1238 lines
29 KiB
C
1238 lines
29 KiB
C
/*
|
|
*
|
|
* Procedures for interfacing to the RTAS on CHRP machines.
|
|
*
|
|
* Peter Bergner, IBM March 2001.
|
|
* Copyright (C) 2001 IBM.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <stdarg.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/types.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/export.h>
|
|
#include <linux/init.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/reboot.h>
|
|
|
|
#include <asm/prom.h>
|
|
#include <asm/rtas.h>
|
|
#include <asm/hvcall.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/firmware.h>
|
|
#include <asm/page.h>
|
|
#include <asm/param.h>
|
|
#include <asm/delay.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/udbg.h>
|
|
#include <asm/syscalls.h>
|
|
#include <asm/smp.h>
|
|
#include <linux/atomic.h>
|
|
#include <asm/time.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/topology.h>
|
|
|
|
struct rtas_t rtas = {
|
|
.lock = __ARCH_SPIN_LOCK_UNLOCKED
|
|
};
|
|
EXPORT_SYMBOL(rtas);
|
|
|
|
DEFINE_SPINLOCK(rtas_data_buf_lock);
|
|
EXPORT_SYMBOL(rtas_data_buf_lock);
|
|
|
|
char rtas_data_buf[RTAS_DATA_BUF_SIZE] __cacheline_aligned;
|
|
EXPORT_SYMBOL(rtas_data_buf);
|
|
|
|
unsigned long rtas_rmo_buf;
|
|
|
|
/*
|
|
* If non-NULL, this gets called when the kernel terminates.
|
|
* This is done like this so rtas_flash can be a module.
|
|
*/
|
|
void (*rtas_flash_term_hook)(int);
|
|
EXPORT_SYMBOL(rtas_flash_term_hook);
|
|
|
|
/* RTAS use home made raw locking instead of spin_lock_irqsave
|
|
* because those can be called from within really nasty contexts
|
|
* such as having the timebase stopped which would lockup with
|
|
* normal locks and spinlock debugging enabled
|
|
*/
|
|
static unsigned long lock_rtas(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
preempt_disable();
|
|
arch_spin_lock_flags(&rtas.lock, flags);
|
|
return flags;
|
|
}
|
|
|
|
static void unlock_rtas(unsigned long flags)
|
|
{
|
|
arch_spin_unlock(&rtas.lock);
|
|
local_irq_restore(flags);
|
|
preempt_enable();
|
|
}
|
|
|
|
/*
|
|
* call_rtas_display_status and call_rtas_display_status_delay
|
|
* are designed only for very early low-level debugging, which
|
|
* is why the token is hard-coded to 10.
|
|
*/
|
|
static void call_rtas_display_status(unsigned char c)
|
|
{
|
|
struct rtas_args *args = &rtas.args;
|
|
unsigned long s;
|
|
|
|
if (!rtas.base)
|
|
return;
|
|
s = lock_rtas();
|
|
|
|
args->token = cpu_to_be32(10);
|
|
args->nargs = cpu_to_be32(1);
|
|
args->nret = cpu_to_be32(1);
|
|
args->rets = &(args->args[1]);
|
|
args->args[0] = cpu_to_be32(c);
|
|
|
|
enter_rtas(__pa(args));
|
|
|
|
unlock_rtas(s);
|
|
}
|
|
|
|
static void call_rtas_display_status_delay(char c)
|
|
{
|
|
static int pending_newline = 0; /* did last write end with unprinted newline? */
|
|
static int width = 16;
|
|
|
|
if (c == '\n') {
|
|
while (width-- > 0)
|
|
call_rtas_display_status(' ');
|
|
width = 16;
|
|
mdelay(500);
|
|
pending_newline = 1;
|
|
} else {
|
|
if (pending_newline) {
|
|
call_rtas_display_status('\r');
|
|
call_rtas_display_status('\n');
|
|
}
|
|
pending_newline = 0;
|
|
if (width--) {
|
|
call_rtas_display_status(c);
|
|
udelay(10000);
|
|
}
|
|
}
|
|
}
|
|
|
|
void __init udbg_init_rtas_panel(void)
|
|
{
|
|
udbg_putc = call_rtas_display_status_delay;
|
|
}
|
|
|
|
#ifdef CONFIG_UDBG_RTAS_CONSOLE
|
|
|
|
/* If you think you're dying before early_init_dt_scan_rtas() does its
|
|
* work, you can hard code the token values for your firmware here and
|
|
* hardcode rtas.base/entry etc.
