcr |= SSI_STCR_TFSL | SSI_STCR_TSCKP | SSI_STCR_TEFS;
break;
case SND_SOC_DAIFMT_DSP_B:
/* Data on rising edge of bclk, frame high */
strcr |= SSI_STCR_TFSL | SSI_STCR_TSCKP;
break;
case SND_SOC_DAIFMT_AC97:
/* Data on falling edge of bclk, frame high, 1clk before data */
strcr |= SSI_STCR_TEFS;
break;
default:
return -EINVAL;
}
scr |= ssi->i2s_net;
/* DAI clock inversion */
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
/* Nothing to do for both normal cases */
break;
case SND_SOC_DAIFMT_IB_NF:
/* Invert bit clock */
strcr ^= SSI_STCR_TSCKP;
break;
case SND_SOC_DAIFMT_NB_IF:
/* Invert frame clock */
strcr ^= SSI_STCR_TFSI;
break;
case SND_SOC_DAIFMT_IB_IF:
/* Invert both clocks */
strcr ^= SSI_STCR_TSCKP;
strcr ^= SSI_STCR_TFSI;
break;
default:
return -EINVAL;
}
/* DAI clock master masks */
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBS_CFS:
/* Output bit and frame sync clocks */
strcr |= SSI_STCR_TFDIR | SSI_STCR_TXDIR;
scr |= SSI_SCR_SYS_CLK_EN;
break;
case SND_SOC_DAIFMT_CBM_CFM:
/* Input bit or frame sync clocks */
break;
case SND_SOC_DAIFMT_CBM_CFS:
/* Input bit clock but output frame sync clock */
strcr |= SSI_STCR_TFDIR;
break;
default:
return -EINVAL;
}
stcr = strcr;
srcr = strcr;
/* Set SYN mode and clear RXDIR bit when using SYN or AC97 mode */
if (ssi->synchronous || fsl_ssi_is_ac97(ssi)) {
srcr &= ~SSI_SRCR_RXDIR;
scr |= SSI_SCR_SYN;
}
mask = SSI_STCR_TFDIR | SSI_STCR_TXDIR | SSI_STCR_TSCKP |
SSI_STCR_TFSL | SSI_STCR_TFSI | SSI_STCR_TEFS | SSI_STCR_TXBIT0;
regmap_update_bits(ssi->regs, REG_SSI_STCR, mask, stcr);
regmap_update_bits(ssi->regs, REG_SSI_SRCR, mask, srcr);
mask = SSI_SCR_SYNC_TX_FS | SSI_SCR_I2S_MODE_MASK |
SSI_SCR_SYS_CLK_EN | SSI_SCR_SYN;
regmap_update_bits(ssi->regs, REG_SSI_SCR, mask, scr);
return 0;
}
/**
* Configure Digital Audio Interface (DAI) Format
*/
static int fsl_ssi_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
/* AC97 configured DAIFMT earlier in the probe() */
if (fsl_ssi_is_ac97(ssi))
return 0;
return _fsl_ssi_set_dai_fmt(ssi, fmt);
}
/**
* Set TDM slot number and slot width
*/
static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *dai, u32 tx_mask,
u32 rx_mask, int slots, int slot_width)
{
struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
struct regmap *regs = ssi->regs;
u32 val;
/* The word length should be 8, 10, 12, 16, 18, 20, 22 or 24 */
if (slot_width & 1 || slot_width < 8 || slot_width > 24) {
dev_err(dai->dev, "invalid slot width: %d\n", slot_width);
return -EINVAL;
}
/* The slot number should be >= 2 if using Network mode or I2S mode */
if (ssi->i2s_net && slots < 2) {
dev_err(dai->dev, "slot number should be >= 2 in I2S or NET\n");
return -EINVAL;
}
regmap_update_bits(regs, REG_SSI_STCCR,
SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(slots));
regmap_update_bits(regs, REG_SSI_SRCCR,
SSI_SxCCR_DC_MASK, SSI_SxCCR_DC(slots));
/* Save the SCR register value */
regmap_read(regs, REG_SSI_SCR, &val);
/* Temporarily enable SSI to allow SxMSKs to be configurable */
regmap_update_bits(regs, REG_SSI_SCR, SSI_SCR_SSIEN, SSI_SCR_SSIEN);
regmap_write(regs, REG_SSI_STMSK, ~tx_mask);
regmap_write(regs, REG_SSI_SRMSK, ~rx_mask);
/* Restore the value of SSIEN bit */
regmap_update_bits(regs, REG_SSI_SCR, SSI_SCR_SSIEN, val);
ssi->slot_width = slot_width;
ssi->slots = slots;
return 0;
}
/**
* Start or stop SSI and corresponding DMA transaction.
