OpenCloudOS-Kernel/include/linux/slub_def.h

308 lines
8.3 KiB
C

#ifndef _LINUX_SLUB_DEF_H
#define _LINUX_SLUB_DEF_H
/*
* SLUB : A Slab allocator without object queues.
*
* (C) 2007 SGI, Christoph Lameter
*/
#include <linux/types.h>
#include <linux/gfp.h>
#include <linux/workqueue.h>
#include <linux/kobject.h>
#include <linux/kmemtrace.h>
#include <linux/kmemleak.h>
enum stat_item {
ALLOC_FASTPATH, /* Allocation from cpu slab */
ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
FREE_FASTPATH, /* Free to cpu slub */
FREE_SLOWPATH, /* Freeing not to cpu slab */
FREE_FROZEN, /* Freeing to frozen slab */
FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
FREE_REMOVE_PARTIAL, /* Freeing removes last object */
ALLOC_FROM_PARTIAL, /* Cpu slab acquired from partial list */
ALLOC_SLAB, /* Cpu slab acquired from page allocator */
ALLOC_REFILL, /* Refill cpu slab from slab freelist */
FREE_SLAB, /* Slab freed to the page allocator */
CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
ORDER_FALLBACK, /* Number of times fallback was necessary */
NR_SLUB_STAT_ITEMS };
struct kmem_cache_cpu {
void **freelist; /* Pointer to first free per cpu object */
struct page *page; /* The slab from which we are allocating */
int node; /* The node of the page (or -1 for debug) */
#ifdef CONFIG_SLUB_STATS
unsigned stat[NR_SLUB_STAT_ITEMS];
#endif
};
struct kmem_cache_node {
spinlock_t list_lock; /* Protect partial list and nr_partial */
unsigned long nr_partial;
struct list_head partial;
#ifdef CONFIG_SLUB_DEBUG
atomic_long_t nr_slabs;
atomic_long_t total_objects;
struct list_head full;
#endif
};
/*
* Word size structure that can be atomically updated or read and that
* contains both the order and the number of objects that a slab of the
* given order would contain.
*/
struct kmem_cache_order_objects {
unsigned long x;
};
/*
* Slab cache management.
*/
struct kmem_cache {
struct kmem_cache_cpu *cpu_slab;
/* Used for retriving partial slabs etc */
unsigned long flags;
int size; /* The size of an object including meta data */
int objsize; /* The size of an object without meta data */
int offset; /* Free pointer offset. */
struct kmem_cache_order_objects oo;
/* Allocation and freeing of slabs */
struct kmem_cache_order_objects max;
struct kmem_cache_order_objects min;
gfp_t allocflags; /* gfp flags to use on each alloc */
int refcount; /* Refcount for slab cache destroy */
void (*ctor)(void *);
int inuse; /* Offset to metadata */
int align; /* Alignment */
unsigned long min_partial;
const char *name; /* Name (only for display!) */
struct list_head list; /* List of slab caches */
#ifdef CONFIG_SLUB_DEBUG
struct kobject kobj; /* For sysfs */
#endif
#ifdef CONFIG_NUMA
/*
* Defragmentation by allocating from a remote node.
*/
int remote_node_defrag_ratio;
struct kmem_cache_node *node[MAX_NUMNODES];
#else
/* Avoid an extra cache line for UP */
struct kmem_cache_node local_node;
#endif
};
/*
* Kmalloc subsystem.
*/
#if defined(ARCH_KMALLOC_MINALIGN) && ARCH_KMALLOC_MINALIGN > 8
#define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN
#else
#define KMALLOC_MIN_SIZE 8
#endif
#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
#ifndef ARCH_KMALLOC_MINALIGN
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
#endif
#ifndef ARCH_SLAB_MINALIGN
#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
#endif
/*
* Maximum kmalloc object size handled by SLUB. Larger object allocations
* are passed through to the page allocator. The page allocator "fastpath"
* is relatively slow so we need this value sufficiently high so that
* performance critical objects are allocated through the SLUB fastpath.
*
* This should be dropped to PAGE_SIZE / 2 once the page allocator
* "fastpath" becomes competitive with the slab allocator fastpaths.