|
|
*/
|
|
static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE;
|
|
static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE;
|
|
|
|
static void udbg_rtascon_putc(char c)
|
|
{
|
|
int tries;
|
|
|
|
if (!rtas.base)
|
|
return;
|
|
|
|
/* Add CRs before LFs */
|
|
if (c == '\n')
|
|
udbg_rtascon_putc('\r');
|
|
|
|
/* if there is more than one character to be displayed, wait a bit */
|
|
for (tries = 0; tries < 16; tries++) {
|
|
if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0)
|
|
break;
|
|
udelay(1000);
|
|
}
|
|
}
|
|
|
|
static int udbg_rtascon_getc_poll(void)
|
|
{
|
|
int c;
|
|
|
|
if (!rtas.base)
|
|
return -1;
|
|
|
|
if (rtas_call(rtas_getchar_token, 0, 2, &c))
|
|
return -1;
|
|
|
|
return c;
|
|
}
|
|
|
|
static int udbg_rtascon_getc(void)
|
|
{
|
|
int c;
|
|
|
|
while ((c = udbg_rtascon_getc_poll()) == -1)
|
|
;
|
|
|
|
return c;
|
|
}
|
|
|
|
|
|
void __init udbg_init_rtas_console(void)
|
|
{
|
|
udbg_putc = udbg_rtascon_putc;
|
|
udbg_getc = udbg_rtascon_getc;
|
|
udbg_getc_poll = udbg_rtascon_getc_poll;
|
|
}
|
|
#endif /* CONFIG_UDBG_RTAS_CONSOLE */
|
|
|
|
void rtas_progress(char *s, unsigned short hex)
|
|
{
|
|
struct device_node *root;
|
|
int width;
|
|
const __be32 *p;
|
|
char *os;
|
|
static int display_character, set_indicator;
|
|
static int display_width, display_lines, form_feed;
|
|
static const int *row_width;
|
|
static DEFINE_SPINLOCK(progress_lock);
|
|
static int current_line;
|
|
static int pending_newline = 0; /* did last write end with unprinted newline? */
|
|
|
|
if (!rtas.base)
|
|
return;
|
|
|
|
if (display_width == 0) {
|
|
display_width = 0x10;
|
|
if ((root = of_find_node_by_path("/rtas"))) {
|
|
if ((p = of_get_property(root,
|
|
"ibm,display-line-length", NULL)))
|
|
display_width = be32_to_cpu(*p);
|
|
if ((p = of_get_property(root,
|
|
"ibm,form-feed", NULL)))
|
|
form_feed = be32_to_cpu(*p);
|
|
if ((p = of_get_property(root,
|
|
"ibm,display-number-of-lines", NULL)))
|
|
display_lines = be32_to_cpu(*p);
|
|
row_width = of_get_property(root,
|
|
"ibm,display-truncation-length", NULL);
|
|
of_node_put(root);
|
|
}
|
|
display_character = rtas_token("display-character");
|
|
set_indicator = rtas_token("set-indicator");
|
|
}
|
|
|
|
if (display_character == RTAS_UNKNOWN_SERVICE) {
|
|
/* use hex display if available */
|
|
if (set_indicator != RTAS_UNKNOWN_SERVICE)
|
|
rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex);
|
|
return;
|
|
}
|
|
|
|
spin_lock(&progress_lock);
|
|
|
|
/*
|
|
* Last write ended with newline, but we didn't print it since
|
|
* it would just clear the bottom line of output. Print it now
|
|
* instead.
|
|
*
|
|
* If no newline is pending and form feed is supported, clear the
|
|
* display with a form feed; otherwise, print a CR to start output
|
|
* at the beginning of the line.
|
|
*/
|
|
if (pending_newline) {
|
|
rtas_call(display_character, 1, 1, NULL, '\r');
|
|
rtas_call(display_character, 1, 1, NULL, '\n');
|
|
pending_newline = 0;
|
|
} else {
|
|
current_line = 0;
|
|
if (form_feed)
|
|
rtas_call(display_character, 1, 1, NULL,
|
|
(char)form_feed);
|
|
else
|
|
rtas_call(display_character, 1, 1, NULL, '\r');
|
|
}
|
|
|
|
if (row_width)
|
|
width = row_width[current_line];
|
|
else
|
|
width = display_width;
|
|
os = s;
|
|
while (*os) {
|
|
if (*os == '\n' || *os == '\r') {
|
|
/* If newline is the last character, save it
|
|
* until next call to avoid bumping up the
|
|
* display output.
|
|
*/
|
|
if (*os == '\n' && !os[1]) {
|
|
pending_newline = 1;
|
|
current_line++;
|
|
if (current_line > display_lines-1)
|
|
current_line = display_lines-1;
|
|
spin_unlock(&progress_lock);
|
|
return;
|
|
}
|
|
|
|
/* RTAS wants CR-LF, not just LF */
|
|
|
|
if (*os == '\n') {
|
|
rtas_call(display_character, 1, 1, NULL, '\r');
|
|
rtas_call(display_character, 1, 1, NULL, '\n');
|
|
} else {
|
|
/* CR might be used to re-draw a line, so we'll
|
|
* leave it alone and not add LF.
|
|
*/
|
|
rtas_call(display_character, 1, 1, NULL, *os);
|
|
}
|
|
|
|
if (row_width)
|
|
width = row_width[current_line];
|
|
else
|
|
width = display_width;
|
|
} else {
|
|
width--;
|
|
rtas_call(display_character, 1, 1, NULL, *os);
|
|
}
|
|
|
|
os++;
|
|
|
|
/* if we overwrite the screen length */
|
|
if (width <= 0)
|
|
while ((*os != 0) && (*os != '\n') && (*os != '\r'))
|
|
os++;
|
|
}
|
|
|
|
spin_unlock(&progress_lock);
|
|
}
|
|
EXPORT_SYMBOL(rtas_progress); /* needed by rtas_flash module */
|
|
|
|
int rtas_token(const char *service)
|
|
{
|
|
const __be32 *tokp;
|
|
if (rtas.dev == NULL)
|
|
return RTAS_UNKNOWN_SERVICE;
|
|
tokp = of_get_property(rtas.dev, service, NULL);
|
|
return tokp ? be32_to_cpu(*tokp) : RTAS_UNKNOWN_SERVICE;
|
|
}
|
|
EXPORT_SYMBOL(rtas_token);
|
|
|
|
int rtas_service_present(const char *service)
|
|
{
|
|
return rtas_token(service) != RTAS_UNKNOWN_SERVICE;
|
|
}
|
|
EXPORT_SYMBOL(rtas_service_present);
|
|
|
|
#ifdef CONFIG_RTAS_ERROR_LOGGING
|
|
/*
|
|
* Return the firmware-specified size of the error log buffer
|
|
* for all rtas calls that require an error buffer argument.