*
* The DMA channel is in external master start and pause mode, which
* means the SSI completely controls the flow of data.
*/
static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *dai)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(rtd->cpu_dai);
bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
/*
* SACCST might be modified via AC Link by a CODEC if it sends
* extra bits in their SLOTREQ requests, which'll accidentally
* send valid data to slots other than normal playback slots.
*
* To be safe, configure SACCST right before TX starts.
*/
if (tx && fsl_ssi_is_ac97(ssi))
fsl_ssi_tx_ac97_saccst_setup(ssi);
fsl_ssi_config_enable(ssi, tx);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
fsl_ssi_config_disable(ssi, tx);
break;
default:
return -EINVAL;
}
return 0;
}
static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
{
struct fsl_ssi *ssi = snd_soc_dai_get_drvdata(dai);
if (ssi->soc->imx && ssi->use_dma)
snd_soc_dai_init_dma_data(dai, &ssi->dma_params_tx,
&ssi->dma_params_rx);
return 0;
}
static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
.startup = fsl_ssi_startup,
.shutdown = fsl_ssi_shutdown,
.hw_params = fsl_ssi_hw_params,
.hw_free = fsl_ssi_hw_free,
.set_fmt = fsl_ssi_set_dai_fmt,
.set_tdm_slot = fsl_ssi_set_dai_tdm_slot,
.trigger = fsl_ssi_trigger,
};
static struct snd_soc_dai_driver fsl_ssi_dai_template = {
.probe = fsl_ssi_dai_probe,
.playback = {
.stream_name = "CPU-Playback",
.channels_min = 1,
.channels_max = 32,
.rates = SNDRV_PCM_RATE_CONTINUOUS,
.formats = FSLSSI_I2S_FORMATS,
},
.capture = {
.stream_name = "CPU-Capture",
.channels_min = 1,
.channels_max = 32,
.rates = SNDRV_PCM_RATE_CONTINUOUS,
.formats = FSLSSI_I2S_FORMATS,
},
.ops = &fsl_ssi_dai_ops,
};
static const struct snd_soc_component_driver fsl_ssi_component = {
.name = "fsl-ssi",
};
static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
.bus_control = true,
.symmetric_channels = 1,
.probe = fsl_ssi_dai_probe,
.playback = {
.stream_name = "AC97 Playback",
.channels_min = 2,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_8000_48000,
.formats = SNDRV_PCM_FMTBIT_S16 | SNDRV_PCM_FMTBIT_S20,
},
.capture = {
.stream_name = "AC97 Capture",
.channels_min = 2,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_48000,
/* 16-bit capture is broken (errata ERR003778) */
.formats = SNDRV_PCM_FMTBIT_S20,
},
.ops = &fsl_ssi_dai_ops,
};
static struct fsl_ssi *fsl_ac97_data;
static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
unsigned short val)
{
struct regmap *regs = fsl_ac97_data->regs;
unsigned int lreg;
unsigned int lval;
int ret;
if (reg > 0x7f)
return;
mutex_lock(&fsl_ac97_data->ac97_reg_lock);
ret = clk_prepare_enable(fsl_ac97_data->clk);
if (ret) {
pr_err("ac97 write clk_prepare_enable failed: %d\n",
ret);
goto ret_unlock;
}
lreg = reg << 12;
regmap_write(regs, REG_SSI_SACADD, lreg);
lval = val << 4;
regmap_write(regs, REG_SSI_SACDAT, lval);
regmap_update_bits(regs, REG_SSI_SACNT,
SSI_SACNT_RDWR_MASK, SSI_SACNT_WR);
udelay(100);
clk_disable_unprepare(fsl_ac97_data->clk);
ret_unlock:
mutex_unlock(&fsl_ac97_data->ac97_reg_lock);
}
static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
unsigned short reg)
{
struct regmap *regs = fsl_ac97_data->regs;
unsigned short val = 0;
u32 reg_val;
unsigned int lreg;
