8328 lines
201 KiB
C
8328 lines
201 KiB
C
/* bnx2.c: Broadcom NX2 network driver.
|
|
*
|
|
* Copyright (c) 2004-2009 Broadcom Corporation
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation.
|
|
*
|
|
* Written by: Michael Chan (mchan@broadcom.com)
|
|
*/
|
|
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/init.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/bitops.h>
|
|
#include <asm/io.h>
|
|
#include <asm/irq.h>
|
|
#include <linux/delay.h>
|
|
#include <asm/byteorder.h>
|
|
#include <asm/page.h>
|
|
#include <linux/time.h>
|
|
#include <linux/ethtool.h>
|
|
#include <linux/mii.h>
|
|
#include <linux/if_vlan.h>
|
|
#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
|
|
#define BCM_VLAN 1
|
|
#endif
|
|
#include <net/ip.h>
|
|
#include <net/tcp.h>
|
|
#include <net/checksum.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/crc32.h>
|
|
#include <linux/prefetch.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/firmware.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/list.h>
|
|
|
|
#if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
|
|
#define BCM_CNIC 1
|
|
#include "cnic_if.h"
|
|
#endif
|
|
#include "bnx2.h"
|
|
#include "bnx2_fw.h"
|
|
|
|
#define DRV_MODULE_NAME "bnx2"
|
|
#define PFX DRV_MODULE_NAME ": "
|
|
#define DRV_MODULE_VERSION "2.0.2"
|
|
#define DRV_MODULE_RELDATE "Aug 21, 2009"
|
|
#define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-5.0.0.j3.fw"
|
|
#define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-5.0.0.j3.fw"
|
|
#define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-5.0.0.j3.fw"
|
|
#define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-5.0.0.j3.fw"
|
|
#define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-5.0.0.j3.fw"
|
|
|
|
#define RUN_AT(x) (jiffies + (x))
|
|
|
|
/* Time in jiffies before concluding the transmitter is hung. */
|
|
#define TX_TIMEOUT (5*HZ)
|
|
|
|
static char version[] __devinitdata =
|
|
"Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
|
|
|
|
MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
|
|
MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_VERSION(DRV_MODULE_VERSION);
|
|
MODULE_FIRMWARE(FW_MIPS_FILE_06);
|
|
MODULE_FIRMWARE(FW_RV2P_FILE_06);
|
|
MODULE_FIRMWARE(FW_MIPS_FILE_09);
|
|
MODULE_FIRMWARE(FW_RV2P_FILE_09);
|
|
MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
|
|
|
|
static int disable_msi = 0;
|
|
|
|
module_param(disable_msi, int, 0);
|
|
MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
|
|
|
|
typedef enum {
|
|
BCM5706 = 0,
|
|
NC370T,
|
|
NC370I,
|
|
BCM5706S,
|
|
NC370F,
|
|
BCM5708,
|
|
BCM5708S,
|
|
BCM5709,
|
|
BCM5709S,
|
|
BCM5716,
|
|
BCM5716S,
|
|
} board_t;
|
|
|
|
/* indexed by board_t, above */
|
|
static struct {
|
|
char *name;
|
|
} board_info[] __devinitdata = {
|
|
{ "Broadcom NetXtreme II BCM5706 1000Base-T" },
|
|
{ "HP NC370T Multifunction Gigabit Server Adapter" },
|
|
{ "HP NC370i Multifunction Gigabit Server Adapter" },
|
|
{ "Broadcom NetXtreme II BCM5706 1000Base-SX" },
|
|
{ "HP NC370F Multifunction Gigabit Server Adapter" },
|
|
{ "Broadcom NetXtreme II BCM5708 1000Base-T" },
|
|
{ "Broadcom NetXtreme II BCM5708 1000Base-SX" },
|
|
{ "Broadcom NetXtreme II BCM5709 1000Base-T" },
|
|
{ "Broadcom NetXtreme II BCM5709 1000Base-SX" },
|
|
{ "Broadcom NetXtreme II BCM5716 1000Base-T" },
|
|
{ "Broadcom NetXtreme II BCM5716 1000Base-SX" },
|
|
};
|
|
|
|
static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
|
|
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
|
|
PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
|
|
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
|
|
PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
|
|
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
|
|
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
|
|
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
|
|
PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
|
|
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
|
|
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
|
|
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
|
|
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
|
|
{ PCI_VENDOR_ID_BROADCOM, 0x163b,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
|
|
{ PCI_VENDOR_ID_BROADCOM, 0x163c,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
|
|
{ 0, }
|
|
};
|
|
|
|
static const struct flash_spec flash_table[] =
|
|
{
|
|
#define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
|
|
#define NONBUFFERED_FLAGS (BNX2_NV_WREN)
|
|
/* Slow EEPROM */
|
|
{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
|
|
BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
|
|
SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
|
|
"EEPROM - slow"},
|
|
/* Expansion entry 0001 */
|
|
{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
|
|
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
|
|
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
|
|
"Entry 0001"},
|
|
/* Saifun SA25F010 (non-buffered flash) */
|
|
/* strap, cfg1, & write1 need updates */
|
|
{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
|
|
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
|
|
SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
|
|
"Non-buffered flash (128kB)"},
|
|
/* Saifun SA25F020 (non-buffered flash) */
|
|
/* strap, cfg1, & write1 need updates */
|
|
{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
|
|
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
|
|
SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
|
|
"Non-buffered flash (256kB)"},
|
|
/* Expansion entry 0100 */
|
|
{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
|
|
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
|
|
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
|
|
"Entry 0100"},
|
|
/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
|
|
{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
|
|
NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
|
|
ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
|
|
"Entry 0101: ST M45PE10 (128kB non-bufferred)"},
|
|
/* Entry 0110: ST M45PE20 (non-buffered flash)*/
|
|
{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
|
|
NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
|
|
ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
|
|
"Entry 0110: ST M45PE20 (256kB non-bufferred)"},
|
|
/* Saifun SA25F005 (non-buffered flash) */
|
|
/* strap, cfg1, & write1 need updates */
|
|
{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
|
|
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
|
|
SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
|
|
"Non-buffered flash (64kB)"},
|
|
/* Fast EEPROM */
|
|
{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
|
|
BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
|
|
SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
|
|
"EEPROM - fast"},
|
|
/* Expansion entry 1001 */
|
|
{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
|
|
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
|
|
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
|
|
"Entry 1001"},
|
|
/* Expansion entry 1010 */
|
|
{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
|
|
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
|
|
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
|
|
"Entry 1010"},
|
|
/* ATMEL AT45DB011B (buffered flash) */
|
|
{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
|
|
BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
|
|
BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
|
|
"Buffered flash (128kB)"},
|
|
/* Expansion entry 1100 */
|
|
{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
|
|
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
|
|
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
|
|
"Entry 1100"},
|
|
/* Expansion entry 1101 */
|
|
{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
|
|
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
|
|
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
|
|
"Entry 1101"},
|
|
/* Ateml Expansion entry 1110 */
|
|
{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
|
|
BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
|
|
BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
|
|
"Entry 1110 (Atmel)"},
|
|
/* ATMEL AT45DB021B (buffered flash) */
|
|
{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
|
|
BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
|
|
BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
|
|
"Buffered flash (256kB)"},
|
|
};
|
|
|
|
static const struct flash_spec flash_5709 = {
|
|
.flags = BNX2_NV_BUFFERED,
|
|
.page_bits = BCM5709_FLASH_PAGE_BITS,
|
|
.page_size = BCM5709_FLASH_PAGE_SIZE,
|
|
.addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
|
|
.total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
|
|
.name = "5709 Buffered flash (256kB)",
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
|
|
|
|
static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
|
|
{
|
|
u32 diff;
|
|
|
|
smp_mb();
|
|
|
|
/* The ring uses 256 indices for 255 entries, one of them
|
|
* needs to be skipped.
|
|
*/
|
|
diff = txr->tx_prod - txr->tx_cons;
|
|
if (unlikely(diff >= TX_DESC_CNT)) {
|
|
diff &= 0xffff;
|
|
if (diff == TX_DESC_CNT)
|
|
diff = MAX_TX_DESC_CNT;
|
|
}
|
|
return (bp->tx_ring_size - diff);
|
|
}
|
|
|
|
static u32
|
|
bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
|
|
{
|
|
u32 val;
|
|
|
|
spin_lock_bh(&bp->indirect_lock);
|
|
REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
|
|
val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
|
|
spin_unlock_bh(&bp->indirect_lock);
|
|
return val;
|
|
}
|
|
|
|
static void
|
|
bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
|
|
{
|
|
spin_lock_bh(&bp->indirect_lock);
|
|
REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
|
|
REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
|
|
spin_unlock_bh(&bp->indirect_lock);
|
|
}
|
|
|
|
static void
|
|
bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
|
|
{
|
|
bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
|
|
}
|
|
|
|
static u32
|
|
bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
|
|
{
|
|
return (bnx2_reg_rd_ind(bp, bp->shmem_base + offset));
|
|
}
|
|
|
|
static void
|
|
bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
|
|
{
|
|
offset += cid_addr;
|
|
spin_lock_bh(&bp->indirect_lock);
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
|
|
int i;
|
|
|
|
REG_WR(bp, BNX2_CTX_CTX_DATA, val);
|
|
REG_WR(bp, BNX2_CTX_CTX_CTRL,
|
|
offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
|
|
for (i = 0; i < 5; i++) {
|
|
val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
|
|
if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
|
|
break;
|
|
udelay(5);
|
|
}
|
|
} else {
|
|
REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
|
|
REG_WR(bp, BNX2_CTX_DATA, val);
|
|
}
|
|
spin_unlock_bh(&bp->indirect_lock);
|
|
}
|
|
|
|
#ifdef BCM_CNIC
|
|
static int
|
|
bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
struct drv_ctl_io *io = &info->data.io;
|
|
|
|
switch (info->cmd) {
|
|
case DRV_CTL_IO_WR_CMD:
|
|
bnx2_reg_wr_ind(bp, io->offset, io->data);
|
|
break;
|
|
case DRV_CTL_IO_RD_CMD:
|
|
io->data = bnx2_reg_rd_ind(bp, io->offset);
|
|
break;
|
|
case DRV_CTL_CTX_WR_CMD:
|
|
bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
|
|
{
|
|
struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
|
|
struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
|
|
int sb_id;
|
|
|
|
if (bp->flags & BNX2_FLAG_USING_MSIX) {
|
|
cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
|
|
bnapi->cnic_present = 0;
|
|
sb_id = bp->irq_nvecs;
|
|
cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
|
|
} else {
|
|
cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
|
|
bnapi->cnic_tag = bnapi->last_status_idx;
|
|
bnapi->cnic_present = 1;
|
|
sb_id = 0;
|
|
cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
|
|
}
|
|
|
|
cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
|
|
cp->irq_arr[0].status_blk = (void *)
|
|
((unsigned long) bnapi->status_blk.msi +
|
|
(BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
|
|
cp->irq_arr[0].status_blk_num = sb_id;
|
|
cp->num_irq = 1;
|
|
}
|
|
|
|
static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
|
|
void *data)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
|
|
|
|
if (ops == NULL)
|
|
return -EINVAL;
|
|
|
|
if (cp->drv_state & CNIC_DRV_STATE_REGD)
|
|
return -EBUSY;
|
|
|
|
bp->cnic_data = data;
|
|
rcu_assign_pointer(bp->cnic_ops, ops);
|
|
|
|
cp->num_irq = 0;
|
|
cp->drv_state = CNIC_DRV_STATE_REGD;
|
|
|
|
bnx2_setup_cnic_irq_info(bp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bnx2_unregister_cnic(struct net_device *dev)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
|
|
struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
|
|
|
|
mutex_lock(&bp->cnic_lock);
|
|
cp->drv_state = 0;
|
|
bnapi->cnic_present = 0;
|
|
rcu_assign_pointer(bp->cnic_ops, NULL);
|
|
mutex_unlock(&bp->cnic_lock);
|
|
synchronize_rcu();
|
|
return 0;
|
|
}
|
|
|
|
struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
|
|
|
|
cp->drv_owner = THIS_MODULE;
|
|
cp->chip_id = bp->chip_id;
|
|
cp->pdev = bp->pdev;
|
|
cp->io_base = bp->regview;
|
|
cp->drv_ctl = bnx2_drv_ctl;
|
|
cp->drv_register_cnic = bnx2_register_cnic;
|
|
cp->drv_unregister_cnic = bnx2_unregister_cnic;
|
|
|
|
return cp;
|
|
}
|
|
EXPORT_SYMBOL(bnx2_cnic_probe);
|
|
|
|
static void
|
|
bnx2_cnic_stop(struct bnx2 *bp)
|
|
{
|
|
struct cnic_ops *c_ops;
|
|
struct cnic_ctl_info info;
|
|
|
|
mutex_lock(&bp->cnic_lock);
|
|
c_ops = bp->cnic_ops;
|
|
if (c_ops) {
|
|
info.cmd = CNIC_CTL_STOP_CMD;
|
|
c_ops->cnic_ctl(bp->cnic_data, &info);
|
|
}
|
|
mutex_unlock(&bp->cnic_lock);
|
|
}
|
|
|
|
static void
|
|
bnx2_cnic_start(struct bnx2 *bp)
|
|
{
|
|
struct cnic_ops *c_ops;
|
|
struct cnic_ctl_info info;
|
|
|
|
mutex_lock(&bp->cnic_lock);
|
|
c_ops = bp->cnic_ops;
|
|
if (c_ops) {
|
|
if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
|
|
struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
|
|
|
|
bnapi->cnic_tag = bnapi->last_status_idx;
|
|
}
|
|
info.cmd = CNIC_CTL_START_CMD;
|
|
c_ops->cnic_ctl(bp->cnic_data, &info);
|
|
}
|
|
mutex_unlock(&bp->cnic_lock);
|
|
}
|
|
|
|
#else
|
|
|
|
static void
|
|
bnx2_cnic_stop(struct bnx2 *bp)
|
|
{
|
|
}
|
|
|
|
static void
|
|
bnx2_cnic_start(struct bnx2 *bp)
|
|
{
|
|
}
|
|
|
|
#endif
|
|
|
|
static int
|
|
bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
|
|
{
|
|
u32 val1;
|
|
int i, ret;
|
|
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
|
|
val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
|
|
val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
|
|
|
|
REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
|
|
REG_RD(bp, BNX2_EMAC_MDIO_MODE);
|
|
|
|
udelay(40);
|
|
}
|
|
|
|
val1 = (bp->phy_addr << 21) | (reg << 16) |
|
|
BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
|
|
BNX2_EMAC_MDIO_COMM_START_BUSY;
|
|
REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
|
|
|
|
for (i = 0; i < 50; i++) {
|
|
udelay(10);
|
|
|
|
val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
|
|
if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
|
|
udelay(5);
|
|
|
|
val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
|
|
val1 &= BNX2_EMAC_MDIO_COMM_DATA;
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
|
|
*val = 0x0;
|
|
ret = -EBUSY;
|
|
}
|
|
else {
|
|
*val = val1;
|
|
ret = 0;
|
|
}
|
|
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
|
|
val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
|
|
val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
|
|
|
|
REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
|
|
REG_RD(bp, BNX2_EMAC_MDIO_MODE);
|
|
|
|
udelay(40);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
|
|
{
|
|
u32 val1;
|
|
int i, ret;
|
|
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
|
|
val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
|
|
val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
|
|
|
|
REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
|
|
REG_RD(bp, BNX2_EMAC_MDIO_MODE);
|
|
|
|
udelay(40);
|
|
}
|
|
|
|
val1 = (bp->phy_addr << 21) | (reg << 16) | val |
|
|
BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
|
|
BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
|
|
REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
|
|
|
|
for (i = 0; i < 50; i++) {
|
|
udelay(10);
|
|
|
|
val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
|
|
if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
|
|
udelay(5);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
|
|
ret = -EBUSY;
|
|
else
|