*/
#define SLUB_MAX_SIZE (2 * PAGE_SIZE)
#define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
#ifdef CONFIG_ZONE_DMA
#define SLUB_DMA __GFP_DMA
/* Reserve extra caches for potential DMA use */
#define KMALLOC_CACHES (2 * SLUB_PAGE_SHIFT)
#else
/* Disable DMA functionality */
#define SLUB_DMA (__force gfp_t)0
#define KMALLOC_CACHES SLUB_PAGE_SHIFT
#endif
/*
* We keep the general caches in an array of slab caches that are used for
* 2^x bytes of allocations.
*/
extern struct kmem_cache kmalloc_caches[KMALLOC_CACHES];
/*
* Sorry that the following has to be that ugly but some versions of GCC
* have trouble with constant propagation and loops.
*/
static __always_inline int kmalloc_index(size_t size)
{
if (!size)
return 0;
if (size <= KMALLOC_MIN_SIZE)
return KMALLOC_SHIFT_LOW;
if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
return 1;
if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
return 2;
if (size <= 8) return 3;
if (size <= 16) return 4;
if (size <= 32) return 5;
if (size <= 64) return 6;
if (size <= 128) return 7;
if (size <= 256) return 8;
if (size <= 512) return 9;
if (size <= 1024) return 10;
if (size <= 2 * 1024) return 11;
if (size <= 4 * 1024) return 12;
/*
* The following is only needed to support architectures with a larger page
* size than 4k.
*/
if (size <= 8 * 1024) return 13;
if (size <= 16 * 1024) return 14;
if (size <= 32 * 1024) return 15;
if (size <= 64 * 1024) return 16;
if (size <= 128 * 1024) return 17;
if (size <= 256 * 1024) return 18;
if (size <= 512 * 1024) return 19;
if (size <= 1024 * 1024) return 20;
if (size <= 2 * 1024 * 1024) return 21;
return -1;
/*
* What we really wanted to do and cannot do because of compiler issues is:
* int i;
* for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
* if (size <= (1 << i))
* return i;
*/
}
/*
* Find the slab cache for a given combination of allocation flags and size.
*
* This ought to end up with a global pointer to the right cache
* in kmalloc_caches.
*/
static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
{
int index = kmalloc_index(size);
if (index == 0)
return NULL;
return &kmalloc_caches[index];
}
void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
void *__kmalloc(size_t size, gfp_t flags);
#ifdef CONFIG_TRACING
extern void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags);
#else
static __always_inline void *
kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
{
return kmem_cache_alloc(s, gfpflags);
}
#endif
static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
{
unsigned int order = get_order(size);
void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
kmemleak_alloc(ret, size, 1, flags);
trace_kmalloc(_THIS_IP_, ret, size, PAGE_SIZE << order, flags);
return ret;
}
static __always_inline void *kmalloc(size_t size, gfp_t flags)
{
void *ret;
if (__builtin_constant_p(size)) {
if (size > SLUB_MAX_SIZE)
return kmalloc_large(size, flags);
if (!(flags & SLUB_DMA)) {
struct kmem_cache *s = kmalloc_slab(size);
if (!s)
return ZERO_SIZE_PTR;
ret = kmem_cache_alloc_notrace(s, flags);
trace_kmalloc(_THIS_IP_, ret, size, s->size, flags);
return ret;
}
}
return __kmalloc(size, flags);
}
#ifdef CONFIG_NUMA
void *__kmalloc_node(size_t size, gfp_t flags, int node);
void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
#ifdef CONFIG_TRACING
extern void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
gfp_t gfpflags,
int node);
#else
static __always_inline void *
kmem_cache_alloc_node_notrace(struct kmem_cache *s,
gfp_t gfpflags,
int node)
{
return kmem_cache_alloc_node(s, gfpflags, node);
}
#endif
static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
{
void *ret;
if (__builtin_constant_p(size) &&
size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
struct kmem_cache *s = kmalloc_slab(size);
if (!s)
return ZERO_SIZE_PTR;
ret = kmem_cache_alloc_node_notrace(s, flags, node);
trace_kmalloc_node(_THIS_IP_, ret,
size, s->size, flags, node);
return ret;
}
return __kmalloc_node(size, flags, node);
}
#endif
#endif /* _LINUX_SLUB_DEF_H */