int ret;
mutex_lock(&fsl_ac97_data->ac97_reg_lock);
ret = clk_prepare_enable(fsl_ac97_data->clk);
if (ret) {
pr_err("ac97 read clk_prepare_enable failed: %d\n", ret);
goto ret_unlock;
}
lreg = (reg & 0x7f) << 12;
regmap_write(regs, REG_SSI_SACADD, lreg);
regmap_update_bits(regs, REG_SSI_SACNT,
SSI_SACNT_RDWR_MASK, SSI_SACNT_RD);
udelay(100);
regmap_read(regs, REG_SSI_SACDAT, &reg_val);
val = (reg_val >> 4) & 0xffff;
clk_disable_unprepare(fsl_ac97_data->clk);
ret_unlock:
mutex_unlock(&fsl_ac97_data->ac97_reg_lock);
return val;
}
static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
.read = fsl_ssi_ac97_read,
.write = fsl_ssi_ac97_write,
};
/**
* Initialize SSI registers
*/
static int fsl_ssi_hw_init(struct fsl_ssi *ssi)
{
u32 wm = ssi->fifo_watermark;
/* Initialize regvals */
fsl_ssi_setup_regvals(ssi);
/* Set watermarks */
regmap_write(ssi->regs, REG_SSI_SFCSR,
SSI_SFCSR_TFWM0(wm) | SSI_SFCSR_RFWM0(wm) |
SSI_SFCSR_TFWM1(wm) | SSI_SFCSR_RFWM1(wm));
/* Enable Dual FIFO mode */
if (ssi->use_dual_fifo)
regmap_update_bits(ssi->regs, REG_SSI_SCR,
SSI_SCR_TCH_EN, SSI_SCR_TCH_EN);
/* AC97 should start earlier to communicate with CODECs */
if (fsl_ssi_is_ac97(ssi)) {
_fsl_ssi_set_dai_fmt(ssi, ssi->dai_fmt);
fsl_ssi_setup_ac97(ssi);
}
return 0;
}
/**
* Clear SSI registers
*/
static void fsl_ssi_hw_clean(struct fsl_ssi *ssi)
{
/* Disable registers for AC97 */
if (fsl_ssi_is_ac97(ssi)) {
/* Disable TE and RE bits first */
regmap_update_bits(ssi->regs, REG_SSI_SCR,
SSI_SCR_TE | SSI_SCR_RE, 0);
/* Disable AC97 mode */
regmap_write(ssi->regs, REG_SSI_SACNT, 0);
/* Unset WAIT bits */
regmap_write(ssi->regs, REG_SSI_SOR, 0);
/* Disable SSI -- software reset */
regmap_update_bits(ssi->regs, REG_SSI_SCR, SSI_SCR_SSIEN, 0);
}
}
/**
* Make every character in a string lower-case
*/
static void make_lowercase(char *s)
{
if (!s)
return;
for (; *s; s++)
*s = tolower(*s);
}
static int fsl_ssi_imx_probe(struct platform_device *pdev,
struct fsl_ssi *ssi, void __iomem *iomem)
{
struct device *dev = &pdev->dev;
int ret;
/* Backward compatible for a DT without ipg clock name assigned */
if (ssi->has_ipg_clk_name)
ssi->clk = devm_clk_get(dev, "ipg");
else
ssi->clk = devm_clk_get(dev, NULL);
if (IS_ERR(ssi->clk)) {
ret = PTR_ERR(ssi->clk);
dev_err(dev, "failed to get clock: %d\n", ret);
return ret;
}
/* Enable the clock since regmap will not handle it in this case */
if (!ssi->has_ipg_clk_name) {
ret = clk_prepare_enable(ssi->clk);
if (ret) {
dev_err(dev, "clk_prepare_enable failed: %d\n", ret);
return ret;
}
}
/* Do not error out for slave cases that live without a baud clock */
ssi->baudclk = devm_clk_get(dev, "baud");
if (IS_ERR(ssi->baudclk))
dev_dbg(dev, "failed to get baud clock: %ld\n",
PTR_ERR(ssi->baudclk));
ssi->dma_params_tx.maxburst = ssi->dma_maxburst;
ssi->dma_params_rx.maxburst = ssi->dma_maxburst;
ssi->dma_params_tx.addr = ssi->ssi_phys + REG_SSI_STX0;
ssi->dma_params_rx.addr = ssi->ssi_phys + REG_SSI_SRX0;
/* Use even numbers to avoid channel swap due to SDMA script design */
if (ssi->use_dual_fifo) {
ssi->dma_params_tx.maxburst &= ~0x1;
ssi->dma_params_rx.maxburst &= ~0x1;
}
if (!ssi->use_dma) {
/*
* Some boards use an incompatible codec. Use imx-fiq-pcm-audio
* to get it working, as DMA is not possible in this situation.