|
|
* This includes 'check-exception' and 'rtas-last-error'.
|
|
*/
|
|
int rtas_get_error_log_max(void)
|
|
{
|
|
static int rtas_error_log_max;
|
|
if (rtas_error_log_max)
|
|
return rtas_error_log_max;
|
|
|
|
rtas_error_log_max = rtas_token ("rtas-error-log-max");
|
|
if ((rtas_error_log_max == RTAS_UNKNOWN_SERVICE) ||
|
|
(rtas_error_log_max > RTAS_ERROR_LOG_MAX)) {
|
|
printk (KERN_WARNING "RTAS: bad log buffer size %d\n",
|
|
rtas_error_log_max);
|
|
rtas_error_log_max = RTAS_ERROR_LOG_MAX;
|
|
}
|
|
return rtas_error_log_max;
|
|
}
|
|
EXPORT_SYMBOL(rtas_get_error_log_max);
|
|
|
|
|
|
static char rtas_err_buf[RTAS_ERROR_LOG_MAX];
|
|
static int rtas_last_error_token;
|
|
|
|
/** Return a copy of the detailed error text associated with the
|
|
* most recent failed call to rtas. Because the error text
|
|
* might go stale if there are any other intervening rtas calls,
|
|
* this routine must be called atomically with whatever produced
|
|
* the error (i.e. with rtas.lock still held from the previous call).
|
|
*/
|
|
static char *__fetch_rtas_last_error(char *altbuf)
|
|
{
|
|
struct rtas_args err_args, save_args;
|
|
u32 bufsz;
|
|
char *buf = NULL;
|
|
|
|
if (rtas_last_error_token == -1)
|
|
return NULL;
|
|
|
|
bufsz = rtas_get_error_log_max();
|
|
|
|
err_args.token = cpu_to_be32(rtas_last_error_token);
|
|
err_args.nargs = cpu_to_be32(2);
|
|
err_args.nret = cpu_to_be32(1);
|
|
err_args.args[0] = cpu_to_be32(__pa(rtas_err_buf));
|
|
err_args.args[1] = cpu_to_be32(bufsz);
|
|
err_args.args[2] = 0;
|
|
|
|
save_args = rtas.args;
|
|
rtas.args = err_args;
|
|
|
|
enter_rtas(__pa(&rtas.args));
|
|
|
|
err_args = rtas.args;
|
|
rtas.args = save_args;
|
|
|
|
/* Log the error in the unlikely case that there was one. */
|
|
if (unlikely(err_args.args[2] == 0)) {
|
|
if (altbuf) {
|
|
buf = altbuf;
|
|
} else {
|
|
buf = rtas_err_buf;
|
|
if (slab_is_available())
|
|
buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC);
|
|
}
|
|
if (buf)
|
|
memcpy(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX);
|
|
}
|
|
|
|
return buf;
|
|
}
|
|
|
|
#define get_errorlog_buffer() kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL)
|
|
|
|
#else /* CONFIG_RTAS_ERROR_LOGGING */
|
|
#define __fetch_rtas_last_error(x) NULL
|
|
#define get_errorlog_buffer() NULL
|
|
#endif
|
|
|
|
int rtas_call(int token, int nargs, int nret, int *outputs, ...)
|
|
{
|
|
va_list list;
|
|
int i;
|
|
unsigned long s;
|
|
struct rtas_args *rtas_args;
|
|
char *buff_copy = NULL;
|
|
int ret;
|
|
|
|
if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE)
|
|
return -1;
|
|
|
|
s = lock_rtas();
|
|
rtas_args = &rtas.args;
|
|
|
|
rtas_args->token = cpu_to_be32(token);
|
|
rtas_args->nargs = cpu_to_be32(nargs);
|
|
rtas_args->nret = cpu_to_be32(nret);
|
|
rtas_args->rets = &(rtas_args->args[nargs]);
|
|
va_start(list, outputs);
|
|
for (i = 0; i < nargs; ++i)
|
|
rtas_args->args[i] = cpu_to_be32(va_arg(list, __u32));
|
|
va_end(list);
|
|
|
|
for (i = 0; i < nret; ++i)
|
|
rtas_args->rets[i] = 0;
|
|
|
|
enter_rtas(__pa(rtas_args));
|
|
|
|
/* A -1 return code indicates that the last command couldn't
|
|
be completed due to a hardware error. */
|
|
if (be32_to_cpu(rtas_args->rets[0]) == -1)
|
|
buff_copy = __fetch_rtas_last_error(NULL);
|
|
|
|
if (nret > 1 && outputs != NULL)
|
|
for (i = 0; i < nret-1; ++i)
|
|
outputs[i] = be32_to_cpu(rtas_args->rets[i+1]);
|
|
ret = (nret > 0)? be32_to_cpu(rtas_args->rets[0]): 0;
|
|
|
|
unlock_rtas(s);
|
|
|
|
if (buff_copy) {
|
|
log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0);
|
|
if (slab_is_available())
|
|
kfree(buff_copy);
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(rtas_call);
|
|
|
|
/* For RTAS_BUSY (-2), delay for 1 millisecond. For an extended busy status
|
|
* code of 990n, perform the hinted delay of 10^n (last digit) milliseconds.
