OpenCloudOS-Kernel/security/commoncap.c

345 lines
9.4 KiB
C

/* Common capabilities, needed by capability.o and root_plug.o
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
*/
#include <linux/capability.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/security.h>
#include <linux/file.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/ptrace.h>
#include <linux/xattr.h>
#include <linux/hugetlb.h>
int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
{
NETLINK_CB(skb).eff_cap = current->cap_effective;
return 0;
}
EXPORT_SYMBOL(cap_netlink_send);
int cap_netlink_recv(struct sk_buff *skb, int cap)
{
if (!cap_raised(NETLINK_CB(skb).eff_cap, cap))
return -EPERM;
return 0;
}
EXPORT_SYMBOL(cap_netlink_recv);
int cap_capable (struct task_struct *tsk, int cap)
{
/* Derived from include/linux/sched.h:capable. */
if (cap_raised(tsk->cap_effective, cap))
return 0;
return -EPERM;
}
int cap_settime(struct timespec *ts, struct timezone *tz)
{
if (!capable(CAP_SYS_TIME))
return -EPERM;
return 0;
}
int cap_ptrace (struct task_struct *parent, struct task_struct *child)
{
/* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */
if (!cap_issubset(child->cap_permitted, parent->cap_permitted) &&
!__capable(parent, CAP_SYS_PTRACE))
return -EPERM;
return 0;
}
int cap_capget (struct task_struct *target, kernel_cap_t *effective,
kernel_cap_t *inheritable, kernel_cap_t *permitted)
{
/* Derived from kernel/capability.c:sys_capget. */
*effective = cap_t (target->cap_effective);
*inheritable = cap_t (target->cap_inheritable);
*permitted = cap_t (target->cap_permitted);
return 0;
}
int cap_capset_check (struct task_struct *target, kernel_cap_t *effective,
kernel_cap_t *inheritable, kernel_cap_t *permitted)
{
/* Derived from kernel/capability.c:sys_capset. */
/* verify restrictions on target's new Inheritable set */
if (!cap_issubset (*inheritable,
cap_combine (target->cap_inheritable,
current->cap_permitted))) {
return -EPERM;
}
/* verify restrictions on target's new Permitted set */
if (!cap_issubset (*permitted,
cap_combine (target->cap_permitted,
current->cap_permitted))) {
return -EPERM;
}
/* verify the _new_Effective_ is a subset of the _new_Permitted_ */
if (!cap_issubset (*effective, *permitted)) {
return -EPERM;
}
return 0;
}
void cap_capset_set (struct task_struct *target, kernel_cap_t *effective,
kernel_cap_t *inheritable, kernel_cap_t *permitted)
{
target->cap_effective = *effective;
target->cap_inheritable = *inheritable;
target->cap_permitted = *permitted;
}
int cap_bprm_set_security (struct linux_binprm *bprm)
{
/* Copied from fs/exec.c:prepare_binprm. */
/* We don't have VFS support for capabilities yet */
cap_clear (bprm->cap_inheritable);
cap_clear (bprm->cap_permitted);
cap_clear (bprm->cap_effective);
/* To support inheritance of root-permissions and suid-root
* executables under compatibility mode, we raise all three
* capability sets for the file.
*
* If only the real uid is 0, we only raise the inheritable
* and permitted sets of the executable file.
*/
if (!issecure (SECURE_NOROOT)) {
if (bprm->e_uid == 0 || current->uid == 0) {
cap_set_full (bprm->cap_inheritable);
cap_set_full (bprm->cap_permitted);
}
if (bprm->e_uid == 0)
cap_set_full (bprm->cap_effective);
}
return 0;
}
void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
{
/* Derived from fs/exec.c:compute_creds. */
kernel_cap_t new_permitted, working;
new_permitted = cap_intersect (bprm->cap_permitted, cap_bset);
working = cap_intersect (bprm->cap_inheritable,
current->cap_inheritable);
new_permitted = cap_combine (new_permitted, working);
if (bprm->e_uid != current->uid || bprm->e_gid != current->gid ||
!cap_issubset (new_permitted, current->cap_permitted)) {
set_dumpable(current->mm, suid_dumpable);
if (unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
if (!capable(CAP_SETUID)) {
bprm->e_uid = current->uid;
bprm->e_gid = current->gid;
}
if (!capable (CAP_SETPCAP)) {
new_permitted = cap_intersect (new_permitted,
current->cap_permitted);
}
}
}
current->suid = current->euid = current->fsuid = bprm->e_uid;
current->sgid = current->egid = current->fsgid = bprm->e_gid;
/* For init, we want to retain the capabilities set
* in the init_task struct. Thus we skip the usual
* capability rules */
if (!is_init(current)) {
current->cap_permitted = new_permitted;
current->cap_effective =
cap_intersect (new_permitted, bprm->cap_effective);
}
/* AUD: Audit candidate if current->cap_effective is set */
current->keep_capabilities = 0;
}
int cap_bprm_secureexec (struct linux_binprm *bprm)
{
/* If/when this module is enhanced to incorporate capability
bits on files, the test below should be extended to also perform a
test between the old and new capability sets. For now,
it simply preserves the legacy decision algorithm used by
the old userland. */
return (current->euid != current->uid ||
current->egid != current->gid);
}
int cap_inode_setxattr(struct dentry *dentry, char *name, void *value,
size_t size, int flags)
{
if (!strncmp(name, XATTR_SECURITY_PREFIX,
sizeof(XATTR_SECURITY_PREFIX) - 1) &&
!capable(CAP_SYS_ADMIN))
return -EPERM;
return 0;
}
int cap_inode_removexattr(struct dentry *dentry, char *name)
{
if (!strncmp(name, XATTR_SECURITY_PREFIX,
sizeof(XATTR_SECURITY_PREFIX) - 1) &&
!capable(CAP_SYS_ADMIN))
return -EPERM;
return 0;
}
/* moved from kernel/sys.c. */
/*
* cap_emulate_setxuid() fixes the effective / permitted capabilities of
* a process after a call to setuid, setreuid, or setresuid.