*/
ssi->fiq_params.irq = ssi->irq;
ssi->fiq_params.base = iomem;
ssi->fiq_params.dma_params_rx = &ssi->dma_params_rx;
ssi->fiq_params.dma_params_tx = &ssi->dma_params_tx;
ret = imx_pcm_fiq_init(pdev, &ssi->fiq_params);
if (ret)
goto error_pcm;
} else {
ret = imx_pcm_dma_init(pdev, IMX_SSI_DMABUF_SIZE);
if (ret)
goto error_pcm;
}
return 0;
error_pcm:
if (!ssi->has_ipg_clk_name)
clk_disable_unprepare(ssi->clk);
return ret;
}
static void fsl_ssi_imx_clean(struct platform_device *pdev, struct fsl_ssi *ssi)
{
if (!ssi->use_dma)
imx_pcm_fiq_exit(pdev);
if (!ssi->has_ipg_clk_name)
clk_disable_unprepare(ssi->clk);
}
static int fsl_ssi_probe_from_dt(struct fsl_ssi *ssi)
{
struct device *dev = ssi->dev;
struct device_node *np = dev->of_node;
const struct of_device_id *of_id;
const char *p, *sprop;
const __be32 *iprop;
u32 dmas[4];
int ret;
of_id = of_match_device(fsl_ssi_ids, dev);
if (!of_id || !of_id->data)
return -EINVAL;
ssi->soc = of_id->data;
ret = of_property_match_string(np, "clock-names", "ipg");
/* Get error code if not found */
ssi->has_ipg_clk_name = ret >= 0;
/* Check if being used in AC97 mode */
sprop = of_get_property(np, "fsl,mode", NULL);
if (sprop && !strcmp(sprop, "ac97-slave")) {
ssi->dai_fmt = FSLSSI_AC97_DAIFMT;
ret = of_property_read_u32(np, "cell-index", &ssi->card_idx);
if (ret) {
dev_err(dev, "failed to get SSI index property\n");
return -EINVAL;
}
strcpy(ssi->card_name, "ac97-codec");
} else if (!of_find_property(np, "fsl,ssi-asynchronous", NULL)) {
/*
* In synchronous mode, STCK and STFS ports are used by RX
* as well. So the software should limit the sample rates,
* sample bits and channels to be symmetric.
*
* This is exclusive with FSLSSI_AC97_FORMATS as AC97 runs
* in the SSI synchronous mode however it does not have to
* limit symmetric sample rates and sample bits.
*/
ssi->synchronous = true;
}
/* Select DMA or FIQ */
ssi->use_dma = !of_property_read_bool(np, "fsl,fiq-stream-filter");
/* Fetch FIFO depth; Set to 8 for older DT without this property */
iprop = of_get_property(np, "fsl,fifo-depth", NULL);
if (iprop)
ssi->fifo_depth = be32_to_cpup(iprop);
else
ssi->fifo_depth = 8;
/* Use dual FIFO mode depending on the support from SDMA script */
ret = of_property_read_u32_array(np, "dmas", dmas, 4);
if (ssi->use_dma && !ret && dmas[2] == IMX_DMATYPE_SSI_DUAL)
ssi->use_dual_fifo = true;
/*
* Backward compatible for older bindings by manually triggering the
* machine driver's probe(). Use /compatible property, including the
* address of CPU DAI driver structure, as the name of machine driver
*
* If card_name is set by AC97 earlier, bypass here since it uses a
* different name to register the device.