|
|
*/
|
|
unsigned int rtas_busy_delay_time(int status)
|
|
{
|
|
int order;
|
|
unsigned int ms = 0;
|
|
|
|
if (status == RTAS_BUSY) {
|
|
ms = 1;
|
|
} else if (status >= RTAS_EXTENDED_DELAY_MIN &&
|
|
status <= RTAS_EXTENDED_DELAY_MAX) {
|
|
order = status - RTAS_EXTENDED_DELAY_MIN;
|
|
for (ms = 1; order > 0; order--)
|
|
ms *= 10;
|
|
}
|
|
|
|
return ms;
|
|
}
|
|
EXPORT_SYMBOL(rtas_busy_delay_time);
|
|
|
|
/* For an RTAS busy status code, perform the hinted delay. */
|
|
unsigned int rtas_busy_delay(int status)
|
|
{
|
|
unsigned int ms;
|
|
|
|
might_sleep();
|
|
ms = rtas_busy_delay_time(status);
|
|
if (ms && need_resched())
|
|
msleep(ms);
|
|
|
|
return ms;
|
|
}
|
|
EXPORT_SYMBOL(rtas_busy_delay);
|
|
|
|
static int rtas_error_rc(int rtas_rc)
|
|
{
|
|
int rc;
|
|
|
|
switch (rtas_rc) {
|
|
case -1: /* Hardware Error */
|
|
rc = -EIO;
|
|
break;
|
|
case -3: /* Bad indicator/domain/etc */
|
|
rc = -EINVAL;
|
|
break;
|
|
case -9000: /* Isolation error */
|
|
rc = -EFAULT;
|
|
break;
|
|
case -9001: /* Outstanding TCE/PTE */
|
|
rc = -EEXIST;
|
|
break;
|
|
case -9002: /* No usable slot */
|
|
rc = -ENODEV;
|
|
break;
|
|
default:
|
|
printk(KERN_ERR "%s: unexpected RTAS error %d\n",
|
|
__func__, rtas_rc);
|
|
rc = -ERANGE;
|
|
break;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
int rtas_get_power_level(int powerdomain, int *level)
|
|
{
|
|
int token = rtas_token("get-power-level");
|
|
int rc;
|
|
|
|
if (token == RTAS_UNKNOWN_SERVICE)
|
|
return -ENOENT;
|
|
|
|
while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY)
|
|
udelay(1);
|
|
|
|
if (rc < 0)
|
|
return rtas_error_rc(rc);
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(rtas_get_power_level);
|
|
|
|
int rtas_set_power_level(int powerdomain, int level, int *setlevel)
|
|
{
|
|
int token = rtas_token("set-power-level");
|
|
int rc;
|
|
|
|
if (token == RTAS_UNKNOWN_SERVICE)
|
|
return -ENOENT;
|
|
|
|
do {
|
|
rc = rtas_call(token, 2, 2, setlevel, powerdomain, level);
|
|
} while (rtas_busy_delay(rc));
|
|
|
|
if (rc < 0)
|
|
return rtas_error_rc(rc);
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(rtas_set_power_level);
|
|
|
|
int rtas_get_sensor(int sensor, int index, int *state)
|
|
{
|
|
int token = rtas_token("get-sensor-state");
|
|
int rc;
|
|
|
|
if (token == RTAS_UNKNOWN_SERVICE)
|
|
return -ENOENT;
|
|
|
|
do {
|
|
rc = rtas_call(token, 2, 2, state, sensor, index);
|
|
} while (rtas_busy_delay(rc));
|
|
|
|
if (rc < 0)
|
|
return rtas_error_rc(rc);
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(rtas_get_sensor);
|
|
|
|
int rtas_get_sensor_fast(int sensor, int index, int *state)
|
|
{
|
|
int token = rtas_token("get-sensor-state");
|
|
int rc;
|
|
|
|
if (token == RTAS_UNKNOWN_SERVICE)
|
|
return -ENOENT;
|
|
|
|
rc = rtas_call(token, 2, 2, state, sensor, index);
|
|
WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
|
|
rc <= RTAS_EXTENDED_DELAY_MAX));
|
|
|
|
if (rc < 0)
|
|
return rtas_error_rc(rc);
|
|
return rc;
|
|
}
|
|
|
|
bool rtas_indicator_present(int token, int *maxindex)
|
|
{
|
|
int proplen, count, i;
|
|
const struct indicator_elem {
|
|
__be32 token;
|
|
__be32 maxindex;
|
|
} *indicators;
|
|
|
|
indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen);
|
|
if (!indicators)
|
|
return false;
|
|
|
|
count = proplen / sizeof(struct indicator_elem);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
if (__be32_to_cpu(indicators[i].token) != token)
|
|
continue;
|
|
if (maxindex)
|
|
*maxindex = __be32_to_cpu(indicators[i].maxindex);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL(rtas_indicator_present);
|
|
|
|
int rtas_set_indicator(int indicator, int index, int new_value)
|
|
{
|
|
int token = rtas_token("set-indicator");
|
|
int rc;
|
|
|
|
if (token == RTAS_UNKNOWN_SERVICE)
|
|
return -ENOENT;
|
|
|
|
do {
|
|
rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
|
|
} while (rtas_busy_delay(rc));
|
|
|
|
if (rc < 0)
|
|
return rtas_error_rc(rc);
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(rtas_set_indicator);
|
|
|
|
/*
|
|
* Ignoring RTAS extended delay