|
ret = 0;
|
|
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
|
|
val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
|
|
val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
|
|
|
|
REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
|
|
REG_RD(bp, BNX2_EMAC_MDIO_MODE);
|
|
|
|
udelay(40);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
bnx2_disable_int(struct bnx2 *bp)
|
|
{
|
|
int i;
|
|
struct bnx2_napi *bnapi;
|
|
|
|
for (i = 0; i < bp->irq_nvecs; i++) {
|
|
bnapi = &bp->bnx2_napi[i];
|
|
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
|
|
BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
|
|
}
|
|
REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
|
|
}
|
|
|
|
static void
|
|
bnx2_enable_int(struct bnx2 *bp)
|
|
{
|
|
int i;
|
|
struct bnx2_napi *bnapi;
|
|
|
|
for (i = 0; i < bp->irq_nvecs; i++) {
|
|
bnapi = &bp->bnx2_napi[i];
|
|
|
|
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
|
|
BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
|
|
BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
|
|
bnapi->last_status_idx);
|
|
|
|
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
|
|
BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
|
|
bnapi->last_status_idx);
|
|
}
|
|
REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
|
|
}
|
|
|
|
static void
|
|
bnx2_disable_int_sync(struct bnx2 *bp)
|
|
{
|
|
int i;
|
|
|
|
atomic_inc(&bp->intr_sem);
|
|
if (!netif_running(bp->dev))
|
|
return;
|
|
|
|
bnx2_disable_int(bp);
|
|
for (i = 0; i < bp->irq_nvecs; i++)
|
|
synchronize_irq(bp->irq_tbl[i].vector);
|
|
}
|
|
|
|
static void
|
|
bnx2_napi_disable(struct bnx2 *bp)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < bp->irq_nvecs; i++)
|
|
napi_disable(&bp->bnx2_napi[i].napi);
|
|
}
|
|
|
|
static void
|
|
bnx2_napi_enable(struct bnx2 *bp)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < bp->irq_nvecs; i++)
|
|
napi_enable(&bp->bnx2_napi[i].napi);
|
|
}
|
|
|
|
static void
|
|
bnx2_netif_stop(struct bnx2 *bp)
|
|
{
|
|
bnx2_cnic_stop(bp);
|
|
bnx2_disable_int_sync(bp);
|
|
if (netif_running(bp->dev)) {
|
|
bnx2_napi_disable(bp);
|
|
netif_tx_disable(bp->dev);
|
|
bp->dev->trans_start = jiffies; /* prevent tx timeout */
|
|
}
|
|
}
|
|
|
|
static void
|
|
bnx2_netif_start(struct bnx2 *bp)
|
|
{
|
|
if (atomic_dec_and_test(&bp->intr_sem)) {
|
|
if (netif_running(bp->dev)) {
|
|
netif_tx_wake_all_queues(bp->dev);
|
|
bnx2_napi_enable(bp);
|
|
bnx2_enable_int(bp);
|
|
bnx2_cnic_start(bp);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
bnx2_free_tx_mem(struct bnx2 *bp)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < bp->num_tx_rings; i++) {
|
|
struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
|
|
struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
|
|
|
|
if (txr->tx_desc_ring) {
|
|
pci_free_consistent(bp->pdev, TXBD_RING_SIZE,
|
|
txr->tx_desc_ring,
|
|
txr->tx_desc_mapping);
|
|
txr->tx_desc_ring = NULL;
|
|
}
|
|
kfree(txr->tx_buf_ring);
|
|
txr->tx_buf_ring = NULL;
|
|
}
|
|
}
|
|
|
|
static void
|
|
bnx2_free_rx_mem(struct bnx2 *bp)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < bp->num_rx_rings; i++) {
|
|
struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
|
|
struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
|
|
int j;
|
|
|
|
for (j = 0; j < bp->rx_max_ring; j++) {
|
|
if (rxr->rx_desc_ring[j])
|
|
pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
|
|
rxr->rx_desc_ring[j],
|
|
rxr->rx_desc_mapping[j]);
|
|
rxr->rx_desc_ring[j] = NULL;
|
|
}
|
|
vfree(rxr->rx_buf_ring);
|
|
rxr->rx_buf_ring = NULL;
|
|
|
|
for (j = 0; j < bp->rx_max_pg_ring; j++) {
|
|
if (rxr->rx_pg_desc_ring[j])
|
|
pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
|
|
rxr->rx_pg_desc_ring[j],
|
|
rxr->rx_pg_desc_mapping[j]);
|
|
rxr->rx_pg_desc_ring[j] = NULL;
|
|
}
|
|
vfree(rxr->rx_pg_ring);
|
|
rxr->rx_pg_ring = NULL;
|
|
}
|
|
}
|
|
|
|
static int
|
|
bnx2_alloc_tx_mem(struct bnx2 *bp)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < bp->num_tx_rings; i++) {
|
|
struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
|
|
struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
|
|
|
|
txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
|
|
if (txr->tx_buf_ring == NULL)
|
|
return -ENOMEM;
|
|
|
|
txr->tx_desc_ring =
|
|
pci_alloc_consistent(bp->pdev, TXBD_RING_SIZE,
|
|
&txr->tx_desc_mapping);
|
|
if (txr->tx_desc_ring == NULL)
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_alloc_rx_mem(struct bnx2 *bp)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < bp->num_rx_rings; i++) {
|
|
struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
|
|
struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
|
|
int j;
|
|
|
|
rxr->rx_buf_ring =
|
|
vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
|
|
if (rxr->rx_buf_ring == NULL)
|
|
return -ENOMEM;
|
|
|
|
memset(rxr->rx_buf_ring, 0,
|
|
SW_RXBD_RING_SIZE * bp->rx_max_ring);
|
|
|
|
for (j = 0; j < bp->rx_max_ring; j++) {
|
|
rxr->rx_desc_ring[j] =
|
|
pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
|
|
&rxr->rx_desc_mapping[j]);
|
|
if (rxr->rx_desc_ring[j] == NULL)
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
if (bp->rx_pg_ring_size) {
|
|
rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
|
|
bp->rx_max_pg_ring);
|
|
if (rxr->rx_pg_ring == NULL)
|
|
return -ENOMEM;
|
|
|
|
memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
|
|
bp->rx_max_pg_ring);
|
|
}
|
|
|
|
for (j = 0; j < bp->rx_max_pg_ring; j++) {
|
|
rxr->rx_pg_desc_ring[j] =
|
|
pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
|
|
&rxr->rx_pg_desc_mapping[j]);
|
|
if (rxr->rx_pg_desc_ring[j] == NULL)
|
|
return -ENOMEM;
|
|
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
bnx2_free_mem(struct bnx2 *bp)
|
|
{
|
|
int i;
|
|
struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
|
|
|
|
bnx2_free_tx_mem(bp);
|
|
bnx2_free_rx_mem(bp);
|
|
|
|
for (i = 0; i < bp->ctx_pages; i++) {
|
|
if (bp->ctx_blk[i]) {
|
|
pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
|
|
bp->ctx_blk[i],
|
|
bp->ctx_blk_mapping[i]);
|
|
bp->ctx_blk[i] = NULL;
|
|
}
|
|
}
|
|
if (bnapi->status_blk.msi) {
|
|
pci_free_consistent(bp->pdev, bp->status_stats_size,
|
|
bnapi->status_blk.msi,
|
|
bp->status_blk_mapping);
|
|
bnapi->status_blk.msi = NULL;
|
|
bp->stats_blk = NULL;
|
|
}
|
|
}
|
|
|
|
static int
|
|
bnx2_alloc_mem(struct bnx2 *bp)
|
|
{
|
|
int i, status_blk_size, err;
|
|
struct bnx2_napi *bnapi;
|
|
void *status_blk;
|
|
|
|
/* Combine status and statistics blocks into one allocation. */
|
|
status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
|
|
if (bp->flags & BNX2_FLAG_MSIX_CAP)
|
|
status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
|
|
BNX2_SBLK_MSIX_ALIGN_SIZE);
|
|
bp->status_stats_size = status_blk_size +
|
|
sizeof(struct statistics_block);
|
|
|
|
status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
|
|
&bp->status_blk_mapping);
|
|
if (status_blk == NULL)
|
|
goto alloc_mem_err;
|
|
|
|
memset(status_blk, 0, bp->status_stats_size);
|
|
|
|
bnapi = &bp->bnx2_napi[0];
|
|
bnapi->status_blk.msi = status_blk;
|
|
bnapi->hw_tx_cons_ptr =
|
|
&bnapi->status_blk.msi->status_tx_quick_consumer_index0;
|
|
bnapi->hw_rx_cons_ptr =
|
|
&bnapi->status_blk.msi->status_rx_quick_consumer_index0;
|
|
if (bp->flags & BNX2_FLAG_MSIX_CAP) {
|
|
for (i = 1; i < BNX2_MAX_MSIX_VEC; i++) {
|
|
struct status_block_msix *sblk;
|
|
|
|
bnapi = &bp->bnx2_napi[i];
|
|
|
|
sblk = (void *) (status_blk +
|
|
BNX2_SBLK_MSIX_ALIGN_SIZE * i);
|
|
bnapi->status_blk.msix = sblk;
|
|
bnapi->hw_tx_cons_ptr =
|
|
&sblk->status_tx_quick_consumer_index;
|
|
bnapi->hw_rx_cons_ptr =
|
|
&sblk->status_rx_quick_consumer_index;
|
|
bnapi->int_num = i << 24;
|
|
}
|
|
}
|
|
|
|
bp->stats_blk = status_blk + status_blk_size;
|
|
|
|
bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
|
|
bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
|
|
if (bp->ctx_pages == 0)
|
|
bp->ctx_pages = 1;
|
|
for (i = 0; i < bp->ctx_pages; i++) {
|
|
bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
|
|
BCM_PAGE_SIZE,
|
|
&bp->ctx_blk_mapping[i]);
|
|
if (bp->ctx_blk[i] == NULL)
|
|
goto alloc_mem_err;
|
|
}
|
|
}
|
|
|
|
err = bnx2_alloc_rx_mem(bp);
|
|
if (err)
|
|
goto alloc_mem_err;
|
|
|
|
err = bnx2_alloc_tx_mem(bp);
|
|
if (err)
|
|
goto alloc_mem_err;
|
|
|
|
return 0;
|
|
|
|
alloc_mem_err:
|
|
bnx2_free_mem(bp);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void
|
|
bnx2_report_fw_link(struct bnx2 *bp)
|
|
{
|
|
u32 fw_link_status = 0;
|
|
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
|
|
return;
|
|
|
|
if (bp->link_up) {
|
|
u32 bmsr;
|
|
|
|
switch (bp->line_speed) {
|
|
case SPEED_10:
|
|
if (bp->duplex == DUPLEX_HALF)
|
|
fw_link_status = BNX2_LINK_STATUS_10HALF;
|
|
else
|
|
fw_link_status = BNX2_LINK_STATUS_10FULL;
|
|
break;
|
|
case SPEED_100:
|
|
if (bp->duplex == DUPLEX_HALF)
|
|
fw_link_status = BNX2_LINK_STATUS_100HALF;
|
|
else
|
|
fw_link_status = BNX2_LINK_STATUS_100FULL;
|
|
break;
|
|
case SPEED_1000:
|
|
if (bp->duplex == DUPLEX_HALF)
|
|
fw_link_status = BNX2_LINK_STATUS_1000HALF;
|
|
else
|
|
fw_link_status = BNX2_LINK_STATUS_1000FULL;
|
|
break;
|
|
case SPEED_2500:
|
|
if (bp->duplex == DUPLEX_HALF)
|
|
fw_link_status = BNX2_LINK_STATUS_2500HALF;
|
|
else
|
|
fw_link_status = BNX2_LINK_STATUS_2500FULL;
|
|
break;
|
|
}
|
|
|
|
fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
|
|
|
|
if (bp->autoneg) {
|
|
fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
|
|
|
|
bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
|
|
bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
|
|
|
|
if (!(bmsr & BMSR_ANEGCOMPLETE) ||
|
|
bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
|
|
fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
|
|
else
|
|
fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
|
|
}
|
|
}
|
|
else
|
|
fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
|
|
|
|
bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
|
|
}
|
|
|
|
static char *
|
|
bnx2_xceiver_str(struct bnx2 *bp)
|
|
{
|
|
return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
|
|
((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
|
|
"Copper"));
|
|
}
|
|
|
|
static void
|
|
bnx2_report_link(struct bnx2 *bp)
|
|
{
|
|
if (bp->link_up) {
|
|
netif_carrier_on(bp->dev);
|
|
printk(KERN_INFO PFX "%s NIC %s Link is Up, ", bp->dev->name,
|
|
bnx2_xceiver_str(bp));
|
|
|
|
printk("%d Mbps ", bp->line_speed);
|
|
|
|
if (bp->duplex == DUPLEX_FULL)
|
|
printk("full duplex");
|
|
else
|
|
printk("half duplex");
|
|
|
|
if (bp->flow_ctrl) {
|
|
if (bp->flow_ctrl & FLOW_CTRL_RX) {
|
|
printk(", receive ");
|
|
if (bp->flow_ctrl & FLOW_CTRL_TX)
|
|
printk("& transmit ");
|
|
}
|
|
else {
|
|
printk(", transmit ");
|
|
}
|
|
printk("flow control ON");
|
|
}
|
|
printk("\n");
|
|
}
|
|
else {
|
|
netif_carrier_off(bp->dev);
|
|
printk(KERN_ERR PFX "%s NIC %s Link is Down\n", bp->dev->name,
|
|
bnx2_xceiver_str(bp));
|
|
}
|
|
|
|
bnx2_report_fw_link(bp);
|
|
}
|
|
|
|
static void
|
|
bnx2_resolve_flow_ctrl(struct bnx2 *bp)
|
|
{
|
|
u32 local_adv, remote_adv;
|
|
|
|
bp->flow_ctrl = 0;
|
|
if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
|
|
(AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
|
|
|
|
if (bp->duplex == DUPLEX_FULL) {
|
|
bp->flow_ctrl = bp->req_flow_ctrl;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (bp->duplex != DUPLEX_FULL) {
|
|
return;
|
|
}
|
|
|
|
if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
|
|
(CHIP_NUM(bp) == CHIP_NUM_5708)) {
|
|
u32 val;
|
|
|
|
bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
|
|
if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
|
|
bp->flow_ctrl |= FLOW_CTRL_TX;
|
|
if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
|
|
bp->flow_ctrl |= FLOW_CTRL_RX;
|
|
return;
|
|
}
|
|
|
|
bnx2_read_phy(bp, bp->mii_adv, &local_adv);
|
|
bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
|
|
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
|
|
u32 new_local_adv = 0;
|
|
u32 new_remote_adv = 0;
|
|
|
|
if (local_adv & ADVERTISE_1000XPAUSE)
|
|
new_local_adv |= ADVERTISE_PAUSE_CAP;
|
|
if (local_adv & ADVERTISE_1000XPSE_ASYM)
|
|
new_local_adv |= ADVERTISE_PAUSE_ASYM;
|
|
if (remote_adv & ADVERTISE_1000XPAUSE)
|
|
new_remote_adv |= ADVERTISE_PAUSE_CAP;
|
|
if (remote_adv & ADVERTISE_1000XPSE_ASYM)
|
|
new_remote_adv |= ADVERTISE_PAUSE_ASYM;
|
|
|
|
local_adv = new_local_adv;
|
|
remote_adv = new_remote_adv;
|
|
}
|
|
|
|
/* See Table 28B-3 of 802.3ab-1999 spec. */
|
|
if (local_adv & ADVERTISE_PAUSE_CAP) {
|
|
if(local_adv & ADVERTISE_PAUSE_ASYM) {
|
|
if (remote_adv & ADVERTISE_PAUSE_CAP) {
|
|
bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
|
|
}
|
|
else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
|
|
bp->flow_ctrl = FLOW_CTRL_RX;
|
|
}
|
|
}
|
|
else {
|
|
if (remote_adv & ADVERTISE_PAUSE_CAP) {
|
|
bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
|
|
}
|
|
}
|
|
}
|
|
else if (local_adv & ADVERTISE_PAUSE_ASYM) {
|
|
if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
|
|
(remote_adv & ADVERTISE_PAUSE_ASYM)) {
|
|
|
|
bp->flow_ctrl = FLOW_CTRL_TX;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
bnx2_5709s_linkup(struct bnx2 *bp)
|
|
{
|
|
u32 val, speed;
|
|
|
|
bp->link_up = 1;
|
|
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
|
|
bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
|
|
|
|
if ((bp->autoneg & AUTONEG_SPEED) == 0) {
|
|
bp->line_speed = bp->req_line_speed;
|
|
bp->duplex = bp->req_duplex;
|
|
return 0;
|
|
}
|
|
speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
|
|
switch (speed) {
|
|
case MII_BNX2_GP_TOP_AN_SPEED_10:
|
|
bp->line_speed = SPEED_10;
|
|
break;
|
|
case MII_BNX2_GP_TOP_AN_SPEED_100:
|
|
bp->line_speed = SPEED_100;
|
|
break;
|
|
case MII_BNX2_GP_TOP_AN_SPEED_1G:
|
|
case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
|
|
bp->line_speed = SPEED_1000;
|
|
break;
|
|
case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
|
|
bp->line_speed = SPEED_2500;
|
|
break;
|
|
}
|
|
if (val & MII_BNX2_GP_TOP_AN_FD)
|
|
bp->duplex = DUPLEX_FULL;
|
|
else
|
|
bp->duplex = DUPLEX_HALF;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_5708s_linkup(struct bnx2 *bp)
|
|
{
|
|
u32 val;
|
|
|
|
bp->link_up = 1;
|
|
bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
|
|
switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
|
|
case BCM5708S_1000X_STAT1_SPEED_10:
|
|
bp->line_speed = SPEED_10;
|
|
break;
|
|
case BCM5708S_1000X_STAT1_SPEED_100:
|
|
bp->line_speed = SPEED_100;
|
|
break;
|
|
case BCM5708S_1000X_STAT1_SPEED_1G:
|
|
bp->line_speed = SPEED_1000;
|
|
break;
|
|
case BCM5708S_1000X_STAT1_SPEED_2G5:
|
|
bp->line_speed = SPEED_2500;
|
|
break;
|
|
}
|
|
if (val & BCM5708S_1000X_STAT1_FD)
|
|
bp->duplex = DUPLEX_FULL;
|
|
else
|
|
bp->duplex = DUPLEX_HALF;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_5706s_linkup(struct bnx2 *bp)
|
|
{
|
|
u32 bmcr, local_adv, remote_adv, common;
|
|
|
|
bp->link_up = 1;
|
|
bp->line_speed = SPEED_1000;
|
|
|
|
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
|
|
if (bmcr & BMCR_FULLDPLX) {
|
|
bp->duplex = DUPLEX_FULL;
|
|
}
|
|
else {
|
|
bp->duplex = DUPLEX_HALF;
|
|
}
|
|
|
|
if (!(bmcr & BMCR_ANENABLE)) {
|
|
return 0;
|
|
}
|
|
|
|
bnx2_read_phy(bp, bp->mii_adv, &local_adv);
|
|
bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
|
|
|
|
common = local_adv & remote_adv;
|
|
if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
|
|
|
|
if (common & ADVERTISE_1000XFULL) {
|
|
bp->duplex = DUPLEX_FULL;
|
|
}
|
|
else {
|
|
bp->duplex = DUPLEX_HALF;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_copper_linkup(struct bnx2 *bp)
|
|
{
|
|
u32 bmcr;
|
|
|
|
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
|
|
if (bmcr & BMCR_ANENABLE) {
|
|
u32 local_adv, remote_adv, common;
|
|
|
|
bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
|
|
bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
|
|
|
|
common = local_adv & (remote_adv >> 2);
|
|
if (common & ADVERTISE_1000FULL) {
|
|
bp->line_speed = SPEED_1000;
|
|
bp->duplex = DUPLEX_FULL;
|
|
}
|
|
else if (common & ADVERTISE_1000HALF) {
|
|
bp->line_speed = SPEED_1000;
|
|
bp->duplex = DUPLEX_HALF;
|
|
}
|
|
else {
|
|
bnx2_read_phy(bp, bp->mii_adv, &local_adv);
|
|
bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
|
|
|
|
common = local_adv & remote_adv;
|
|
if (common & ADVERTISE_100FULL) {
|
|
bp->line_speed = SPEED_100;
|
|
bp->duplex = DUPLEX_FULL;
|
|
}
|
|
else if (common & ADVERTISE_100HALF) {
|
|
bp->line_speed = SPEED_100;
|
|
bp->duplex = DUPLEX_HALF;
|
|
}
|
|
else if (common & ADVERTISE_10FULL) {
|
|
bp->line_speed = SPEED_10;
|
|
bp->duplex = DUPLEX_FULL;