*/
if (!ssi->card_name[0] && of_get_property(np, "codec-handle", NULL)) {
struct device_node *root = of_find_node_by_path("/");
sprop = of_get_property(root, "compatible", NULL);
of_node_put(root);
/* Strip "fsl," in the compatible name if applicable */
p = strrchr(sprop, ',');
if (p)
sprop = p + 1;
snprintf(ssi->card_name, sizeof(ssi->card_name),
"snd-soc-%s", sprop);
make_lowercase(ssi->card_name);
ssi->card_idx = 0;
}
return 0;
}
static int fsl_ssi_probe(struct platform_device *pdev)
{
struct regmap_config regconfig = fsl_ssi_regconfig;
struct device *dev = &pdev->dev;
struct fsl_ssi *ssi;
struct resource *res;
void __iomem *iomem;
int ret = 0;
ssi = devm_kzalloc(dev, sizeof(*ssi), GFP_KERNEL);
if (!ssi)
return -ENOMEM;
ssi->dev = dev;
/* Probe from DT */
ret = fsl_ssi_probe_from_dt(ssi);
if (ret)
return ret;
if (fsl_ssi_is_ac97(ssi)) {
memcpy(&ssi->cpu_dai_drv, &fsl_ssi_ac97_dai,
sizeof(fsl_ssi_ac97_dai));
fsl_ac97_data = ssi;
} else {
memcpy(&ssi->cpu_dai_drv, &fsl_ssi_dai_template,
sizeof(fsl_ssi_dai_template));
}
ssi->cpu_dai_drv.name = dev_name(dev);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
iomem = devm_ioremap_resource(dev, res);
if (IS_ERR(iomem))
return PTR_ERR(iomem);
ssi->ssi_phys = res->start;
if (ssi->soc->imx21regs) {
/* No SACC{ST,EN,DIS} regs in imx21-class SSI */
regconfig.max_register = REG_SSI_SRMSK;
regconfig.num_reg_defaults_raw =
REG_SSI_SRMSK / sizeof(uint32_t) + 1;
}
if (ssi->has_ipg_clk_name)
ssi->regs = devm_regmap_init_mmio_clk(dev, "ipg", iomem,
&regconfig);
else
ssi->regs = devm_regmap_init_mmio(dev, iomem, &regconfig);
if (IS_ERR(ssi->regs)) {
dev_err(dev, "failed to init register map\n");
return PTR_ERR(ssi->regs);
}
ssi->irq = platform_get_irq(pdev, 0);
if (ssi->irq < 0) {
dev_err(dev, "no irq for node %s\n", pdev->name);
return ssi->irq;
}
/* Set software limitations for synchronous mode except AC97 */
if (ssi->synchronous && !fsl_ssi_is_ac97(ssi)) {
ssi->cpu_dai_drv.symmetric_rates = 1;
ssi->cpu_dai_drv.symmetric_channels = 1;
ssi->cpu_dai_drv.symmetric_samplebits = 1;
}
/*
* Configure TX and RX DMA watermarks -- when to send a DMA request
*
* Values should be tested to avoid FIFO under/over run. Set maxburst
* to fifo_watermark to maxiumize DMA transaction to reduce overhead.
*/
switch (ssi->fifo_depth) {
case 15:
/*
* Set to 8 as a balanced configuration -- When TX FIFO has 8
* empty slots, send a DMA request to fill these 8 slots. The
* remaining 7 slots should be able to allow DMA to finish the
* transaction before TX FIFO underruns; Same applies to RX.
*
* Tested with cases running at 48kHz @ 16 bits x 16 channels
*/
ssi->fifo_watermark = 8;
ssi->dma_maxburst = 8;
break;
case 8:
default:
/* Safely use old watermark configurations for older chips */
ssi->fifo_watermark = ssi->fifo_depth - 2;
ssi->dma_maxburst = ssi->fifo_depth - 2;
break;
}
dev_set_drvdata(dev, ssi);
if (ssi->soc->imx) {
ret = fsl_ssi_imx_probe(pdev, ssi, iomem);
if (ret)
return ret;
}
if (fsl_ssi_is_ac97(ssi)) {
mutex_init(&ssi->ac97_reg_lock);
ret = snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
if (ret) {
dev_err(dev, "failed to set AC'97 ops\n");
goto error_ac97_ops;
}
}
ret = devm_snd_soc_register_component(dev, &fsl_ssi_component,
&ssi->cpu_dai_drv, 1);
if (ret) {
dev_err(dev, "failed to register DAI: %d\n", ret);
goto error_asoc_register;
}
if (ssi->use_dma) {
ret = devm_request_irq(dev, ssi->irq, fsl_ssi_isr, 0,
dev_name(dev), ssi);
if (ret < 0) {
dev_err(dev, "failed to claim irq %u\n", ssi->irq);
goto error_asoc_register;
}
}
ret = fsl_ssi_debugfs_create(&ssi->dbg_stats, dev);
if (ret)
goto error_asoc_register;
/* Initially configures SSI registers */
fsl_ssi_hw_init(ssi);
/* Register a platform device for older bindings or AC97 */
if (ssi->card_name[0]) {
struct device *parent = dev;
/*
* Do not set SSI dev as the parent of AC97 CODEC device since
* it does not have a DT node. Otherwise ASoC core will assume
* CODEC has the same DT node as the SSI, so it may bypass the
* dai_probe() of SSI and then cause NULL DMA data pointers.