|
|
*/
|
|
int rtas_set_indicator_fast(int indicator, int index, int new_value)
|
|
{
|
|
int rc;
|
|
int token = rtas_token("set-indicator");
|
|
|
|
if (token == RTAS_UNKNOWN_SERVICE)
|
|
return -ENOENT;
|
|
|
|
rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
|
|
|
|
WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
|
|
rc <= RTAS_EXTENDED_DELAY_MAX));
|
|
|
|
if (rc < 0)
|
|
return rtas_error_rc(rc);
|
|
|
|
return rc;
|
|
}
|
|
|
|
void rtas_restart(char *cmd)
|
|
{
|
|
if (rtas_flash_term_hook)
|
|
rtas_flash_term_hook(SYS_RESTART);
|
|
printk("RTAS system-reboot returned %d\n",
|
|
rtas_call(rtas_token("system-reboot"), 0, 1, NULL));
|
|
for (;;);
|
|
}
|
|
|
|
void rtas_power_off(void)
|
|
{
|
|
if (rtas_flash_term_hook)
|
|
rtas_flash_term_hook(SYS_POWER_OFF);
|
|
/* allow power on only with power button press */
|
|
printk("RTAS power-off returned %d\n",
|
|
rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1));
|
|
for (;;);
|
|
}
|
|
|
|
void rtas_halt(void)
|
|
{
|
|
if (rtas_flash_term_hook)
|
|
rtas_flash_term_hook(SYS_HALT);
|
|
/* allow power on only with power button press */
|
|
printk("RTAS power-off returned %d\n",
|
|
rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1));
|
|
for (;;);
|
|
}
|
|
|
|
/* Must be in the RMO region, so we place it here */
|
|
static char rtas_os_term_buf[2048];
|
|
|
|
void rtas_os_term(char *str)
|
|
{
|
|
int status;
|
|
|
|
/*
|
|
* Firmware with the ibm,extended-os-term property is guaranteed
|
|
* to always return from an ibm,os-term call. Earlier versions without
|
|
* this property may terminate the partition which we want to avoid
|
|
* since it interferes with panic_timeout.
|
|
*/
|
|
if (RTAS_UNKNOWN_SERVICE == rtas_token("ibm,os-term") ||
|
|
RTAS_UNKNOWN_SERVICE == rtas_token("ibm,extended-os-term"))
|
|
return;
|
|
|
|
snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str);
|
|
|
|
do {
|
|
status = rtas_call(rtas_token("ibm,os-term"), 1, 1, NULL,
|
|
__pa(rtas_os_term_buf));
|
|
} while (rtas_busy_delay(status));
|
|
|
|
if (status != 0)
|
|
printk(KERN_EMERG "ibm,os-term call failed %d\n", status);
|
|
}
|
|
|
|
static int ibm_suspend_me_token = RTAS_UNKNOWN_SERVICE;
|
|
#ifdef CONFIG_PPC_PSERIES
|
|
static int __rtas_suspend_last_cpu(struct rtas_suspend_me_data *data, int wake_when_done)
|
|
{
|
|
u16 slb_size = mmu_slb_size;
|
|
int rc = H_MULTI_THREADS_ACTIVE;
|
|
int cpu;
|
|
|
|
slb_set_size(SLB_MIN_SIZE);
|
|
printk(KERN_DEBUG "calling ibm,suspend-me on cpu %i\n", smp_processor_id());
|
|
|
|
while (rc == H_MULTI_THREADS_ACTIVE && !atomic_read(&data->done) &&
|
|
!atomic_read(&data->error))
|
|
rc = rtas_call(data->token, 0, 1, NULL);
|
|
|
|
if (rc || atomic_read(&data->error)) {
|
|
printk(KERN_DEBUG "ibm,suspend-me returned %d\n", rc);
|
|
slb_set_size(slb_size);
|
|
}
|
|
|
|
if (atomic_read(&data->error))
|
|
rc = atomic_read(&data->error);
|
|
|
|
atomic_set(&data->error, rc);
|
|
pSeries_coalesce_init();
|
|
|
|
if (wake_when_done) {
|
|
atomic_set(&data->done, 1);
|
|
|
|
for_each_online_cpu(cpu)
|
|
plpar_hcall_norets(H_PROD, get_hard_smp_processor_id(cpu));
|
|
}
|
|
|
|
if (atomic_dec_return(&data->working) == 0)
|
|
complete(data->complete);
|
|
|
|
return rc;
|
|
}
|
|
|
|
int rtas_suspend_last_cpu(struct rtas_suspend_me_data *data)
|
|
{
|
|
atomic_inc(&data->working);
|
|
return __rtas_suspend_last_cpu(data, 0);
|
|
}
|
|
|
|
static int __rtas_suspend_cpu(struct rtas_suspend_me_data *data, int wake_when_done)
|
|
{
|
|
long rc = H_SUCCESS;
|
|
unsigned long msr_save;
|
|
int cpu;
|
|
|
|
atomic_inc(&data->working);
|
|
|
|
/* really need to ensure MSR.EE is off for H_JOIN */
|
|
msr_save = mfmsr();
|
|
mtmsr(msr_save & ~(MSR_EE));
|
|
|
|
while (rc == H_SUCCESS && !atomic_read(&data->done) && !atomic_read(&data->error))
|
|
rc = plpar_hcall_norets(H_JOIN);
|
|
|
|
mtmsr(msr_save);
|
|
|
|
if (rc == H_SUCCESS) {
|
|
/* This cpu was prodded and the suspend is complete. */
|
|
goto out;
|
|
} else if (rc == H_CONTINUE) {
|
|
/* All other cpus are in H_JOIN, this cpu does
|
|
* the suspend.