|
|
}
|
|
else if (common & ADVERTISE_10HALF) {
|
|
bp->line_speed = SPEED_10;
|
|
bp->duplex = DUPLEX_HALF;
|
|
}
|
|
else {
|
|
bp->line_speed = 0;
|
|
bp->link_up = 0;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
if (bmcr & BMCR_SPEED100) {
|
|
bp->line_speed = SPEED_100;
|
|
}
|
|
else {
|
|
bp->line_speed = SPEED_10;
|
|
}
|
|
if (bmcr & BMCR_FULLDPLX) {
|
|
bp->duplex = DUPLEX_FULL;
|
|
}
|
|
else {
|
|
bp->duplex = DUPLEX_HALF;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
|
|
{
|
|
u32 val, rx_cid_addr = GET_CID_ADDR(cid);
|
|
|
|
val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
|
|
val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
|
|
val |= 0x02 << 8;
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
|
|
u32 lo_water, hi_water;
|
|
|
|
if (bp->flow_ctrl & FLOW_CTRL_TX)
|
|
lo_water = BNX2_L2CTX_LO_WATER_MARK_DEFAULT;
|
|
else
|
|
lo_water = BNX2_L2CTX_LO_WATER_MARK_DIS;
|
|
if (lo_water >= bp->rx_ring_size)
|
|
lo_water = 0;
|
|
|
|
hi_water = bp->rx_ring_size / 4;
|
|
|
|
if (hi_water <= lo_water)
|
|
lo_water = 0;
|
|
|
|
hi_water /= BNX2_L2CTX_HI_WATER_MARK_SCALE;
|
|
lo_water /= BNX2_L2CTX_LO_WATER_MARK_SCALE;
|
|
|
|
if (hi_water > 0xf)
|
|
hi_water = 0xf;
|
|
else if (hi_water == 0)
|
|
lo_water = 0;
|
|
val |= lo_water | (hi_water << BNX2_L2CTX_HI_WATER_MARK_SHIFT);
|
|
}
|
|
bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
|
|
}
|
|
|
|
static void
|
|
bnx2_init_all_rx_contexts(struct bnx2 *bp)
|
|
{
|
|
int i;
|
|
u32 cid;
|
|
|
|
for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
|
|
if (i == 1)
|
|
cid = RX_RSS_CID;
|
|
bnx2_init_rx_context(bp, cid);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bnx2_set_mac_link(struct bnx2 *bp)
|
|
{
|
|
u32 val;
|
|
|
|
REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
|
|
if (bp->link_up && (bp->line_speed == SPEED_1000) &&
|
|
(bp->duplex == DUPLEX_HALF)) {
|
|
REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
|
|
}
|
|
|
|
/* Configure the EMAC mode register. */
|
|
val = REG_RD(bp, BNX2_EMAC_MODE);
|
|
|
|
val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
|
|
BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
|
|
BNX2_EMAC_MODE_25G_MODE);
|
|
|
|
if (bp->link_up) {
|
|
switch (bp->line_speed) {
|
|
case SPEED_10:
|
|
if (CHIP_NUM(bp) != CHIP_NUM_5706) {
|
|
val |= BNX2_EMAC_MODE_PORT_MII_10M;
|
|
break;
|
|
}
|
|
/* fall through */
|
|
case SPEED_100:
|
|
val |= BNX2_EMAC_MODE_PORT_MII;
|
|
break;
|
|
case SPEED_2500:
|
|
val |= BNX2_EMAC_MODE_25G_MODE;
|
|
/* fall through */
|
|
case SPEED_1000:
|
|
val |= BNX2_EMAC_MODE_PORT_GMII;
|
|
break;
|
|
}
|
|
}
|
|
else {
|
|
val |= BNX2_EMAC_MODE_PORT_GMII;
|
|
}
|
|
|
|
/* Set the MAC to operate in the appropriate duplex mode. */
|
|
if (bp->duplex == DUPLEX_HALF)
|
|
val |= BNX2_EMAC_MODE_HALF_DUPLEX;
|
|
REG_WR(bp, BNX2_EMAC_MODE, val);
|
|
|
|
/* Enable/disable rx PAUSE. */
|
|
bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
|
|
|
|
if (bp->flow_ctrl & FLOW_CTRL_RX)
|
|
bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
|
|
REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
|
|
|
|
/* Enable/disable tx PAUSE. */
|
|
val = REG_RD(bp, BNX2_EMAC_TX_MODE);
|
|
val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
|
|
|
|
if (bp->flow_ctrl & FLOW_CTRL_TX)
|
|
val |= BNX2_EMAC_TX_MODE_FLOW_EN;
|
|
REG_WR(bp, BNX2_EMAC_TX_MODE, val);
|
|
|
|
/* Acknowledge the interrupt. */
|
|
REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709)
|
|
bnx2_init_all_rx_contexts(bp);
|
|
}
|
|
|
|
static void
|
|
bnx2_enable_bmsr1(struct bnx2 *bp)
|
|
{
|
|
if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
|
|
(CHIP_NUM(bp) == CHIP_NUM_5709))
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
|
|
MII_BNX2_BLK_ADDR_GP_STATUS);
|
|
}
|
|
|
|
static void
|
|
bnx2_disable_bmsr1(struct bnx2 *bp)
|
|
{
|
|
if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
|
|
(CHIP_NUM(bp) == CHIP_NUM_5709))
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
|
|
MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
|
|
}
|
|
|
|
static int
|
|
bnx2_test_and_enable_2g5(struct bnx2 *bp)
|
|
{
|
|
u32 up1;
|
|
int ret = 1;
|
|
|
|
if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
|
|
return 0;
|
|
|
|
if (bp->autoneg & AUTONEG_SPEED)
|
|
bp->advertising |= ADVERTISED_2500baseX_Full;
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709)
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
|
|
|
|
bnx2_read_phy(bp, bp->mii_up1, &up1);
|
|
if (!(up1 & BCM5708S_UP1_2G5)) {
|
|
up1 |= BCM5708S_UP1_2G5;
|
|
bnx2_write_phy(bp, bp->mii_up1, up1);
|
|
ret = 0;
|
|
}
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709)
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
|
|
MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
bnx2_test_and_disable_2g5(struct bnx2 *bp)
|
|
{
|
|
u32 up1;
|
|
int ret = 0;
|
|
|
|
if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
|
|
return 0;
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709)
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
|
|
|
|
bnx2_read_phy(bp, bp->mii_up1, &up1);
|
|
if (up1 & BCM5708S_UP1_2G5) {
|
|
up1 &= ~BCM5708S_UP1_2G5;
|
|
bnx2_write_phy(bp, bp->mii_up1, up1);
|
|
ret = 1;
|
|
}
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709)
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
|
|
MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
bnx2_enable_forced_2g5(struct bnx2 *bp)
|
|
{
|
|
u32 bmcr;
|
|
|
|
if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
|
|
return;
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
|
|
u32 val;
|
|
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
|
|
MII_BNX2_BLK_ADDR_SERDES_DIG);
|
|
bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
|
|
val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
|
|
val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
|
|
bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
|
|
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
|
|
MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
|
|
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
|
|
|
|
} else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
|
|
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
|
|
bmcr |= BCM5708S_BMCR_FORCE_2500;
|
|
}
|
|
|
|
if (bp->autoneg & AUTONEG_SPEED) {
|
|
bmcr &= ~BMCR_ANENABLE;
|
|
if (bp->req_duplex == DUPLEX_FULL)
|
|
bmcr |= BMCR_FULLDPLX;
|
|
}
|
|
bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
|
|
}
|
|
|
|
static void
|
|
bnx2_disable_forced_2g5(struct bnx2 *bp)
|
|
{
|
|
u32 bmcr;
|
|
|
|
if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
|
|
return;
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
|
|
u32 val;
|
|
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
|
|
MII_BNX2_BLK_ADDR_SERDES_DIG);
|
|
bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
|
|
val &= ~MII_BNX2_SD_MISC1_FORCE;
|
|
bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
|
|
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
|
|
MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
|
|
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
|
|
|
|
} else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
|
|
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
|
|
bmcr &= ~BCM5708S_BMCR_FORCE_2500;
|
|
}
|
|
|
|
if (bp->autoneg & AUTONEG_SPEED)
|
|
bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
|
|
bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
|
|
}
|
|
|
|
static void
|
|
bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
|
|
{
|
|
u32 val;
|
|
|
|
bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
|
|
bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
|
|
if (start)
|
|
bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
|
|
else
|
|
bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
|
|
}
|
|
|
|
static int
|
|
bnx2_set_link(struct bnx2 *bp)
|
|
{
|
|
u32 bmsr;
|
|
u8 link_up;
|
|
|
|
if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
|
|
bp->link_up = 1;
|
|
return 0;
|
|
}
|
|
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
|
|
return 0;
|
|
|
|
link_up = bp->link_up;
|
|
|
|
bnx2_enable_bmsr1(bp);
|
|
bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
|
|
bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
|
|
bnx2_disable_bmsr1(bp);
|
|
|
|
if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
|
|
(CHIP_NUM(bp) == CHIP_NUM_5706)) {
|
|
u32 val, an_dbg;
|
|
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
|
|
bnx2_5706s_force_link_dn(bp, 0);
|
|
bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
|
|
}
|
|
val = REG_RD(bp, BNX2_EMAC_STATUS);
|
|
|
|
bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
|
|
bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
|
|
bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
|
|
|
|
if ((val & BNX2_EMAC_STATUS_LINK) &&
|
|
!(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
|
|
bmsr |= BMSR_LSTATUS;
|
|
else
|
|
bmsr &= ~BMSR_LSTATUS;
|
|
}
|
|
|
|
if (bmsr & BMSR_LSTATUS) {
|
|
bp->link_up = 1;
|
|
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5706)
|
|
bnx2_5706s_linkup(bp);
|
|
else if (CHIP_NUM(bp) == CHIP_NUM_5708)
|
|
bnx2_5708s_linkup(bp);
|
|
else if (CHIP_NUM(bp) == CHIP_NUM_5709)
|
|
bnx2_5709s_linkup(bp);
|
|
}
|
|
else {
|
|
bnx2_copper_linkup(bp);
|
|
}
|
|
bnx2_resolve_flow_ctrl(bp);
|
|
}
|
|
else {
|
|
if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
|
|
(bp->autoneg & AUTONEG_SPEED))
|
|
bnx2_disable_forced_2g5(bp);
|
|
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
|
|
u32 bmcr;
|
|
|
|
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
|
|
bmcr |= BMCR_ANENABLE;
|
|
bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
|
|
|
|
bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
|
|
}
|
|
bp->link_up = 0;
|
|
}
|
|
|
|
if (bp->link_up != link_up) {
|
|
bnx2_report_link(bp);
|
|
}
|
|
|
|
bnx2_set_mac_link(bp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_reset_phy(struct bnx2 *bp)
|
|
{
|
|
int i;
|
|
u32 reg;
|
|
|
|
bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
|
|
|
|
#define PHY_RESET_MAX_WAIT 100
|
|
for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
|
|
udelay(10);
|
|
|
|
bnx2_read_phy(bp, bp->mii_bmcr, ®);
|
|
if (!(reg & BMCR_RESET)) {
|
|
udelay(20);
|
|
break;
|
|
}
|
|
}
|
|
if (i == PHY_RESET_MAX_WAIT) {
|
|
return -EBUSY;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static u32
|
|
bnx2_phy_get_pause_adv(struct bnx2 *bp)
|
|
{
|
|
u32 adv = 0;
|
|
|
|
if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
|
|
(FLOW_CTRL_RX | FLOW_CTRL_TX)) {
|
|
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
|
|
adv = ADVERTISE_1000XPAUSE;
|
|
}
|
|
else {
|
|
adv = ADVERTISE_PAUSE_CAP;
|
|
}
|
|
}
|
|
else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
|
|
adv = ADVERTISE_1000XPSE_ASYM;
|
|
}
|
|
else {
|
|
adv = ADVERTISE_PAUSE_ASYM;
|
|
}
|
|
}
|
|
else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
|
|
adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
|
|
}
|
|
else {
|
|
adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
|
|
}
|
|
}
|
|
return adv;
|
|
}
|
|
|
|
static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
|
|
|
|
static int
|
|
bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
|
|
__releases(&bp->phy_lock)
|
|
__acquires(&bp->phy_lock)
|
|
{
|
|
u32 speed_arg = 0, pause_adv;
|
|
|
|
pause_adv = bnx2_phy_get_pause_adv(bp);
|
|
|
|
if (bp->autoneg & AUTONEG_SPEED) {
|
|
speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
|
|
if (bp->advertising & ADVERTISED_10baseT_Half)
|
|
speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
|
|
if (bp->advertising & ADVERTISED_10baseT_Full)
|
|
speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
|
|
if (bp->advertising & ADVERTISED_100baseT_Half)
|
|
speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
|
|
if (bp->advertising & ADVERTISED_100baseT_Full)
|
|
speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
|
|
if (bp->advertising & ADVERTISED_1000baseT_Full)
|
|
speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
|
|
if (bp->advertising & ADVERTISED_2500baseX_Full)
|
|
speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
|
|
} else {
|
|
if (bp->req_line_speed == SPEED_2500)
|
|
speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
|
|
else if (bp->req_line_speed == SPEED_1000)
|
|
speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
|
|
else if (bp->req_line_speed == SPEED_100) {
|
|
if (bp->req_duplex == DUPLEX_FULL)
|
|
speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
|
|
else
|
|
speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
|
|
} else if (bp->req_line_speed == SPEED_10) {
|
|
if (bp->req_duplex == DUPLEX_FULL)
|
|
speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
|
|
else
|
|
speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
|
|
}
|
|
}
|
|
|
|
if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
|
|
speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
|
|
if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
|
|
speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
|
|
|
|
if (port == PORT_TP)
|
|
speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
|
|
BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
|
|
|
|
bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
|
|
|
|
spin_unlock_bh(&bp->phy_lock);
|
|
bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
|
|
spin_lock_bh(&bp->phy_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
|
|
__releases(&bp->phy_lock)
|
|
__acquires(&bp->phy_lock)
|
|
{
|
|
u32 adv, bmcr;
|
|
u32 new_adv = 0;
|
|
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
|
|
return (bnx2_setup_remote_phy(bp, port));
|
|
|
|
if (!(bp->autoneg & AUTONEG_SPEED)) {
|
|
u32 new_bmcr;
|
|
int force_link_down = 0;
|
|
|
|
if (bp->req_line_speed == SPEED_2500) {
|
|
if (!bnx2_test_and_enable_2g5(bp))
|
|
force_link_down = 1;
|
|
} else if (bp->req_line_speed == SPEED_1000) {
|
|
if (bnx2_test_and_disable_2g5(bp))
|
|
force_link_down = 1;
|
|
}
|
|
bnx2_read_phy(bp, bp->mii_adv, &adv);
|
|
adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
|
|
|
|
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
|
|
new_bmcr = bmcr & ~BMCR_ANENABLE;
|
|
new_bmcr |= BMCR_SPEED1000;
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
|
|
if (bp->req_line_speed == SPEED_2500)
|
|
bnx2_enable_forced_2g5(bp);
|
|
else if (bp->req_line_speed == SPEED_1000) {
|
|
bnx2_disable_forced_2g5(bp);
|
|
new_bmcr &= ~0x2000;
|
|
}
|
|
|
|
} else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
|
|
if (bp->req_line_speed == SPEED_2500)
|
|
new_bmcr |= BCM5708S_BMCR_FORCE_2500;
|
|
else
|
|
new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
|
|
}
|
|
|
|
if (bp->req_duplex == DUPLEX_FULL) {
|
|
adv |= ADVERTISE_1000XFULL;
|
|
new_bmcr |= BMCR_FULLDPLX;
|
|
}
|
|
else {
|
|
adv |= ADVERTISE_1000XHALF;
|
|
new_bmcr &= ~BMCR_FULLDPLX;
|
|
}
|
|
if ((new_bmcr != bmcr) || (force_link_down)) {
|
|
/* Force a link down visible on the other side */
|
|
if (bp->link_up) {
|
|
bnx2_write_phy(bp, bp->mii_adv, adv &
|
|
~(ADVERTISE_1000XFULL |
|
|
ADVERTISE_1000XHALF));
|
|
bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
|
|
BMCR_ANRESTART | BMCR_ANENABLE);
|
|
|
|
bp->link_up = 0;
|
|
netif_carrier_off(bp->dev);
|
|
bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
|
|
bnx2_report_link(bp);
|
|
}
|
|
bnx2_write_phy(bp, bp->mii_adv, adv);
|
|
bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
|
|
} else {
|
|
bnx2_resolve_flow_ctrl(bp);
|
|
bnx2_set_mac_link(bp);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
bnx2_test_and_enable_2g5(bp);
|
|
|
|
if (bp->advertising & ADVERTISED_1000baseT_Full)
|
|
new_adv |= ADVERTISE_1000XFULL;
|
|
|
|
new_adv |= bnx2_phy_get_pause_adv(bp);
|
|
|
|
bnx2_read_phy(bp, bp->mii_adv, &adv);
|
|
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
|
|
|
|
bp->serdes_an_pending = 0;
|
|
if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
|
|
/* Force a link down visible on the other side */
|
|
if (bp->link_up) {
|
|
bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
|
|
spin_unlock_bh(&bp->phy_lock);
|
|
msleep(20);
|
|
spin_lock_bh(&bp->phy_lock);
|
|
}
|
|
|
|
bnx2_write_phy(bp, bp->mii_adv, new_adv);
|
|
bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
|
|
BMCR_ANENABLE);
|
|
/* Speed up link-up time when the link partner
|
|
* does not autonegotiate which is very common
|
|
* in blade servers. Some blade servers use
|
|
* IPMI for kerboard input and it's important
|
|
* to minimize link disruptions. Autoneg. involves
|
|
* exchanging base pages plus 3 next pages and
|
|
* normally completes in about 120 msec.