*
* 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
* {r,e,s}uid != 0, the permitted and effective capabilities are
* cleared.
*
* 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
* capabilities of the process are cleared.
*
* 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
* capabilities are set to the permitted capabilities.
*
* fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
* never happen.
*
* -astor
*
* cevans - New behaviour, Oct '99
* A process may, via prctl(), elect to keep its capabilities when it
* calls setuid() and switches away from uid==0. Both permitted and
* effective sets will be retained.
* Without this change, it was impossible for a daemon to drop only some
* of its privilege. The call to setuid(!=0) would drop all privileges!
* Keeping uid 0 is not an option because uid 0 owns too many vital
* files..
* Thanks to Olaf Kirch and Peter Benie for spotting this.
*/
static inline void cap_emulate_setxuid (int old_ruid, int old_euid,
int old_suid)
{
if ((old_ruid == 0 || old_euid == 0 || old_suid == 0) &&
(current->uid != 0 && current->euid != 0 && current->suid != 0) &&
!current->keep_capabilities) {
cap_clear (current->cap_permitted);
cap_clear (current->cap_effective);
}
if (old_euid == 0 && current->euid != 0) {
cap_clear (current->cap_effective);
}
if (old_euid != 0 && current->euid == 0) {
current->cap_effective = current->cap_permitted;
}
}
int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid,
int flags)
{
switch (flags) {
case LSM_SETID_RE:
case LSM_SETID_ID:
case LSM_SETID_RES:
/* Copied from kernel/sys.c:setreuid/setuid/setresuid. */
if (!issecure (SECURE_NO_SETUID_FIXUP)) {
cap_emulate_setxuid (old_ruid, old_euid, old_suid);
}
break;
case LSM_SETID_FS:
{
uid_t old_fsuid = old_ruid;
/* Copied from kernel/sys.c:setfsuid. */
/*
* FIXME - is fsuser used for all CAP_FS_MASK capabilities?
* if not, we might be a bit too harsh here.
*/
if (!issecure (SECURE_NO_SETUID_FIXUP)) {
if (old_fsuid == 0 && current->fsuid != 0) {
cap_t (current->cap_effective) &=
~CAP_FS_MASK;
}
if (old_fsuid != 0 && current->fsuid == 0) {
cap_t (current->cap_effective) |=
(cap_t (current->cap_permitted) &
CAP_FS_MASK);
}
}
break;
}
default:
return -EINVAL;
}
return 0;
}
void cap_task_reparent_to_init (struct task_struct *p)
{
p->cap_effective = CAP_INIT_EFF_SET;
p->cap_inheritable = CAP_INIT_INH_SET;
p->cap_permitted = CAP_FULL_SET;
p->keep_capabilities = 0;
return;
}
int cap_syslog (int type)
{
if ((type != 3 && type != 10) && !capable(CAP_SYS_ADMIN))
return -EPERM;
return 0;
}
int cap_vm_enough_memory(struct mm_struct *mm, long pages)
{
int cap_sys_admin = 0;
if (cap_capable(current, CAP_SYS_ADMIN) == 0)
cap_sys_admin = 1;
return __vm_enough_memory(mm, pages, cap_sys_admin);
}
EXPORT_SYMBOL(cap_capable);
EXPORT_SYMBOL(cap_settime);
EXPORT_SYMBOL(cap_ptrace);
EXPORT_SYMBOL(cap_capget);
EXPORT_SYMBOL(cap_capset_check);
EXPORT_SYMBOL(cap_capset_set);
EXPORT_SYMBOL(cap_bprm_set_security);
EXPORT_SYMBOL(cap_bprm_apply_creds);
EXPORT_SYMBOL(cap_bprm_secureexec);
EXPORT_SYMBOL(cap_inode_setxattr);
EXPORT_SYMBOL(cap_inode_removexattr);
EXPORT_SYMBOL(cap_task_post_setuid);
EXPORT_SYMBOL(cap_task_reparent_to_init);
EXPORT_SYMBOL(cap_syslog);
EXPORT_SYMBOL(cap_vm_enough_memory);
MODULE_DESCRIPTION("Standard Linux Common Capabilities Security Module");
MODULE_LICENSE("GPL");