*/
if (fsl_ssi_is_ac97(ssi))
parent = NULL;
ssi->card_pdev = platform_device_register_data(parent,
ssi->card_name, ssi->card_idx, NULL, 0);
if (IS_ERR(ssi->card_pdev)) {
ret = PTR_ERR(ssi->card_pdev);
dev_err(dev, "failed to register %s: %d\n",
ssi->card_name, ret);
goto error_sound_card;
}
}
return 0;
error_sound_card:
fsl_ssi_debugfs_remove(&ssi->dbg_stats);
error_asoc_register:
if (fsl_ssi_is_ac97(ssi))
snd_soc_set_ac97_ops(NULL);
error_ac97_ops:
if (fsl_ssi_is_ac97(ssi))
mutex_destroy(&ssi->ac97_reg_lock);
if (ssi->soc->imx)
fsl_ssi_imx_clean(pdev, ssi);
return ret;
}
static int fsl_ssi_remove(struct platform_device *pdev)
{
struct fsl_ssi *ssi = dev_get_drvdata(&pdev->dev);
fsl_ssi_debugfs_remove(&ssi->dbg_stats);
if (ssi->card_pdev)
platform_device_unregister(ssi->card_pdev);
/* Clean up SSI registers */
fsl_ssi_hw_clean(ssi);
if (ssi->soc->imx)
fsl_ssi_imx_clean(pdev, ssi);
if (fsl_ssi_is_ac97(ssi)) {
snd_soc_set_ac97_ops(NULL);
mutex_destroy(&ssi->ac97_reg_lock);
}
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int fsl_ssi_suspend(struct device *dev)
{
struct fsl_ssi *ssi = dev_get_drvdata(dev);
struct regmap *regs = ssi->regs;
regmap_read(regs, REG_SSI_SFCSR, &ssi->regcache_sfcsr);
regmap_read(regs, REG_SSI_SACNT, &ssi->regcache_sacnt);
regcache_cache_only(regs, true);
regcache_mark_dirty(regs);
return 0;
}
static int fsl_ssi_resume(struct device *dev)
{
struct fsl_ssi *ssi = dev_get_drvdata(dev);
struct regmap *regs = ssi->regs;
regcache_cache_only(regs, false);
regmap_update_bits(regs, REG_SSI_SFCSR,
SSI_SFCSR_RFWM1_MASK | SSI_SFCSR_TFWM1_MASK |
SSI_SFCSR_RFWM0_MASK | SSI_SFCSR_TFWM0_MASK,
ssi->regcache_sfcsr);
regmap_write(regs, REG_SSI_SACNT, ssi->regcache_sacnt);
return regcache_sync(regs);
}
#endif /* CONFIG_PM_SLEEP */
static const struct dev_pm_ops fsl_ssi_pm = {
SET_SYSTEM_SLEEP_PM_OPS(fsl_ssi_suspend, fsl_ssi_resume)
};
static struct platform_driver fsl_ssi_driver = {
.driver = {
.name = "fsl-ssi-dai",
.of_match_table = fsl_ssi_ids,
.pm = &fsl_ssi_pm,
},
.probe = fsl_ssi_probe,
.remove = fsl_ssi_remove,
};
module_platform_driver(fsl_ssi_driver);
MODULE_ALIAS("platform:fsl-ssi-dai");
MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
MODULE_LICENSE("GPL v2");