|
|
*/
|
|
bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
|
|
bp->serdes_an_pending = 1;
|
|
mod_timer(&bp->timer, jiffies + bp->current_interval);
|
|
} else {
|
|
bnx2_resolve_flow_ctrl(bp);
|
|
bnx2_set_mac_link(bp);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define ETHTOOL_ALL_FIBRE_SPEED \
|
|
(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
|
|
(ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
|
|
(ADVERTISED_1000baseT_Full)
|
|
|
|
#define ETHTOOL_ALL_COPPER_SPEED \
|
|
(ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
|
|
ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
|
|
ADVERTISED_1000baseT_Full)
|
|
|
|
#define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
|
|
ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
|
|
|
|
#define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
|
|
|
|
static void
|
|
bnx2_set_default_remote_link(struct bnx2 *bp)
|
|
{
|
|
u32 link;
|
|
|
|
if (bp->phy_port == PORT_TP)
|
|
link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
|
|
else
|
|
link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
|
|
|
|
if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
|
|
bp->req_line_speed = 0;
|
|
bp->autoneg |= AUTONEG_SPEED;
|
|
bp->advertising = ADVERTISED_Autoneg;
|
|
if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
|
|
bp->advertising |= ADVERTISED_10baseT_Half;
|
|
if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
|
|
bp->advertising |= ADVERTISED_10baseT_Full;
|
|
if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
|
|
bp->advertising |= ADVERTISED_100baseT_Half;
|
|
if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
|
|
bp->advertising |= ADVERTISED_100baseT_Full;
|
|
if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
|
|
bp->advertising |= ADVERTISED_1000baseT_Full;
|
|
if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
|
|
bp->advertising |= ADVERTISED_2500baseX_Full;
|
|
} else {
|
|
bp->autoneg = 0;
|
|
bp->advertising = 0;
|
|
bp->req_duplex = DUPLEX_FULL;
|
|
if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
|
|
bp->req_line_speed = SPEED_10;
|
|
if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
|
|
bp->req_duplex = DUPLEX_HALF;
|
|
}
|
|
if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
|
|
bp->req_line_speed = SPEED_100;
|
|
if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
|
|
bp->req_duplex = DUPLEX_HALF;
|
|
}
|
|
if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
|
|
bp->req_line_speed = SPEED_1000;
|
|
if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
|
|
bp->req_line_speed = SPEED_2500;
|
|
}
|
|
}
|
|
|
|
static void
|
|
bnx2_set_default_link(struct bnx2 *bp)
|
|
{
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
|
|
bnx2_set_default_remote_link(bp);
|
|
return;
|
|
}
|
|
|
|
bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
|
|
bp->req_line_speed = 0;
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
|
|
u32 reg;
|
|
|
|
bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
|
|
|
|
reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
|
|
reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
|
|
if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
|
|
bp->autoneg = 0;
|
|
bp->req_line_speed = bp->line_speed = SPEED_1000;
|
|
bp->req_duplex = DUPLEX_FULL;
|
|
}
|
|
} else
|
|
bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
|
|
}
|
|
|
|
static void
|
|
bnx2_send_heart_beat(struct bnx2 *bp)
|
|
{
|
|
u32 msg;
|
|
u32 addr;
|
|
|
|
spin_lock(&bp->indirect_lock);
|
|
msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
|
|
addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
|
|
REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
|
|
REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
|
|
spin_unlock(&bp->indirect_lock);
|
|
}
|
|
|
|
static void
|
|
bnx2_remote_phy_event(struct bnx2 *bp)
|
|
{
|
|
u32 msg;
|
|
u8 link_up = bp->link_up;
|
|
u8 old_port;
|
|
|
|
msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
|
|
|
|
if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
|
|
bnx2_send_heart_beat(bp);
|
|
|
|
msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
|
|
|
|
if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
|
|
bp->link_up = 0;
|
|
else {
|
|
u32 speed;
|
|
|
|
bp->link_up = 1;
|
|
speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
|
|
bp->duplex = DUPLEX_FULL;
|
|
switch (speed) {
|
|
case BNX2_LINK_STATUS_10HALF:
|
|
bp->duplex = DUPLEX_HALF;
|
|
case BNX2_LINK_STATUS_10FULL:
|
|
bp->line_speed = SPEED_10;
|
|
break;
|
|
case BNX2_LINK_STATUS_100HALF:
|
|
bp->duplex = DUPLEX_HALF;
|
|
case BNX2_LINK_STATUS_100BASE_T4:
|
|
case BNX2_LINK_STATUS_100FULL:
|
|
bp->line_speed = SPEED_100;
|
|
break;
|
|
case BNX2_LINK_STATUS_1000HALF:
|
|
bp->duplex = DUPLEX_HALF;
|
|
case BNX2_LINK_STATUS_1000FULL:
|
|
bp->line_speed = SPEED_1000;
|
|
break;
|
|
case BNX2_LINK_STATUS_2500HALF:
|
|
bp->duplex = DUPLEX_HALF;
|
|
case BNX2_LINK_STATUS_2500FULL:
|
|
bp->line_speed = SPEED_2500;
|
|
break;
|
|
default:
|
|
bp->line_speed = 0;
|
|
break;
|
|
}
|
|
|
|
bp->flow_ctrl = 0;
|
|
if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
|
|
(AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
|
|
if (bp->duplex == DUPLEX_FULL)
|
|
bp->flow_ctrl = bp->req_flow_ctrl;
|
|
} else {
|
|
if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
|
|
bp->flow_ctrl |= FLOW_CTRL_TX;
|
|
if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
|
|
bp->flow_ctrl |= FLOW_CTRL_RX;
|
|
}
|
|
|
|
old_port = bp->phy_port;
|
|
if (msg & BNX2_LINK_STATUS_SERDES_LINK)
|
|
bp->phy_port = PORT_FIBRE;
|
|
else
|
|
bp->phy_port = PORT_TP;
|
|
|
|
if (old_port != bp->phy_port)
|
|
bnx2_set_default_link(bp);
|
|
|
|
}
|
|
if (bp->link_up != link_up)
|
|
bnx2_report_link(bp);
|
|
|
|
bnx2_set_mac_link(bp);
|
|
}
|
|
|
|
static int
|
|
bnx2_set_remote_link(struct bnx2 *bp)
|
|
{
|
|
u32 evt_code;
|
|
|
|
evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
|
|
switch (evt_code) {
|
|
case BNX2_FW_EVT_CODE_LINK_EVENT:
|
|
bnx2_remote_phy_event(bp);
|
|
break;
|
|
case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
|
|
default:
|
|
bnx2_send_heart_beat(bp);
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_setup_copper_phy(struct bnx2 *bp)
|
|
__releases(&bp->phy_lock)
|
|
__acquires(&bp->phy_lock)
|
|
{
|
|
u32 bmcr;
|
|
u32 new_bmcr;
|
|
|
|
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
|
|
|
|
if (bp->autoneg & AUTONEG_SPEED) {
|
|
u32 adv_reg, adv1000_reg;
|
|
u32 new_adv_reg = 0;
|
|
u32 new_adv1000_reg = 0;
|
|
|
|
bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
|
|
adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
|
|
ADVERTISE_PAUSE_ASYM);
|
|
|
|
bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
|
|
adv1000_reg &= PHY_ALL_1000_SPEED;
|
|
|
|
if (bp->advertising & ADVERTISED_10baseT_Half)
|
|
new_adv_reg |= ADVERTISE_10HALF;
|
|
if (bp->advertising & ADVERTISED_10baseT_Full)
|
|
new_adv_reg |= ADVERTISE_10FULL;
|
|
if (bp->advertising & ADVERTISED_100baseT_Half)
|
|
new_adv_reg |= ADVERTISE_100HALF;
|
|
if (bp->advertising & ADVERTISED_100baseT_Full)
|
|
new_adv_reg |= ADVERTISE_100FULL;
|
|
if (bp->advertising & ADVERTISED_1000baseT_Full)
|
|
new_adv1000_reg |= ADVERTISE_1000FULL;
|
|
|
|
new_adv_reg |= ADVERTISE_CSMA;
|
|
|
|
new_adv_reg |= bnx2_phy_get_pause_adv(bp);
|
|
|
|
if ((adv1000_reg != new_adv1000_reg) ||
|
|
(adv_reg != new_adv_reg) ||
|
|
((bmcr & BMCR_ANENABLE) == 0)) {
|
|
|
|
bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
|
|
bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
|
|
bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
|
|
BMCR_ANENABLE);
|
|
}
|
|
else if (bp->link_up) {
|
|
/* Flow ctrl may have changed from auto to forced */
|
|
/* or vice-versa. */
|
|
|
|
bnx2_resolve_flow_ctrl(bp);
|
|
bnx2_set_mac_link(bp);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
new_bmcr = 0;
|
|
if (bp->req_line_speed == SPEED_100) {
|
|
new_bmcr |= BMCR_SPEED100;
|
|
}
|
|
if (bp->req_duplex == DUPLEX_FULL) {
|
|
new_bmcr |= BMCR_FULLDPLX;
|
|
}
|
|
if (new_bmcr != bmcr) {
|
|
u32 bmsr;
|
|
|
|
bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
|
|
bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
|
|
|
|
if (bmsr & BMSR_LSTATUS) {
|
|
/* Force link down */
|
|
bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
|
|
spin_unlock_bh(&bp->phy_lock);
|
|
msleep(50);
|
|
spin_lock_bh(&bp->phy_lock);
|
|
|
|
bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
|
|
bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
|
|
}
|
|
|
|
bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
|
|
|
|
/* Normally, the new speed is setup after the link has
|
|
* gone down and up again. In some cases, link will not go
|
|
* down so we need to set up the new speed here.