|
|
*/
|
|
return __rtas_suspend_last_cpu(data, wake_when_done);
|
|
} else {
|
|
printk(KERN_ERR "H_JOIN on cpu %i failed with rc = %ld\n",
|
|
smp_processor_id(), rc);
|
|
atomic_set(&data->error, rc);
|
|
}
|
|
|
|
if (wake_when_done) {
|
|
atomic_set(&data->done, 1);
|
|
|
|
/* This cpu did the suspend or got an error; in either case,
|
|
* we need to prod all other other cpus out of join state.
|
|
* Extra prods are harmless.
|
|
*/
|
|
for_each_online_cpu(cpu)
|
|
plpar_hcall_norets(H_PROD, get_hard_smp_processor_id(cpu));
|
|
}
|
|
out:
|
|
if (atomic_dec_return(&data->working) == 0)
|
|
complete(data->complete);
|
|
return rc;
|
|
}
|
|
|
|
int rtas_suspend_cpu(struct rtas_suspend_me_data *data)
|
|
{
|
|
return __rtas_suspend_cpu(data, 0);
|
|
}
|
|
|
|
static void rtas_percpu_suspend_me(void *info)
|
|
{
|
|
__rtas_suspend_cpu((struct rtas_suspend_me_data *)info, 1);
|
|
}
|
|
|
|
enum rtas_cpu_state {
|
|
DOWN,
|
|
UP,
|
|
};
|
|
|
|
#ifndef CONFIG_SMP
|
|
static int rtas_cpu_state_change_mask(enum rtas_cpu_state state,
|
|
cpumask_var_t cpus)
|
|
{
|
|
if (!cpumask_empty(cpus)) {
|
|
cpumask_clear(cpus);
|
|
return -EINVAL;
|
|
} else
|
|
return 0;
|
|
}
|
|
#else
|
|
/* On return cpumask will be altered to indicate CPUs changed.
|
|
* CPUs with states changed will be set in the mask,
|
|
* CPUs with status unchanged will be unset in the mask. */
|
|
static int rtas_cpu_state_change_mask(enum rtas_cpu_state state,
|
|
cpumask_var_t cpus)
|
|
{
|
|
int cpu;
|
|
int cpuret = 0;
|
|
int ret = 0;
|
|
|
|
if (cpumask_empty(cpus))
|
|
return 0;
|
|
|
|
for_each_cpu(cpu, cpus) {
|
|
switch (state) {
|
|
case DOWN:
|
|
cpuret = cpu_down(cpu);
|
|
break;
|
|
case UP:
|
|
cpuret = cpu_up(cpu);
|
|
break;
|
|
}
|
|
if (cpuret) {
|
|
pr_debug("%s: cpu_%s for cpu#%d returned %d.\n",
|
|
__func__,
|
|
((state == UP) ? "up" : "down"),
|
|
cpu, cpuret);
|
|
if (!ret)
|
|
ret = cpuret;
|
|
if (state == UP) {
|
|
/* clear bits for unchanged cpus, return */
|
|
cpumask_shift_right(cpus, cpus, cpu);
|
|
cpumask_shift_left(cpus, cpus, cpu);
|
|
break;
|
|
} else {
|
|
/* clear bit for unchanged cpu, continue */
|
|
cpumask_clear_cpu(cpu, cpus);
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
int rtas_online_cpus_mask(cpumask_var_t cpus)
|
|
{
|
|
int ret;
|
|
|
|
ret = rtas_cpu_state_change_mask(UP, cpus);
|
|
|
|
if (ret) {
|
|
cpumask_var_t tmp_mask;
|
|
|
|
if (!alloc_cpumask_var(&tmp_mask, GFP_TEMPORARY))
|
|
return ret;
|
|
|
|
/* Use tmp_mask to preserve cpus mask from first failure */
|
|
cpumask_copy(tmp_mask, cpus);
|
|
rtas_offline_cpus_mask(tmp_mask);
|
|
free_cpumask_var(tmp_mask);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(rtas_online_cpus_mask);
|
|
|
|
int rtas_offline_cpus_mask(cpumask_var_t cpus)
|
|
{
|
|
return rtas_cpu_state_change_mask(DOWN, cpus);
|
|
}
|
|
EXPORT_SYMBOL(rtas_offline_cpus_mask);
|
|
|
|
int rtas_ibm_suspend_me(u64 handle)
|
|
{
|
|
long state;
|
|
long rc;
|
|
unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
|
|
struct rtas_suspend_me_data data;
|
|
DECLARE_COMPLETION_ONSTACK(done);
|
|
cpumask_var_t offline_mask;
|
|
int cpuret;
|
|
|
|
if (!rtas_service_present("ibm,suspend-me"))
|
|
return -ENOSYS;
|
|
|
|
/* Make sure the state is valid */
|
|
rc = plpar_hcall(H_VASI_STATE, retbuf, handle);
|
|
|
|
state = retbuf[0];
|
|
|
|
if (rc) {
|
|
printk(KERN_ERR "rtas_ibm_suspend_me: vasi_state returned %ld\n",rc);
|
|
return rc;
|
|
} else if (state == H_VASI_ENABLED) {
|
|
return -EAGAIN;
|
|
} else if (state != H_VASI_SUSPENDING) {
|
|
printk(KERN_ERR "rtas_ibm_suspend_me: vasi_state returned state %ld\n",
|
|
state);
|
|
return -EIO;
|
|
}
|
|
|
|
if (!alloc_cpumask_var(&offline_mask, GFP_TEMPORARY))