|
|
*/
|
|
if (bmsr & BMSR_LSTATUS) {
|
|
bp->line_speed = bp->req_line_speed;
|
|
bp->duplex = bp->req_duplex;
|
|
bnx2_resolve_flow_ctrl(bp);
|
|
bnx2_set_mac_link(bp);
|
|
}
|
|
} else {
|
|
bnx2_resolve_flow_ctrl(bp);
|
|
bnx2_set_mac_link(bp);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_setup_phy(struct bnx2 *bp, u8 port)
|
|
__releases(&bp->phy_lock)
|
|
__acquires(&bp->phy_lock)
|
|
{
|
|
if (bp->loopback == MAC_LOOPBACK)
|
|
return 0;
|
|
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
|
|
return (bnx2_setup_serdes_phy(bp, port));
|
|
}
|
|
else {
|
|
return (bnx2_setup_copper_phy(bp));
|
|
}
|
|
}
|
|
|
|
static int
|
|
bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
|
|
{
|
|
u32 val;
|
|
|
|
bp->mii_bmcr = MII_BMCR + 0x10;
|
|
bp->mii_bmsr = MII_BMSR + 0x10;
|
|
bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
|
|
bp->mii_adv = MII_ADVERTISE + 0x10;
|
|
bp->mii_lpa = MII_LPA + 0x10;
|
|
bp->mii_up1 = MII_BNX2_OVER1G_UP1;
|
|
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
|
|
bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
|
|
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
|
|
if (reset_phy)
|
|
bnx2_reset_phy(bp);
|
|
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
|
|
|
|
bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
|
|
val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
|
|
val |= MII_BNX2_SD_1000XCTL1_FIBER;
|
|
bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
|
|
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
|
|
bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
|
|
val |= BCM5708S_UP1_2G5;
|
|
else
|
|
val &= ~BCM5708S_UP1_2G5;
|
|
bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
|
|
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
|
|
bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
|
|
val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
|
|
bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
|
|
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
|
|
|
|
val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
|
|
MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
|
|
bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
|
|
|
|
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
|
|
{
|
|
u32 val;
|
|
|
|
if (reset_phy)
|
|
bnx2_reset_phy(bp);
|
|
|
|
bp->mii_up1 = BCM5708S_UP1;
|
|
|
|
bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
|
|
bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
|
|
bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
|
|
|
|
bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
|
|
val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
|
|
bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
|
|
|
|
bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
|
|
val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
|
|
bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
|
|
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
|
|
bnx2_read_phy(bp, BCM5708S_UP1, &val);
|
|
val |= BCM5708S_UP1_2G5;
|
|
bnx2_write_phy(bp, BCM5708S_UP1, val);
|
|
}
|
|
|
|
if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
|
|
(CHIP_ID(bp) == CHIP_ID_5708_B0) ||
|
|
(CHIP_ID(bp) == CHIP_ID_5708_B1)) {
|
|
/* increase tx signal amplitude */
|
|
bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
|
|
BCM5708S_BLK_ADDR_TX_MISC);
|
|
bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
|
|
val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
|
|
bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
|
|
bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
|
|
}
|
|
|
|
val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
|
|
BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
|
|
|
|
if (val) {
|
|
u32 is_backplane;
|
|
|
|
is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
|
|
if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
|
|
bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
|
|
BCM5708S_BLK_ADDR_TX_MISC);
|
|
bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
|
|
bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
|
|
BCM5708S_BLK_ADDR_DIG);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
|
|
{
|
|
if (reset_phy)
|
|
bnx2_reset_phy(bp);
|
|
|
|
bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5706)
|
|
REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
|
|
|
|
if (bp->dev->mtu > 1500) {
|
|
u32 val;
|
|
|
|
/* Set extended packet length bit */
|
|
bnx2_write_phy(bp, 0x18, 0x7);
|
|
bnx2_read_phy(bp, 0x18, &val);
|
|
bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
|
|
|
|
bnx2_write_phy(bp, 0x1c, 0x6c00);
|
|
bnx2_read_phy(bp, 0x1c, &val);
|
|
bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
|
|
}
|
|
else {
|
|
u32 val;
|
|
|
|
bnx2_write_phy(bp, 0x18, 0x7);
|
|
bnx2_read_phy(bp, 0x18, &val);
|
|
bnx2_write_phy(bp, 0x18, val & ~0x4007);
|
|
|
|
bnx2_write_phy(bp, 0x1c, 0x6c00);
|
|
bnx2_read_phy(bp, 0x1c, &val);
|
|
bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
|
|
{
|
|
u32 val;
|
|
|
|
if (reset_phy)
|
|
bnx2_reset_phy(bp);
|
|
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
|
|
bnx2_write_phy(bp, 0x18, 0x0c00);
|
|
bnx2_write_phy(bp, 0x17, 0x000a);
|
|
bnx2_write_phy(bp, 0x15, 0x310b);
|
|
bnx2_write_phy(bp, 0x17, 0x201f);
|
|
bnx2_write_phy(bp, 0x15, 0x9506);
|
|
bnx2_write_phy(bp, 0x17, 0x401f);
|
|
bnx2_write_phy(bp, 0x15, 0x14e2);
|
|
bnx2_write_phy(bp, 0x18, 0x0400);
|
|
}
|
|
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
|
|
bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
|
|
MII_BNX2_DSP_EXPAND_REG | 0x8);
|
|
bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
|
|
val &= ~(1 << 8);
|
|
bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
|
|
}
|
|
|
|
if (bp->dev->mtu > 1500) {
|
|
/* Set extended packet length bit */
|
|
bnx2_write_phy(bp, 0x18, 0x7);
|
|
bnx2_read_phy(bp, 0x18, &val);
|
|
bnx2_write_phy(bp, 0x18, val | 0x4000);
|
|
|
|
bnx2_read_phy(bp, 0x10, &val);
|
|
bnx2_write_phy(bp, 0x10, val | 0x1);
|
|
}
|
|
else {
|
|
bnx2_write_phy(bp, 0x18, 0x7);
|
|
bnx2_read_phy(bp, 0x18, &val);
|
|
bnx2_write_phy(bp, 0x18, val & ~0x4007);
|
|
|
|
bnx2_read_phy(bp, 0x10, &val);
|
|
bnx2_write_phy(bp, 0x10, val & ~0x1);
|
|
}
|
|
|
|
/* ethernet@wirespeed */
|
|
bnx2_write_phy(bp, 0x18, 0x7007);
|
|
bnx2_read_phy(bp, 0x18, &val);
|
|
bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
bnx2_init_phy(struct bnx2 *bp, int reset_phy)
|
|
__releases(&bp->phy_lock)
|
|
__acquires(&bp->phy_lock)
|
|
{
|
|
u32 val;
|
|
int rc = 0;
|
|
|
|
bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
|
|
bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
|
|
|
|
bp->mii_bmcr = MII_BMCR;
|
|
bp->mii_bmsr = MII_BMSR;
|
|
bp->mii_bmsr1 = MII_BMSR;
|
|
bp->mii_adv = MII_ADVERTISE;
|
|
bp->mii_lpa = MII_LPA;
|
|
|
|
REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
|
|
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
|
|
goto setup_phy;
|
|
|
|
bnx2_read_phy(bp, MII_PHYSID1, &val);
|
|
bp->phy_id = val << 16;
|
|
bnx2_read_phy(bp, MII_PHYSID2, &val);
|
|
bp->phy_id |= val & 0xffff;
|
|
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5706)
|
|
rc = bnx2_init_5706s_phy(bp, reset_phy);
|
|
else if (CHIP_NUM(bp) == CHIP_NUM_5708)
|
|
rc = bnx2_init_5708s_phy(bp, reset_phy);
|
|
else if (CHIP_NUM(bp) == CHIP_NUM_5709)
|
|
rc = bnx2_init_5709s_phy(bp, reset_phy);
|
|
}
|
|
else {
|
|
rc = bnx2_init_copper_phy(bp, reset_phy);
|
|
}
|
|
|
|
setup_phy:
|
|
if (!rc)
|
|
rc = bnx2_setup_phy(bp, bp->phy_port);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
bnx2_set_mac_loopback(struct bnx2 *bp)
|
|
{
|
|
u32 mac_mode;
|
|
|
|
mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
|
|
mac_mode &= ~BNX2_EMAC_MODE_PORT;
|
|
mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
|
|
REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
|
|
bp->link_up = 1;
|
|
return 0;
|
|
}
|
|
|
|
static int bnx2_test_link(struct bnx2 *);
|
|
|
|
static int
|
|
bnx2_set_phy_loopback(struct bnx2 *bp)
|
|
{
|
|
u32 mac_mode;
|
|
int rc, i;
|
|
|
|
spin_lock_bh(&bp->phy_lock);
|
|
rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
|
|
BMCR_SPEED1000);
|
|
spin_unlock_bh(&bp->phy_lock);
|
|
if (rc)
|
|
return rc;
|
|
|
|
for (i = 0; i < 10; i++) {
|
|
if (bnx2_test_link(bp) == 0)
|
|
break;
|
|
msleep(100);
|
|
}
|
|
|
|
mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
|
|
mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
|
|
BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
|
|
BNX2_EMAC_MODE_25G_MODE);
|
|
|
|
mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
|
|
REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
|
|
bp->link_up = 1;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
|
|
{
|
|
int i;
|
|
u32 val;
|
|
|
|
bp->fw_wr_seq++;
|
|
msg_data |= bp->fw_wr_seq;
|
|
|
|
bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
|
|
|
|
if (!ack)
|
|
return 0;
|
|
|
|
/* wait for an acknowledgement. */
|
|
for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
|
|
msleep(10);
|
|
|
|
val = bnx2_shmem_rd(bp, BNX2_FW_MB);
|
|
|
|
if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
|
|
break;
|
|
}
|
|
if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
|
|
return 0;
|
|
|
|
/* If we timed out, inform the firmware that this is the case. */
|
|
if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
|
|
if (!silent)
|
|
printk(KERN_ERR PFX "fw sync timeout, reset code = "
|
|
"%x\n", msg_data);
|
|
|
|
msg_data &= ~BNX2_DRV_MSG_CODE;
|
|
msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
|
|
|
|
bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
|
|
|
|
return -EBUSY;
|
|
}
|
|
|
|
if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_init_5709_context(struct bnx2 *bp)
|
|
{
|
|
int i, ret = 0;
|
|
u32 val;
|
|
|
|
val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
|
|
val |= (BCM_PAGE_BITS - 8) << 16;
|
|
REG_WR(bp, BNX2_CTX_COMMAND, val);
|
|
for (i = 0; i < 10; i++) {
|
|
val = REG_RD(bp, BNX2_CTX_COMMAND);
|
|
if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
|
|
break;
|
|
udelay(2);
|
|
}
|
|
if (val & BNX2_CTX_COMMAND_MEM_INIT)
|
|
return -EBUSY;
|
|
|
|
for (i = 0; i < bp->ctx_pages; i++) {
|
|
int j;
|
|
|
|
if (bp->ctx_blk[i])
|
|
memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
|
|
else
|
|
return -ENOMEM;
|
|
|
|
REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
|
|
(bp->ctx_blk_mapping[i] & 0xffffffff) |
|
|
BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
|
|
REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
|
|
(u64) bp->ctx_blk_mapping[i] >> 32);
|
|
REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
|
|
BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
|
|
for (j = 0; j < 10; j++) {
|
|
|
|
val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
|
|
if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
|
|
break;
|
|
udelay(5);
|
|
}
|
|
if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
|
|
ret = -EBUSY;
|
|
break;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
bnx2_init_context(struct bnx2 *bp)
|
|
{
|
|
u32 vcid;
|
|
|
|
vcid = 96;
|
|
while (vcid) {
|
|
u32 vcid_addr, pcid_addr, offset;
|
|
int i;
|
|
|
|
vcid--;
|
|
|
|
if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
|
|
u32 new_vcid;
|
|
|
|
vcid_addr = GET_PCID_ADDR(vcid);
|
|
if (vcid & 0x8) {
|
|
new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
|
|
}
|
|
else {
|
|
new_vcid = vcid;
|
|
}
|
|
pcid_addr = GET_PCID_ADDR(new_vcid);
|
|
}
|
|
else {
|
|
vcid_addr = GET_CID_ADDR(vcid);
|
|
pcid_addr = vcid_addr;
|
|
}
|
|
|
|
for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
|
|
vcid_addr += (i << PHY_CTX_SHIFT);
|
|
pcid_addr += (i << PHY_CTX_SHIFT);
|
|
|
|
REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
|
|
REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
|
|
|
|
/* Zero out the context. */
|
|
for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
|
|
bnx2_ctx_wr(bp, vcid_addr, offset, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
bnx2_alloc_bad_rbuf(struct bnx2 *bp)
|
|
{
|
|
u16 *good_mbuf;
|
|
u32 good_mbuf_cnt;
|
|
u32 val;
|
|
|
|
good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
|
|
if (good_mbuf == NULL) {
|
|
printk(KERN_ERR PFX "Failed to allocate memory in "
|
|
"bnx2_alloc_bad_rbuf\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
|
|
BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
|
|
|
|
good_mbuf_cnt = 0;
|
|
|
|
/* Allocate a bunch of mbufs and save the good ones in an array. */
|
|
val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
|
|
while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
|
|
bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
|
|
BNX2_RBUF_COMMAND_ALLOC_REQ);
|
|
|
|
val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
|
|
|
|
val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
|
|
|
|
/* The addresses with Bit 9 set are bad memory blocks. */
|
|
if (!(val & (1 << 9))) {
|
|
good_mbuf[good_mbuf_cnt] = (u16) val;
|
|
good_mbuf_cnt++;
|
|
}
|
|
|
|
val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
|
|
}
|
|
|
|
/* Free the good ones back to the mbuf pool thus discarding
|
|
* all the bad ones. */
|
|
while (good_mbuf_cnt) {
|
|
good_mbuf_cnt--;
|
|
|
|
val = good_mbuf[good_mbuf_cnt];
|
|
val = (val << 9) | val | 1;
|
|
|
|
bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
|
|
}
|
|
kfree(good_mbuf);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
|
|
{
|
|
u32 val;
|
|
|
|
val = (mac_addr[0] << 8) | mac_addr[1];
|
|
|
|
REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
|
|
|
|
val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
|
|
(mac_addr[4] << 8) | mac_addr[5];
|
|
|
|
REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
|
|
}
|
|
|
|
static inline int
|
|
bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
|
|
{
|
|
dma_addr_t mapping;
|
|
struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
|
|
struct rx_bd *rxbd =
|
|
&rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
|
|
struct page *page = alloc_page(GFP_ATOMIC);
|
|
|
|
if (!page)
|
|
return -ENOMEM;
|
|
mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
|
|
PCI_DMA_FROMDEVICE);
|
|
if (pci_dma_mapping_error(bp->pdev, mapping)) {
|
|
__free_page(page);
|
|
return -EIO;
|
|
}
|
|
|
|
rx_pg->page = page;
|
|
pci_unmap_addr_set(rx_pg, mapping, mapping);
|
|
rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
|
|
rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
|
|
{
|
|
struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
|
|
struct page *page = rx_pg->page;
|
|
|
|
if (!page)
|
|
return;
|
|
|
|
pci_unmap_page(bp->pdev, pci_unmap_addr(rx_pg, mapping), PAGE_SIZE,
|
|
PCI_DMA_FROMDEVICE);
|
|
|
|
__free_page(page);
|
|
rx_pg->page = NULL;
|
|
}
|
|
|
|
static inline int
|
|
bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
|
|
{
|
|
struct sk_buff *skb;
|
|
struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
|
|
dma_addr_t mapping;
|
|
struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
|
|
unsigned long align;
|
|
|
|
skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
|
|
if (skb == NULL) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
|
|
skb_reserve(skb, BNX2_RX_ALIGN - align);
|
|
|
|
mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
|
|
PCI_DMA_FROMDEVICE);
|
|
if (pci_dma_mapping_error(bp->pdev, mapping)) {
|
|
dev_kfree_skb(skb);
|
|
return -EIO;
|
|
}
|
|
|
|
rx_buf->skb = skb;
|
|
pci_unmap_addr_set(rx_buf, mapping, mapping);
|
|
|
|
rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
|
|
rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
|
|
|
|
rxr->rx_prod_bseq += bp->rx_buf_use_size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
|
|
{
|
|
struct status_block *sblk = bnapi->status_blk.msi;
|
|
u32 new_link_state, old_link_state;
|
|
int is_set = 1;
|
|
|
|
new_link_state = sblk->status_attn_bits & event;
|
|
old_link_state = sblk->status_attn_bits_ack & event;
|
|
if (new_link_state != old_link_state) {
|
|
if (new_link_state)
|
|
REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
|
|
else
|
|
REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
|
|
} else
|
|
is_set = 0;
|
|
|
|
return is_set;
|
|
}
|
|
|
|
static void
|
|
bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
|
|
{
|
|
spin_lock(&bp->phy_lock);
|
|
|
|
if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
|
|
bnx2_set_link(bp);
|
|
if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
|
|
bnx2_set_remote_link(bp);
|
|
|
|
spin_unlock(&bp->phy_lock);
|
|
|
|
}
|
|
|
|
static inline u16
|
|
bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
|
|
{
|
|
u16 cons;
|
|
|
|
/* Tell compiler that status block fields can change. */
|
|
barrier();
|
|
cons = *bnapi->hw_tx_cons_ptr;
|
|
barrier();
|
|
if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
|
|
cons++;
|
|
return cons;
|
|
}
|
|
|
|
static int
|
|
bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
|
|
{
|
|
struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
|
|
u16 hw_cons, sw_cons, sw_ring_cons;
|
|
int tx_pkt = 0, index;
|
|
struct netdev_queue *txq;
|
|
|
|
index = (bnapi - bp->bnx2_napi);
|
|
txq = netdev_get_tx_queue(bp->dev, index);
|
|
|
|
hw_cons = bnx2_get_hw_tx_cons(bnapi);
|
|
sw_cons = txr->tx_cons;
|
|
|
|
while (sw_cons != hw_cons) {
|
|
struct sw_tx_bd *tx_buf;
|
|
struct sk_buff *skb;
|
|
int i, last;
|
|
|
|
sw_ring_cons = TX_RING_IDX(sw_cons);
|
|
|
|
tx_buf = &txr->tx_buf_ring[sw_ring_cons];
|
|
skb = tx_buf->skb;
|
|
|
|
/* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
|
|
prefetch(&skb->end);
|
|
|
|
/* partial BD completions possible with TSO packets */
|
|
if (tx_buf->is_gso) {
|
|
u16 last_idx, last_ring_idx;
|
|
|
|
last_idx = sw_cons + tx_buf->nr_frags + 1;
|
|
last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
|
|
if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
|
|
last_idx++;
|
|
}
|
|
if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
|
|
|
|
tx_buf->skb = NULL;
|
|
last = tx_buf->nr_frags;
|
|
|
|
for (i = 0; i < last; i++) {
|
|
sw_cons = NEXT_TX_BD(sw_cons);
|
|
}
|
|
|
|
sw_cons = NEXT_TX_BD(sw_cons);
|
|
|
|
dev_kfree_skb(skb);
|
|
tx_pkt++;
|
|
if (tx_pkt == budget)
|
|
break;
|
|
|
|
if (hw_cons == sw_cons)
|
|
hw_cons = bnx2_get_hw_tx_cons(bnapi);
|
|
}
|
|
|
|
txr->hw_tx_cons = hw_cons;
|
|
txr->tx_cons = sw_cons;
|
|
|
|
/* Need to make the tx_cons update visible to bnx2_start_xmit()
|
|
* before checking for netif_tx_queue_stopped(). Without the
|
|
* memory barrier, there is a small possibility that bnx2_start_xmit()
|
|
* will miss it and cause the queue to be stopped forever.
|
|
*/
|
|
smp_mb();
|
|
|
|
if (unlikely(netif_tx_queue_stopped(txq)) &&
|
|
(bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
|
|
__netif_tx_lock(txq, smp_processor_id());
|
|
if ((netif_tx_queue_stopped(txq)) &&
|
|
(bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
|
|
netif_tx_wake_queue(txq);
|
|
__netif_tx_unlock(txq);
|
|
}
|
|
|
|
return tx_pkt;
|
|
}
|
|
|
|
static void
|
|
bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
|
|
struct sk_buff *skb, int count)
|
|
{
|
|
struct sw_pg *cons_rx_pg, *prod_rx_pg;
|
|
struct rx_bd *cons_bd, *prod_bd;
|
|
int i;
|
|
u16 hw_prod, prod;
|
|
u16 cons = rxr->rx_pg_cons;
|
|
|
|
cons_rx_pg = &rxr->rx_pg_ring[cons];
|
|
|
|
/* The caller was unable to allocate a new page to replace the
|
|
* last one in the frags array, so we need to recycle that page
|
|
* and then free the skb.
|
|
*/
|
|
if (skb) {
|
|
struct page *page;
|
|
struct skb_shared_info *shinfo;
|
|
|
|
shinfo = skb_shinfo(skb);
|
|
shinfo->nr_frags--;
|
|
page = shinfo->frags[shinfo->nr_frags].page;
|
|
shinfo->frags[shinfo->nr_frags].page = NULL;
|
|
|
|
cons_rx_pg->page = page;
|
|
dev_kfree_skb(skb);
|
|
}
|
|
|
|
hw_prod = rxr->rx_pg_prod;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
prod = RX_PG_RING_IDX(hw_prod);
|
|
|
|
prod_rx_pg = &rxr->rx_pg_ring[prod];
|
|
cons_rx_pg = &rxr->rx_pg_ring[cons];
|
|
cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
|
|
prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
|
|
|
|
if (prod != cons) {
|
|
prod_rx_pg->page = cons_rx_pg->page;
|
|
cons_rx_pg->page = NULL;
|
|
pci_unmap_addr_set(prod_rx_pg, mapping,
|
|
pci_unmap_addr(cons_rx_pg, mapping));
|
|
|
|
prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
|
|
prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
|
|
|
|
}
|
|
cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
|
|
hw_prod = NEXT_RX_BD(hw_prod);
|
|
}
|
|
rxr->rx_pg_prod = hw_prod;
|
|
rxr->rx_pg_cons = cons;
|
|
}
|
|
|
|
static inline void
|
|
bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
|
|
struct sk_buff *skb, u16 cons, u16 prod)
|
|
{
|
|
struct sw_bd *cons_rx_buf, *prod_rx_buf;
|
|
struct rx_bd *cons_bd, *prod_bd;
|
|
|
|
cons_rx_buf = &rxr->rx_buf_ring[cons];
|
|
prod_rx_buf = &rxr->rx_buf_ring[prod];
|
|
|
|
pci_dma_sync_single_for_device(bp->pdev,
|
|
pci_unmap_addr(cons_rx_buf, mapping),
|
|
BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
|
|
|
|
rxr->rx_prod_bseq += bp->rx_buf_use_size;
|
|
|
|
prod_rx_buf->skb = skb;
|
|
|
|
if (cons == prod)
|
|
return;
|
|
|
|
pci_unmap_addr_set(prod_rx_buf, mapping,
|
|
pci_unmap_addr(cons_rx_buf, mapping));
|
|
|
|
cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
|
|
prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
|
|
prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
|
|
prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
|
|
}
|
|
|
|
static int
|
|
bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
|
|
unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
|
|
u32 ring_idx)
|
|
{
|
|
int err;
|
|
u16 prod = ring_idx & 0xffff;
|
|
|
|
err = bnx2_alloc_rx_skb(bp, rxr, prod);
|
|
if (unlikely(err)) {
|
|
bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
|
|
if (hdr_len) {
|
|
unsigned int raw_len = len + 4;
|
|
int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
|
|
|
|
bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
skb_reserve(skb, BNX2_RX_OFFSET);
|
|
pci_unmap_single(bp->pdev, dma_addr, bp->rx_buf_use_size,
|
|
PCI_DMA_FROMDEVICE);
|
|
|
|
if (hdr_len == 0) {
|
|
skb_put(skb, len);
|
|
return 0;
|
|
} else {
|
|
unsigned int i, frag_len, frag_size, pages;
|
|
struct sw_pg *rx_pg;
|
|
u16 pg_cons = rxr->rx_pg_cons;
|
|
u16 pg_prod = rxr->rx_pg_prod;
|
|
|
|
frag_size = len + 4 - hdr_len;
|
|
pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
|
|
skb_put(skb, hdr_len);
|
|
|
|
for (i = 0; i < pages; i++) {
|
|
dma_addr_t mapping_old;
|
|
|
|
frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
|
|
if (unlikely(frag_len <= 4)) {
|
|
unsigned int tail = 4 - frag_len;
|
|
|
|
rxr->rx_pg_cons = pg_cons;
|
|
rxr->rx_pg_prod = pg_prod;
|
|
bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
|
|
pages - i);
|
|
skb->len -= tail;
|
|
if (i == 0) {
|
|
skb->tail -= tail;
|
|
} else {
|
|
skb_frag_t *frag =
|
|
&skb_shinfo(skb)->frags[i - 1];
|
|
frag->size -= tail;
|
|
skb->data_len -= tail;
|
|
skb->truesize -= tail;
|
|
}
|
|
return 0;
|
|
}
|
|
rx_pg = &rxr->rx_pg_ring[pg_cons];
|
|
|
|
/* Don't unmap yet. If we're unable to allocate a new
|
|
* page, we need to recycle the page and the DMA addr.
|
|
*/
|
|
mapping_old = pci_unmap_addr(rx_pg, mapping);
|
|
if (i == pages - 1)
|
|
frag_len -= 4;
|
|
|
|
skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
|
|
rx_pg->page = NULL;
|
|
|
|
err = bnx2_alloc_rx_page(bp, rxr,
|
|
RX_PG_RING_IDX(pg_prod));
|
|
if (unlikely(err)) {
|
|
rxr->rx_pg_cons = pg_cons;
|
|
rxr->rx_pg_prod = pg_prod;
|
|
bnx2_reuse_rx_skb_pages(bp, rxr, skb,
|
|
pages - i);
|
|
return err;
|
|
}
|
|
|
|
pci_unmap_page(bp->pdev, mapping_old,
|
|
PAGE_SIZE, PCI_DMA_FROMDEVICE);
|
|
|
|
frag_size -= frag_len;
|
|
skb->data_len += frag_len;
|
|
skb->truesize += frag_len;
|
|
skb->len += frag_len;
|
|
|
|
pg_prod = NEXT_RX_BD(pg_prod);
|
|
pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
|
|
}
|
|
rxr->rx_pg_prod = pg_prod;
|
|
rxr->rx_pg_cons = pg_cons;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline u16
|
|
bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
|
|
{
|
|
u16 cons;
|
|
|
|
/* Tell compiler that status block fields can change. */
|
|
barrier();
|
|
cons = *bnapi->hw_rx_cons_ptr;
|
|
barrier();
|
|
if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
|
|
cons++;
|
|
return cons;
|
|
}
|
|
|
|
static int
|
|
bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
|
|
{
|
|
struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
|
|
u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
|
|
struct l2_fhdr *rx_hdr;
|
|
int rx_pkt = 0, pg_ring_used = 0;
|
|
|
|
hw_cons = bnx2_get_hw_rx_cons(bnapi);
|
|
sw_cons = rxr->rx_cons;
|
|
sw_prod = rxr->rx_prod;
|
|
|
|
/* Memory barrier necessary as speculative reads of the rx
|
|
* buffer can be ahead of the index in the status block
|
|
*/
|
|
rmb();
|
|
while (sw_cons != hw_cons) {
|
|
unsigned int len, hdr_len;
|
|
u32 status;
|
|
struct sw_bd *rx_buf;
|
|
struct sk_buff *skb;
|
|
dma_addr_t dma_addr;
|
|
u16 vtag = 0;
|
|
int hw_vlan __maybe_unused = 0;
|
|
|
|
sw_ring_cons = RX_RING_IDX(sw_cons);
|
|
sw_ring_prod = RX_RING_IDX(sw_prod);
|
|
|
|
rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
|
|
skb = rx_buf->skb;
|
|
|
|
rx_buf->skb = NULL;
|
|
|
|
dma_addr = pci_unmap_addr(rx_buf, mapping);
|
|
|
|
pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
|
|
BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
|
|
PCI_DMA_FROMDEVICE);
|
|
|
|
rx_hdr = (struct l2_fhdr *) skb->data;
|
|
len = rx_hdr->l2_fhdr_pkt_len;
|
|
status = rx_hdr->l2_fhdr_status;
|
|
|
|
hdr_len = 0;
|
|
if (status & L2_FHDR_STATUS_SPLIT) {
|
|
hdr_len = rx_hdr->l2_fhdr_ip_xsum;
|
|
pg_ring_used = 1;
|
|
} else if (len > bp->rx_jumbo_thresh) {
|
|
hdr_len = bp->rx_jumbo_thresh;
|
|
pg_ring_used = 1;
|
|
}
|
|
|
|
if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
|
|
L2_FHDR_ERRORS_PHY_DECODE |
|
|
L2_FHDR_ERRORS_ALIGNMENT |
|
|
L2_FHDR_ERRORS_TOO_SHORT |
|
|
L2_FHDR_ERRORS_GIANT_FRAME))) {
|
|
|
|
bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
|
|
sw_ring_prod);
|
|
if (pg_ring_used) {
|
|
int pages;
|
|
|
|
pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
|
|
|
|
bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
|
|
}
|
|
goto next_rx;
|
|
}
|
|
|
|
len -= 4;
|
|
|
|
if (len <= bp->rx_copy_thresh) {
|
|
struct sk_buff *new_skb;
|
|
|
|
new_skb = netdev_alloc_skb(bp->dev, len + 6);
|
|
if (new_skb == NULL) {
|
|
bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
|
|
sw_ring_prod);
|
|
goto next_rx;
|
|
}
|
|
|
|
/* aligned copy */
|
|
skb_copy_from_linear_data_offset(skb,
|
|
BNX2_RX_OFFSET - 6,
|
|
new_skb->data, len + 6);
|
|
skb_reserve(new_skb, 6);
|
|
skb_put(new_skb, len);
|
|
|
|
bnx2_reuse_rx_skb(bp, rxr, skb,
|
|
sw_ring_cons, sw_ring_prod);
|
|
|
|
skb = new_skb;
|
|
} else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
|
|
dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
|
|
goto next_rx;
|
|
|
|
if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
|
|
!(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
|
|
vtag = rx_hdr->l2_fhdr_vlan_tag;
|
|
#ifdef BCM_VLAN
|
|
if (bp->vlgrp)
|
|
hw_vlan = 1;
|
|
else
|
|
#endif
|
|
{
|
|
struct vlan_ethhdr *ve = (struct vlan_ethhdr *)
|
|
__skb_push(skb, 4);
|
|
|
|
memmove(ve, skb->data + 4, ETH_ALEN * 2);
|
|
ve->h_vlan_proto = htons(ETH_P_8021Q);
|
|
ve->h_vlan_TCI = htons(vtag);
|
|
len += 4;
|
|
}
|
|
}
|
|
|
|
skb->protocol = eth_type_trans(skb, bp->dev);
|
|
|
|
if ((len > (bp->dev->mtu + ETH_HLEN)) &&
|
|
(ntohs(skb->protocol) != 0x8100)) {
|
|
|
|
dev_kfree_skb(skb);
|
|
goto next_rx;
|
|
|
|
}
|
|
|
|
skb->ip_summed = CHECKSUM_NONE;
|
|
if (bp->rx_csum &&
|
|
(status & (L2_FHDR_STATUS_TCP_SEGMENT |
|
|
L2_FHDR_STATUS_UDP_DATAGRAM))) {
|
|
|
|
if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
|
|
L2_FHDR_ERRORS_UDP_XSUM)) == 0))
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
}
|
|
|
|
skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
|
|
|
|
#ifdef BCM_VLAN
|
|
if (hw_vlan)
|
|
vlan_hwaccel_receive_skb(skb, bp->vlgrp, vtag);
|
|
else
|
|
#endif
|
|
netif_receive_skb(skb);
|
|
|
|
rx_pkt++;
|
|
|
|
next_rx:
|
|
sw_cons = NEXT_RX_BD(sw_cons);
|
|
sw_prod = NEXT_RX_BD(sw_prod);
|
|
|
|
if ((rx_pkt == budget))
|
|
break;
|
|
|
|
/* Refresh hw_cons to see if there is new work */
|
|
if (sw_cons == hw_cons) {
|
|
hw_cons = bnx2_get_hw_rx_cons(bnapi);
|
|
rmb();
|
|
}
|
|
}
|
|
rxr->rx_cons = sw_cons;
|
|
rxr->rx_prod = sw_prod;
|
|
|
|
if (pg_ring_used)
|
|
REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
|
|
|
|
REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
|
|
|
|
REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
|
|
|
|
mmiowb();
|
|
|
|
return rx_pkt;
|
|
|
|
}
|
|
|
|
/* MSI ISR - The only difference between this and the INTx ISR
|
|
* is that the MSI interrupt is always serviced.
|
|
*/
|
|
static irqreturn_t
|
|
bnx2_msi(int irq, void *dev_instance)
|
|
{
|
|
struct bnx2_napi *bnapi = dev_instance;
|
|
struct bnx2 *bp = bnapi->bp;
|
|
|
|
prefetch(bnapi->status_blk.msi);
|
|
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
|
|
BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
|
|
BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
|
|
|
|
/* Return here if interrupt is disabled. */
|
|
if (unlikely(atomic_read(&bp->intr_sem) != 0))
|
|
return IRQ_HANDLED;
|
|
|
|
napi_schedule(&bnapi->napi);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t
|
|
bnx2_msi_1shot(int irq, void *dev_instance)
|
|
{
|
|
struct bnx2_napi *bnapi = dev_instance;
|
|
struct bnx2 *bp = bnapi->bp;
|
|
|
|
prefetch(bnapi->status_blk.msi);
|
|
|
|
/* Return here if interrupt is disabled. */
|
|
if (unlikely(atomic_read(&bp->intr_sem) != 0))
|
|
return IRQ_HANDLED;
|
|
|
|
napi_schedule(&bnapi->napi);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t
|
|
bnx2_interrupt(int irq, void *dev_instance)
|
|
{
|
|
struct bnx2_napi *bnapi = dev_instance;
|
|
struct bnx2 *bp = bnapi->bp;
|
|
struct status_block *sblk = bnapi->status_blk.msi;
|
|
|
|
/* When using INTx, it is possible for the interrupt to arrive
|
|
* at the CPU before the status block posted prior to the
|
|
* interrupt. Reading a register will flush the status block.
|
|
* When using MSI, the MSI message will always complete after
|
|
* the status block write.
|
|
*/
|
|
if ((sblk->status_idx == bnapi->last_status_idx) &&
|
|
(REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
|
|
BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
|
|
return IRQ_NONE;
|
|
|
|
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
|
|
BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
|
|
BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
|
|
|
|
/* Read back to deassert IRQ immediately to avoid too many
|
|
* spurious interrupts.