|
|
return -ENOMEM;
|
|
|
|
atomic_set(&data.working, 0);
|
|
atomic_set(&data.done, 0);
|
|
atomic_set(&data.error, 0);
|
|
data.token = rtas_token("ibm,suspend-me");
|
|
data.complete = &done;
|
|
|
|
/* All present CPUs must be online */
|
|
cpumask_andnot(offline_mask, cpu_present_mask, cpu_online_mask);
|
|
cpuret = rtas_online_cpus_mask(offline_mask);
|
|
if (cpuret) {
|
|
pr_err("%s: Could not bring present CPUs online.\n", __func__);
|
|
atomic_set(&data.error, cpuret);
|
|
goto out;
|
|
}
|
|
|
|
stop_topology_update();
|
|
|
|
/* Call function on all CPUs. One of us will make the
|
|
* rtas call
|
|
*/
|
|
if (on_each_cpu(rtas_percpu_suspend_me, &data, 0))
|
|
atomic_set(&data.error, -EINVAL);
|
|
|
|
wait_for_completion(&done);
|
|
|
|
if (atomic_read(&data.error) != 0)
|
|
printk(KERN_ERR "Error doing global join\n");
|
|
|
|
start_topology_update();
|
|
|
|
/* Take down CPUs not online prior to suspend */
|
|
cpuret = rtas_offline_cpus_mask(offline_mask);
|
|
if (cpuret)
|
|
pr_warn("%s: Could not restore CPUs to offline state.\n",
|
|
__func__);
|
|
|
|
out:
|
|
free_cpumask_var(offline_mask);
|
|
return atomic_read(&data.error);
|
|
}
|
|
#else /* CONFIG_PPC_PSERIES */
|
|
int rtas_ibm_suspend_me(u64 handle)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Find a specific pseries error log in an RTAS extended event log.
|
|
* @log: RTAS error/event log
|
|
* @section_id: two character section identifier
|
|
*
|
|
* Returns a pointer to the specified errorlog or NULL if not found.
|
|
*/
|
|
struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log,
|
|
uint16_t section_id)
|
|
{
|
|
struct rtas_ext_event_log_v6 *ext_log =
|
|
(struct rtas_ext_event_log_v6 *)log->buffer;
|
|
struct pseries_errorlog *sect;
|
|
unsigned char *p, *log_end;
|
|
uint32_t ext_log_length = rtas_error_extended_log_length(log);
|
|
uint8_t log_format = rtas_ext_event_log_format(ext_log);
|
|
uint32_t company_id = rtas_ext_event_company_id(ext_log);
|
|
|
|
/* Check that we understand the format */
|
|
if (ext_log_length < sizeof(struct rtas_ext_event_log_v6) ||
|
|
log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG ||
|
|
company_id != RTAS_V6EXT_COMPANY_ID_IBM)
|
|
return NULL;
|
|
|
|
log_end = log->buffer + ext_log_length;
|
|
p = ext_log->vendor_log;
|
|
|
|
while (p < log_end) {
|
|
sect = (struct pseries_errorlog *)p;
|
|
if (pseries_errorlog_id(sect) == section_id)
|
|
return sect;
|
|
p += pseries_errorlog_length(sect);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* We assume to be passed big endian arguments */
|
|
asmlinkage int ppc_rtas(struct rtas_args __user *uargs)
|
|
{
|
|
struct rtas_args args;
|
|
unsigned long flags;
|
|
char *buff_copy, *errbuf = NULL;
|
|
int nargs, nret, token;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (!rtas.entry)
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0)
|
|
return -EFAULT;
|
|
|
|
nargs = be32_to_cpu(args.nargs);
|
|
nret = be32_to_cpu(args.nret);
|
|
token = be32_to_cpu(args.token);
|
|
|
|
if (nargs > ARRAY_SIZE(args.args)
|
|
|| nret > ARRAY_SIZE(args.args)
|
|
|| nargs + nret > ARRAY_SIZE(args.args))
|
|
return -EINVAL;
|
|
|
|
/* Copy in args. */
|
|
if (copy_from_user(args.args, uargs->args,
|
|
nargs * sizeof(rtas_arg_t)) != 0)
|
|
return -EFAULT;
|
|
|
|
if (token == RTAS_UNKNOWN_SERVICE)
|
|
return -EINVAL;
|
|
|
|
args.rets = &args.args[nargs];
|
|
memset(args.rets, 0, nret * sizeof(rtas_arg_t));
|
|
|
|
/* Need to handle ibm,suspend_me call specially */
|
|
if (token == ibm_suspend_me_token) {
|
|
|
|
/*
|
|
* rtas_ibm_suspend_me assumes the streamid handle is in cpu
|
|
* endian, or at least the hcall within it requires it.