|
|
*/
|
|
REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
|
|
|
|
/* Return here if interrupt is shared and is disabled. */
|
|
if (unlikely(atomic_read(&bp->intr_sem) != 0))
|
|
return IRQ_HANDLED;
|
|
|
|
if (napi_schedule_prep(&bnapi->napi)) {
|
|
bnapi->last_status_idx = sblk->status_idx;
|
|
__napi_schedule(&bnapi->napi);
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static inline int
|
|
bnx2_has_fast_work(struct bnx2_napi *bnapi)
|
|
{
|
|
struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
|
|
struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
|
|
|
|
if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
|
|
(bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
#define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
|
|
STATUS_ATTN_BITS_TIMER_ABORT)
|
|
|
|
static inline int
|
|
bnx2_has_work(struct bnx2_napi *bnapi)
|
|
{
|
|
struct status_block *sblk = bnapi->status_blk.msi;
|
|
|
|
if (bnx2_has_fast_work(bnapi))
|
|
return 1;
|
|
|
|
#ifdef BCM_CNIC
|
|
if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
|
|
return 1;
|
|
#endif
|
|
|
|
if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
|
|
(sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
bnx2_chk_missed_msi(struct bnx2 *bp)
|
|
{
|
|
struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
|
|
u32 msi_ctrl;
|
|
|
|
if (bnx2_has_work(bnapi)) {
|
|
msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
|
|
if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
|
|
return;
|
|
|
|
if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
|
|
REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
|
|
~BNX2_PCICFG_MSI_CONTROL_ENABLE);
|
|
REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
|
|
bnx2_msi(bp->irq_tbl[0].vector, bnapi);
|
|
}
|
|
}
|
|
|
|
bp->idle_chk_status_idx = bnapi->last_status_idx;
|
|
}
|
|
|
|
#ifdef BCM_CNIC
|
|
static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
|
|
{
|
|
struct cnic_ops *c_ops;
|
|
|
|
if (!bnapi->cnic_present)
|
|
return;
|
|
|
|
rcu_read_lock();
|
|
c_ops = rcu_dereference(bp->cnic_ops);
|
|
if (c_ops)
|
|
bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
|
|
bnapi->status_blk.msi);
|
|
rcu_read_unlock();
|
|
}
|
|
#endif
|
|
|
|
static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
|
|
{
|
|
struct status_block *sblk = bnapi->status_blk.msi;
|
|
u32 status_attn_bits = sblk->status_attn_bits;
|
|
u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
|
|
|
|
if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
|
|
(status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
|
|
|
|
bnx2_phy_int(bp, bnapi);
|
|
|
|
/* This is needed to take care of transient status
|
|
* during link changes.
|
|
*/
|
|
REG_WR(bp, BNX2_HC_COMMAND,
|
|
bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
|
|
REG_RD(bp, BNX2_HC_COMMAND);
|
|
}
|
|
}
|
|
|
|
static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
|
|
int work_done, int budget)
|
|
{
|
|
struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
|
|
struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
|
|
|
|
if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
|
|
bnx2_tx_int(bp, bnapi, 0);
|
|
|
|
if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
|
|
work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
|
|
|
|
return work_done;
|
|
}
|
|
|
|
static int bnx2_poll_msix(struct napi_struct *napi, int budget)
|
|
{
|
|
struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
|
|
struct bnx2 *bp = bnapi->bp;
|
|
int work_done = 0;
|
|
struct status_block_msix *sblk = bnapi->status_blk.msix;
|
|
|
|
while (1) {
|
|
work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
|
|
if (unlikely(work_done >= budget))
|
|
break;
|
|
|
|
bnapi->last_status_idx = sblk->status_idx;
|
|
/* status idx must be read before checking for more work. */
|
|
rmb();
|
|
if (likely(!bnx2_has_fast_work(bnapi))) {
|
|
|
|
napi_complete(napi);
|
|
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
|
|
BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
|
|
bnapi->last_status_idx);
|
|
break;
|
|
}
|
|
}
|
|
return work_done;
|
|
}
|
|
|
|
static int bnx2_poll(struct napi_struct *napi, int budget)
|
|
{
|
|
struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
|
|
struct bnx2 *bp = bnapi->bp;
|
|
int work_done = 0;
|
|
struct status_block *sblk = bnapi->status_blk.msi;
|
|
|
|
while (1) {
|
|
bnx2_poll_link(bp, bnapi);
|
|
|
|
work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
|
|
|
|
#ifdef BCM_CNIC
|
|
bnx2_poll_cnic(bp, bnapi);
|
|
#endif
|
|
|
|
/* bnapi->last_status_idx is used below to tell the hw how
|
|
* much work has been processed, so we must read it before
|
|
* checking for more work.
|
|
*/
|
|
bnapi->last_status_idx = sblk->status_idx;
|
|
|
|
if (unlikely(work_done >= budget))
|
|
break;
|
|
|
|
rmb();
|
|
if (likely(!bnx2_has_work(bnapi))) {
|
|
napi_complete(napi);
|
|
if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
|
|
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
|
|
BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
|
|
bnapi->last_status_idx);
|
|
break;
|
|
}
|
|
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
|
|
BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
|
|
BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
|
|
bnapi->last_status_idx);
|
|
|
|
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
|
|
BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
|
|
bnapi->last_status_idx);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return work_done;
|
|
}
|
|
|
|
/* Called with rtnl_lock from vlan functions and also netif_tx_lock
|
|
* from set_multicast.
|
|
*/
|
|
static void
|
|
bnx2_set_rx_mode(struct net_device *dev)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
u32 rx_mode, sort_mode;
|
|
struct netdev_hw_addr *ha;
|
|
int i;
|
|
|
|
if (!netif_running(dev))
|
|
return;
|
|
|
|
spin_lock_bh(&bp->phy_lock);
|
|
|
|
rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
|
|
BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
|
|
sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
|
|
#ifdef BCM_VLAN
|
|
if (!bp->vlgrp && (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
|
|
rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
|
|
#else
|
|
if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
|
|
rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
|
|
#endif
|
|
if (dev->flags & IFF_PROMISC) {
|
|
/* Promiscuous mode. */
|
|
rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
|
|
sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
|
|
BNX2_RPM_SORT_USER0_PROM_VLAN;
|
|
}
|
|
else if (dev->flags & IFF_ALLMULTI) {
|
|
for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
|
|
REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
|
|
0xffffffff);
|
|
}
|
|
sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
|
|
}
|
|
else {
|
|
/* Accept one or more multicast(s). */
|
|
struct dev_mc_list *mclist;
|
|
u32 mc_filter[NUM_MC_HASH_REGISTERS];
|
|
u32 regidx;
|
|
u32 bit;
|
|
u32 crc;
|
|
|
|
memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
|
|
|
|
for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
|
|
i++, mclist = mclist->next) {
|
|
|
|
crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
|
|
bit = crc & 0xff;
|
|
regidx = (bit & 0xe0) >> 5;
|
|
bit &= 0x1f;
|
|
mc_filter[regidx] |= (1 << bit);
|
|
}
|
|
|
|
for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
|
|
REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
|
|
mc_filter[i]);
|
|
}
|
|
|
|
sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
|
|
}
|
|
|
|
if (dev->uc.count > BNX2_MAX_UNICAST_ADDRESSES) {
|
|
rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
|
|
sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
|
|
BNX2_RPM_SORT_USER0_PROM_VLAN;
|
|
} else if (!(dev->flags & IFF_PROMISC)) {
|
|
/* Add all entries into to the match filter list */
|
|
i = 0;
|
|
list_for_each_entry(ha, &dev->uc.list, list) {
|
|
bnx2_set_mac_addr(bp, ha->addr,
|
|
i + BNX2_START_UNICAST_ADDRESS_INDEX);
|
|
sort_mode |= (1 <<
|
|
(i + BNX2_START_UNICAST_ADDRESS_INDEX));
|
|
i++;
|
|
}
|
|
|
|
}
|
|
|
|
if (rx_mode != bp->rx_mode) {
|
|
bp->rx_mode = rx_mode;
|
|
REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
|
|
}
|
|
|
|
REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
|
|
REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
|
|
REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
|
|
|
|
spin_unlock_bh(&bp->phy_lock);
|
|
}
|
|
|
|
static int __devinit
|
|
check_fw_section(const struct firmware *fw,
|
|
const struct bnx2_fw_file_section *section,
|
|
u32 alignment, bool non_empty)
|
|
{
|
|
u32 offset = be32_to_cpu(section->offset);
|
|
u32 len = be32_to_cpu(section->len);
|
|
|
|
if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
|
|
return -EINVAL;
|
|
if ((non_empty && len == 0) || len > fw->size - offset ||
|
|
len & (alignment - 1))
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
static int __devinit
|
|
check_mips_fw_entry(const struct firmware *fw,
|
|
const struct bnx2_mips_fw_file_entry *entry)
|
|
{
|
|
if (check_fw_section(fw, &entry->text, 4, true) ||
|
|
check_fw_section(fw, &entry->data, 4, false) ||
|
|
check_fw_section(fw, &entry->rodata, 4, false))
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
static int __devinit
|
|
bnx2_request_firmware(struct bnx2 *bp)
|
|
{
|
|
const char *mips_fw_file, *rv2p_fw_file;
|
|
const struct bnx2_mips_fw_file *mips_fw;
|
|
const struct bnx2_rv2p_fw_file *rv2p_fw;
|
|
int rc;
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
|
|
mips_fw_file = FW_MIPS_FILE_09;
|
|
if ((CHIP_ID(bp) == CHIP_ID_5709_A0) ||
|
|
(CHIP_ID(bp) == CHIP_ID_5709_A1))
|
|
rv2p_fw_file = FW_RV2P_FILE_09_Ax;
|
|
else
|
|
rv2p_fw_file = FW_RV2P_FILE_09;
|
|
} else {
|
|
mips_fw_file = FW_MIPS_FILE_06;
|
|
rv2p_fw_file = FW_RV2P_FILE_06;
|
|
}
|
|
|
|
rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
|
|
if (rc) {
|
|
printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
|
|
mips_fw_file);
|
|
return rc;
|
|
}
|
|
|
|
rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
|
|
if (rc) {
|
|
printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
|
|
rv2p_fw_file);
|
|
return rc;
|
|
}
|
|
mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
|
|
rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
|
|
if (bp->mips_firmware->size < sizeof(*mips_fw) ||
|
|
check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
|
|
check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
|
|
check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
|
|
check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
|
|
check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
|
|
printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
|
|
mips_fw_file);
|
|
return -EINVAL;
|
|
}
|
|
if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
|
|
check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
|
|
check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
|
|
printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
|
|
rv2p_fw_file);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u32
|
|
rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
|
|
{
|
|
switch (idx) {
|
|
case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
|
|
rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
|
|
rv2p_code |= RV2P_BD_PAGE_SIZE;
|
|
break;
|
|
}
|
|
return rv2p_code;
|
|
}
|
|
|
|
static int
|
|
load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
|
|
const struct bnx2_rv2p_fw_file_entry *fw_entry)
|
|
{
|
|
u32 rv2p_code_len, file_offset;
|
|
__be32 *rv2p_code;
|
|
int i;
|
|
u32 val, cmd, addr;
|
|
|
|
rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
|
|
file_offset = be32_to_cpu(fw_entry->rv2p.offset);
|
|
|
|
rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
|
|
|
|
if (rv2p_proc == RV2P_PROC1) {
|
|
cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
|
|
addr = BNX2_RV2P_PROC1_ADDR_CMD;
|
|
} else {
|
|
cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
|
|
addr = BNX2_RV2P_PROC2_ADDR_CMD;
|
|
}
|
|
|
|
for (i = 0; i < rv2p_code_len; i += 8) {
|
|
REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
|
|
rv2p_code++;
|
|
REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
|
|
rv2p_code++;
|
|
|
|
val = (i / 8) | cmd;
|
|
REG_WR(bp, addr, val);
|
|
}
|
|
|
|
rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
|
|
for (i = 0; i < 8; i++) {
|
|
u32 loc, code;
|
|
|
|
loc = be32_to_cpu(fw_entry->fixup[i]);
|
|
if (loc && ((loc * 4) < rv2p_code_len)) {
|
|
code = be32_to_cpu(*(rv2p_code + loc - 1));
|
|
REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
|
|
code = be32_to_cpu(*(rv2p_code + loc));
|
|
code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
|
|
REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
|
|
|
|
val = (loc / 2) | cmd;
|
|
REG_WR(bp, addr, val);
|
|
}
|
|
}
|
|
|
|
/* Reset the processor, un-stall is done later. */
|
|
if (rv2p_proc == RV2P_PROC1) {
|
|
REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
|
|
}
|
|
else {
|
|
REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
|
|
const struct bnx2_mips_fw_file_entry *fw_entry)
|
|
{
|
|
u32 addr, len, file_offset;
|
|
__be32 *data;
|
|
u32 offset;
|
|
u32 val;
|
|
|
|
/* Halt the CPU. */
|
|
val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
|
|
val |= cpu_reg->mode_value_halt;
|
|
bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
|
|
bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
|
|
|
|
/* Load the Text area. */
|
|
addr = be32_to_cpu(fw_entry->text.addr);
|
|
len = be32_to_cpu(fw_entry->text.len);
|
|
file_offset = be32_to_cpu(fw_entry->text.offset);
|
|
data = (__be32 *)(bp->mips_firmware->data + file_offset);
|
|
|
|
offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
|
|
if (len) {
|
|
int j;
|
|
|
|
for (j = 0; j < (len / 4); j++, offset += 4)
|
|
bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
|
|
}
|
|
|
|
/* Load the Data area. */
|
|
addr = be32_to_cpu(fw_entry->data.addr);
|
|
len = be32_to_cpu(fw_entry->data.len);
|
|
file_offset = be32_to_cpu(fw_entry->data.offset);
|
|
data = (__be32 *)(bp->mips_firmware->data + file_offset);
|
|
|
|
offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
|
|
if (len) {
|
|
int j;
|
|
|
|
for (j = 0; j < (len / 4); j++, offset += 4)
|
|
bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
|
|
}
|
|
|
|
/* Load the Read-Only area. */
|
|
addr = be32_to_cpu(fw_entry->rodata.addr);
|
|
len = be32_to_cpu(fw_entry->rodata.len);
|
|
file_offset = be32_to_cpu(fw_entry->rodata.offset);
|
|
data = (__be32 *)(bp->mips_firmware->data + file_offset);
|
|
|
|
offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
|
|
if (len) {
|
|
int j;
|
|
|
|
for (j = 0; j < (len / 4); j++, offset += 4)
|
|
bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
|
|
}
|
|
|
|
/* Clear the pre-fetch instruction. */
|
|
bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
|
|
|
|
val = be32_to_cpu(fw_entry->start_addr);
|
|
bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
|
|
|
|
/* Start the CPU. */
|
|
val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
|
|
val &= ~cpu_reg->mode_value_halt;
|
|
bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
|
|
bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_init_cpus(struct bnx2 *bp)
|
|
{
|
|
const struct bnx2_mips_fw_file *mips_fw =
|
|
(const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
|
|
const struct bnx2_rv2p_fw_file *rv2p_fw =
|
|
(const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
|
|
int rc;
|
|
|
|
/* Initialize the RV2P processor. */
|
|
load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
|
|
load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
|
|
|
|
/* Initialize the RX Processor. */
|
|
rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
|
|
if (rc)
|
|
goto init_cpu_err;
|
|
|
|
/* Initialize the TX Processor. */
|
|
rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
|
|
if (rc)
|
|
goto init_cpu_err;
|
|
|
|
/* Initialize the TX Patch-up Processor. */
|
|
rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
|
|
if (rc)
|
|
goto init_cpu_err;
|
|
|
|
/* Initialize the Completion Processor. */
|
|
rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
|
|
if (rc)
|
|
goto init_cpu_err;
|
|
|
|
/* Initialize the Command Processor. */
|
|
rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
|
|
|
|
init_cpu_err:
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
|
|
{
|
|
u16 pmcsr;
|
|
|
|
pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
|
|
|
|
switch (state) {
|
|
case PCI_D0: {
|
|
u32 val;
|
|
|
|
pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
|
|
(pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
|
|
PCI_PM_CTRL_PME_STATUS);
|
|
|
|
if (pmcsr & PCI_PM_CTRL_STATE_MASK)
|
|
/* delay required during transition out of D3hot */
|
|
msleep(20);
|
|
|
|
val = REG_RD(bp, BNX2_EMAC_MODE);
|
|
val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
|
|
val &= ~BNX2_EMAC_MODE_MPKT;
|
|
REG_WR(bp, BNX2_EMAC_MODE, val);
|
|
|
|
val = REG_RD(bp, BNX2_RPM_CONFIG);
|
|
val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
|
|
REG_WR(bp, BNX2_RPM_CONFIG, val);
|
|
break;
|
|
}
|
|
case PCI_D3hot: {
|
|
int i;
|
|
u32 val, wol_msg;
|
|
|
|
if (bp->wol) {
|
|
u32 advertising;
|
|
u8 autoneg;
|
|
|
|
autoneg = bp->autoneg;
|
|
advertising = bp->advertising;
|
|
|
|
if (bp->phy_port == PORT_TP) {
|
|
bp->autoneg = AUTONEG_SPEED;
|
|
bp->advertising = ADVERTISED_10baseT_Half |
|
|
ADVERTISED_10baseT_Full |
|
|
ADVERTISED_100baseT_Half |
|
|
ADVERTISED_100baseT_Full |
|
|
ADVERTISED_Autoneg;
|
|
}
|
|
|
|
spin_lock_bh(&bp->phy_lock);
|
|
bnx2_setup_phy(bp, bp->phy_port);
|
|
spin_unlock_bh(&bp->phy_lock);
|
|
|
|
bp->autoneg = autoneg;
|
|
bp->advertising = advertising;
|
|
|
|
bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
|
|
|
|
val = REG_RD(bp, BNX2_EMAC_MODE);
|
|
|
|
/* Enable port mode. */
|
|
val &= ~BNX2_EMAC_MODE_PORT;
|
|
val |= BNX2_EMAC_MODE_MPKT_RCVD |
|
|
BNX2_EMAC_MODE_ACPI_RCVD |
|
|
BNX2_EMAC_MODE_MPKT;
|
|
if (bp->phy_port == PORT_TP)
|
|
val |= BNX2_EMAC_MODE_PORT_MII;
|
|
else {
|
|
val |= BNX2_EMAC_MODE_PORT_GMII;
|
|
if (bp->line_speed == SPEED_2500)
|
|
val |= BNX2_EMAC_MODE_25G_MODE;
|
|
}
|
|
|
|
REG_WR(bp, BNX2_EMAC_MODE, val);
|
|
|
|
/* receive all multicast */
|
|
for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
|
|
REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
|
|
0xffffffff);
|
|
}
|
|
REG_WR(bp, BNX2_EMAC_RX_MODE,
|
|
BNX2_EMAC_RX_MODE_SORT_MODE);
|
|
|
|
val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
|
|
BNX2_RPM_SORT_USER0_MC_EN;
|
|
REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
|
|
REG_WR(bp, BNX2_RPM_SORT_USER0, val);
|
|
REG_WR(bp, BNX2_RPM_SORT_USER0, val |
|
|
BNX2_RPM_SORT_USER0_ENA);
|
|
|
|
/* Need to enable EMAC and RPM for WOL. */
|
|
REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
|
|
BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
|
|
BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
|
|
BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
|
|
|
|
val = REG_RD(bp, BNX2_RPM_CONFIG);
|
|
val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
|
|
REG_WR(bp, BNX2_RPM_CONFIG, val);
|
|
|
|
wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
|
|
}
|
|
else {
|
|
wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
|
|
}
|
|
|
|
if (!(bp->flags & BNX2_FLAG_NO_WOL))
|
|
bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
|
|
1, 0);
|
|
|
|
pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
|
|
if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
|
|
(CHIP_ID(bp) == CHIP_ID_5706_A1)) {
|
|
|
|
if (bp->wol)
|
|
pmcsr |= 3;
|
|
}
|
|
else {
|
|
pmcsr |= 3;
|
|
}
|
|
if (bp->wol) {
|
|
pmcsr |= PCI_PM_CTRL_PME_ENABLE;
|
|
}
|
|
pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
|
|
pmcsr);
|
|
|
|
/* No more memory access after this point until
|
|
* device is brought back to D0.