|
|
*/
|
|
int rc = 0;
|
|
u64 handle = ((u64)be32_to_cpu(args.args[0]) << 32)
|
|
| be32_to_cpu(args.args[1]);
|
|
rc = rtas_ibm_suspend_me(handle);
|
|
if (rc == -EAGAIN)
|
|
args.rets[0] = cpu_to_be32(RTAS_NOT_SUSPENDABLE);
|
|
else if (rc == -EIO)
|
|
args.rets[0] = cpu_to_be32(-1);
|
|
else if (rc)
|
|
return rc;
|
|
goto copy_return;
|
|
}
|
|
|
|
buff_copy = get_errorlog_buffer();
|
|
|
|
flags = lock_rtas();
|
|
|
|
rtas.args = args;
|
|
enter_rtas(__pa(&rtas.args));
|
|
args = rtas.args;
|
|
|
|
/* A -1 return code indicates that the last command couldn't
|
|
be completed due to a hardware error. */
|
|
if (be32_to_cpu(args.rets[0]) == -1)
|
|
errbuf = __fetch_rtas_last_error(buff_copy);
|
|
|
|
unlock_rtas(flags);
|
|
|
|
if (buff_copy) {
|
|
if (errbuf)
|
|
log_error(errbuf, ERR_TYPE_RTAS_LOG, 0);
|
|
kfree(buff_copy);
|
|
}
|
|
|
|
copy_return:
|
|
/* Copy out args. */
|
|
if (copy_to_user(uargs->args + nargs,
|
|
args.args + nargs,
|
|
nret * sizeof(rtas_arg_t)) != 0)
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Call early during boot, before mem init, to retrieve the RTAS
|
|
* information from the device-tree and allocate the RMO buffer for userland
|
|
* accesses.
|
|
*/
|
|
void __init rtas_initialize(void)
|
|
{
|
|
unsigned long rtas_region = RTAS_INSTANTIATE_MAX;
|
|
|
|
/* Get RTAS dev node and fill up our "rtas" structure with infos
|
|
* about it.
|
|
*/
|
|
rtas.dev = of_find_node_by_name(NULL, "rtas");
|
|
if (rtas.dev) {
|
|
const __be32 *basep, *entryp, *sizep;
|
|
|
|
basep = of_get_property(rtas.dev, "linux,rtas-base", NULL);
|
|
sizep = of_get_property(rtas.dev, "rtas-size", NULL);
|
|
if (basep != NULL && sizep != NULL) {
|
|
rtas.base = __be32_to_cpu(*basep);
|
|
rtas.size = __be32_to_cpu(*sizep);
|
|
entryp = of_get_property(rtas.dev,
|
|
"linux,rtas-entry", NULL);
|
|
if (entryp == NULL) /* Ugh */
|
|
rtas.entry = rtas.base;
|
|
else
|
|
rtas.entry = __be32_to_cpu(*entryp);
|
|
} else
|
|
rtas.dev = NULL;
|
|
}
|
|
if (!rtas.dev)
|
|
return;
|
|
|
|
/* If RTAS was found, allocate the RMO buffer for it and look for
|
|
* the stop-self token if any
|
|
*/
|
|
#ifdef CONFIG_PPC64
|
|
if (machine_is(pseries) && firmware_has_feature(FW_FEATURE_LPAR)) {
|
|
rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX);
|
|
ibm_suspend_me_token = rtas_token("ibm,suspend-me");
|
|
}
|
|
#endif
|
|
rtas_rmo_buf = memblock_alloc_base(RTAS_RMOBUF_MAX, PAGE_SIZE, rtas_region);
|
|
|
|
#ifdef CONFIG_RTAS_ERROR_LOGGING
|
|
rtas_last_error_token = rtas_token("rtas-last-error");
|
|
#endif
|
|
}
|
|
|
|
int __init early_init_dt_scan_rtas(unsigned long node,
|
|
const char *uname, int depth, void *data)
|
|
{
|
|
const u32 *basep, *entryp, *sizep;
|
|
|
|
if (depth != 1 || strcmp(uname, "rtas") != 0)
|
|
return 0;
|
|
|
|
basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
|
|
entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
|
|
sizep = of_get_flat_dt_prop(node, "rtas-size", NULL);
|
|
|
|
if (basep && entryp && sizep) {
|
|
rtas.base = *basep;
|
|
rtas.entry = *entryp;
|
|
rtas.size = *sizep;
|
|
}
|
|
|
|
#ifdef CONFIG_UDBG_RTAS_CONSOLE
|
|
basep = of_get_flat_dt_prop(node, "put-term-char", NULL);
|
|
if (basep)
|
|
rtas_putchar_token = *basep;
|
|
|
|
basep = of_get_flat_dt_prop(node, "get-term-char", NULL);
|
|
if (basep)
|
|
rtas_getchar_token = *basep;
|
|
|
|
if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE &&
|
|
rtas_getchar_token != RTAS_UNKNOWN_SERVICE)
|
|
udbg_init_rtas_console();
|
|
|
|
#endif
|
|
|
|
/* break now */
|
|
return 1;
|
|
}
|
|
|
|
static arch_spinlock_t timebase_lock;
|
|
static u64 timebase = 0;
|
|
|
|
void rtas_give_timebase(void)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
hard_irq_disable();
|
|
arch_spin_lock(&timebase_lock);
|
|
rtas_call(rtas_token("freeze-time-base"), 0, 1, NULL);
|
|
timebase = get_tb();
|
|
arch_spin_unlock(&timebase_lock);
|
|
|
|
while (timebase)
|
|
barrier();
|
|
rtas_call(rtas_token("thaw-time-base"), 0, 1, NULL);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
void rtas_take_timebase(void)
|
|
{
|
|
while (!timebase)
|
|
barrier();
|
|
arch_spin_lock(&timebase_lock);
|
|
set_tb(timebase >> 32, timebase & 0xffffffff);
|
|
timebase = 0;
|
|
arch_spin_unlock(&timebase_lock);
|
|
}
|