|
|
*/
|
|
udelay(50);
|
|
break;
|
|
}
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_acquire_nvram_lock(struct bnx2 *bp)
|
|
{
|
|
u32 val;
|
|
int j;
|
|
|
|
/* Request access to the flash interface. */
|
|
REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
|
|
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
|
|
val = REG_RD(bp, BNX2_NVM_SW_ARB);
|
|
if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
|
|
break;
|
|
|
|
udelay(5);
|
|
}
|
|
|
|
if (j >= NVRAM_TIMEOUT_COUNT)
|
|
return -EBUSY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_release_nvram_lock(struct bnx2 *bp)
|
|
{
|
|
int j;
|
|
u32 val;
|
|
|
|
/* Relinquish nvram interface. */
|
|
REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
|
|
|
|
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
|
|
val = REG_RD(bp, BNX2_NVM_SW_ARB);
|
|
if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
|
|
break;
|
|
|
|
udelay(5);
|
|
}
|
|
|
|
if (j >= NVRAM_TIMEOUT_COUNT)
|
|
return -EBUSY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
bnx2_enable_nvram_write(struct bnx2 *bp)
|
|
{
|
|
u32 val;
|
|
|
|
val = REG_RD(bp, BNX2_MISC_CFG);
|
|
REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
|
|
|
|
if (bp->flash_info->flags & BNX2_NV_WREN) {
|
|
int j;
|
|
|
|
REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
|
|
REG_WR(bp, BNX2_NVM_COMMAND,
|
|
BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
|
|
|
|
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
|
|
udelay(5);
|
|
|
|
val = REG_RD(bp, BNX2_NVM_COMMAND);
|
|
if (val & BNX2_NVM_COMMAND_DONE)
|
|
break;
|
|
}
|
|
|
|
if (j >= NVRAM_TIMEOUT_COUNT)
|
|
return -EBUSY;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
bnx2_disable_nvram_write(struct bnx2 *bp)
|
|
{
|
|
u32 val;
|
|
|
|
val = REG_RD(bp, BNX2_MISC_CFG);
|
|
REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
|
|
}
|
|
|
|
|
|
static void
|
|
bnx2_enable_nvram_access(struct bnx2 *bp)
|
|
{
|
|
u32 val;
|
|
|
|
val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
|
|
/* Enable both bits, even on read. */
|
|
REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
|
|
val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
|
|
}
|
|
|
|
static void
|
|
bnx2_disable_nvram_access(struct bnx2 *bp)
|
|
{
|
|
u32 val;
|
|
|
|
val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
|
|
/* Disable both bits, even after read. */
|
|
REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
|
|
val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
|
|
BNX2_NVM_ACCESS_ENABLE_WR_EN));
|
|
}
|
|
|
|
static int
|
|
bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
|
|
{
|
|
u32 cmd;
|
|
int j;
|
|
|
|
if (bp->flash_info->flags & BNX2_NV_BUFFERED)
|
|
/* Buffered flash, no erase needed */
|
|
return 0;
|
|
|
|
/* Build an erase command */
|
|
cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
|
|
BNX2_NVM_COMMAND_DOIT;
|
|
|
|
/* Need to clear DONE bit separately. */
|
|
REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
|
|
|
|
/* Address of the NVRAM to read from. */
|
|
REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
|
|
|
|
/* Issue an erase command. */
|
|
REG_WR(bp, BNX2_NVM_COMMAND, cmd);
|
|
|
|
/* Wait for completion. */
|
|
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
|
|
u32 val;
|
|
|
|
udelay(5);
|
|
|
|
val = REG_RD(bp, BNX2_NVM_COMMAND);
|
|
if (val & BNX2_NVM_COMMAND_DONE)
|
|
break;
|
|
}
|
|
|
|
if (j >= NVRAM_TIMEOUT_COUNT)
|
|
return -EBUSY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
|
|
{
|
|
u32 cmd;
|
|
int j;
|
|
|
|
/* Build the command word. */
|
|
cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
|
|
|
|
/* Calculate an offset of a buffered flash, not needed for 5709. */
|
|
if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
|
|
offset = ((offset / bp->flash_info->page_size) <<
|
|
bp->flash_info->page_bits) +
|
|
(offset % bp->flash_info->page_size);
|
|
}
|
|
|
|
/* Need to clear DONE bit separately. */
|
|
REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
|
|
|
|
/* Address of the NVRAM to read from. */
|
|
REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
|
|
|
|
/* Issue a read command. */
|
|
REG_WR(bp, BNX2_NVM_COMMAND, cmd);
|
|
|
|
/* Wait for completion. */
|
|
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
|
|
u32 val;
|
|
|
|
udelay(5);
|
|
|
|
val = REG_RD(bp, BNX2_NVM_COMMAND);
|
|
if (val & BNX2_NVM_COMMAND_DONE) {
|
|
__be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
|
|
memcpy(ret_val, &v, 4);
|
|
break;
|
|
}
|
|
}
|
|
if (j >= NVRAM_TIMEOUT_COUNT)
|
|
return -EBUSY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
|
|
{
|
|
u32 cmd;
|
|
__be32 val32;
|
|
int j;
|
|
|
|
/* Build the command word. */
|
|
cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
|
|
|
|
/* Calculate an offset of a buffered flash, not needed for 5709. */
|
|
if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
|
|
offset = ((offset / bp->flash_info->page_size) <<
|
|
bp->flash_info->page_bits) +
|
|
(offset % bp->flash_info->page_size);
|
|
}
|
|
|
|
/* Need to clear DONE bit separately. */
|
|
REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
|
|
|
|
memcpy(&val32, val, 4);
|
|
|
|
/* Write the data. */
|
|
REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
|
|
|
|
/* Address of the NVRAM to write to. */
|
|
REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
|
|
|
|
/* Issue the write command. */
|
|
REG_WR(bp, BNX2_NVM_COMMAND, cmd);
|
|
|
|
/* Wait for completion. */
|
|
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
|
|
udelay(5);
|
|
|
|
if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
|
|
break;
|
|
}
|
|
if (j >= NVRAM_TIMEOUT_COUNT)
|
|
return -EBUSY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_init_nvram(struct bnx2 *bp)
|
|
{
|
|
u32 val;
|
|
int j, entry_count, rc = 0;
|
|
const struct flash_spec *flash;
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
|
|
bp->flash_info = &flash_5709;
|
|
goto get_flash_size;
|
|
}
|
|
|
|
/* Determine the selected interface. */
|
|
val = REG_RD(bp, BNX2_NVM_CFG1);
|
|
|
|
entry_count = ARRAY_SIZE(flash_table);
|
|
|
|
if (val & 0x40000000) {
|
|
|
|
/* Flash interface has been reconfigured */
|
|
for (j = 0, flash = &flash_table[0]; j < entry_count;
|
|
j++, flash++) {
|
|
if ((val & FLASH_BACKUP_STRAP_MASK) ==
|
|
(flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
|
|
bp->flash_info = flash;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
u32 mask;
|
|
/* Not yet been reconfigured */
|
|
|
|
if (val & (1 << 23))
|
|
mask = FLASH_BACKUP_STRAP_MASK;
|
|
else
|
|
mask = FLASH_STRAP_MASK;
|
|
|
|
for (j = 0, flash = &flash_table[0]; j < entry_count;
|
|
j++, flash++) {
|
|
|
|
if ((val & mask) == (flash->strapping & mask)) {
|
|
bp->flash_info = flash;
|
|
|
|
/* Request access to the flash interface. */
|
|
if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
|
|
return rc;
|
|
|
|
/* Enable access to flash interface */
|
|
bnx2_enable_nvram_access(bp);
|
|
|
|
/* Reconfigure the flash interface */
|
|
REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
|
|
REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
|
|
REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
|
|
REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
|
|
|
|
/* Disable access to flash interface */
|
|
bnx2_disable_nvram_access(bp);
|
|
bnx2_release_nvram_lock(bp);
|
|
|
|
break;
|
|
}
|
|
}
|
|
} /* if (val & 0x40000000) */
|
|
|
|
if (j == entry_count) {
|
|
bp->flash_info = NULL;
|
|
printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
get_flash_size:
|
|
val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
|
|
val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
|
|
if (val)
|
|
bp->flash_size = val;
|
|
else
|
|
bp->flash_size = bp->flash_info->total_size;
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
|
|
int buf_size)
|
|
{
|
|
int rc = 0;
|
|
u32 cmd_flags, offset32, len32, extra;
|
|
|
|
if (buf_size == 0)
|
|
return 0;
|
|
|
|
/* Request access to the flash interface. */
|
|
if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
|
|
return rc;
|
|
|
|
/* Enable access to flash interface */
|
|
bnx2_enable_nvram_access(bp);
|
|
|
|
len32 = buf_size;
|
|
offset32 = offset;
|
|
extra = 0;
|
|
|
|
cmd_flags = 0;
|
|
|
|
if (offset32 & 3) {
|
|
u8 buf[4];
|
|
u32 pre_len;
|
|
|
|
offset32 &= ~3;
|
|
pre_len = 4 - (offset & 3);
|
|
|
|
if (pre_len >= len32) {
|
|
pre_len = len32;
|
|
cmd_flags = BNX2_NVM_COMMAND_FIRST |
|
|
BNX2_NVM_COMMAND_LAST;
|
|
}
|
|
else {
|
|
cmd_flags = BNX2_NVM_COMMAND_FIRST;
|
|
}
|
|
|
|
rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
|
|
|
|
if (rc)
|
|
return rc;
|
|
|
|
memcpy(ret_buf, buf + (offset & 3), pre_len);
|
|
|
|
offset32 += 4;
|
|
ret_buf += pre_len;
|
|
len32 -= pre_len;
|
|
}
|
|
if (len32 & 3) {
|
|
extra = 4 - (len32 & 3);
|
|
len32 = (len32 + 4) & ~3;
|
|
}
|
|
|
|
if (len32 == 4) {
|
|
u8 buf[4];
|
|
|
|
if (cmd_flags)
|
|
cmd_flags = BNX2_NVM_COMMAND_LAST;
|
|
else
|
|
cmd_flags = BNX2_NVM_COMMAND_FIRST |
|
|
BNX2_NVM_COMMAND_LAST;
|
|
|
|
rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
|
|
|
|
memcpy(ret_buf, buf, 4 - extra);
|
|
}
|
|
else if (len32 > 0) {
|
|
u8 buf[4];
|
|
|
|
/* Read the first word. */
|
|
if (cmd_flags)
|
|
cmd_flags = 0;
|
|
else
|
|
cmd_flags = BNX2_NVM_COMMAND_FIRST;
|
|
|
|
rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
|
|
|
|
/* Advance to the next dword. */
|
|
offset32 += 4;
|
|
ret_buf += 4;
|
|
len32 -= 4;
|
|
|
|
while (len32 > 4 && rc == 0) {
|
|
rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
|
|
|
|
/* Advance to the next dword. */
|
|
offset32 += 4;
|
|
ret_buf += 4;
|
|
len32 -= 4;
|
|
}
|
|
|
|
if (rc)
|
|
return rc;
|
|
|
|
cmd_flags = BNX2_NVM_COMMAND_LAST;
|
|
rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
|
|
|
|
memcpy(ret_buf, buf, 4 - extra);
|
|
}
|
|
|
|
/* Disable access to flash interface */
|
|
bnx2_disable_nvram_access(bp);
|
|
|
|
bnx2_release_nvram_lock(bp);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
|
|
int buf_size)
|
|
{
|
|
u32 written, offset32, len32;
|
|
u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
|
|
int rc = 0;
|
|
int align_start, align_end;
|
|
|
|
buf = data_buf;
|
|
offset32 = offset;
|
|
len32 = buf_size;
|
|
align_start = align_end = 0;
|
|
|
|
if ((align_start = (offset32 & 3))) {
|
|
offset32 &= ~3;
|
|
len32 += align_start;
|
|
if (len32 < 4)
|
|
len32 = 4;
|
|
if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
|
|
return rc;
|
|
}
|
|
|
|
if (len32 & 3) {
|
|
align_end = 4 - (len32 & 3);
|
|
len32 += align_end;
|
|
if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
|
|
return rc;
|
|
}
|
|
|
|
if (align_start || align_end) {
|
|
align_buf = kmalloc(len32, GFP_KERNEL);
|
|
if (align_buf == NULL)
|
|
return -ENOMEM;
|
|
if (align_start) {
|
|
memcpy(align_buf, start, 4);
|
|
}
|
|
if (align_end) {
|
|
memcpy(align_buf + len32 - 4, end, 4);
|
|
}
|
|
memcpy(align_buf + align_start, data_buf, buf_size);
|
|
buf = align_buf;
|
|
}
|
|
|
|
if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
|
|
flash_buffer = kmalloc(264, GFP_KERNEL);
|
|
if (flash_buffer == NULL) {
|
|
rc = -ENOMEM;
|
|
goto nvram_write_end;
|
|
}
|
|
}
|
|
|
|
written = 0;
|
|
while ((written < len32) && (rc == 0)) {
|
|
u32 page_start, page_end, data_start, data_end;
|
|
u32 addr, cmd_flags;
|
|
int i;
|
|
|
|
/* Find the page_start addr */
|
|
page_start = offset32 + written;
|
|
page_start -= (page_start % bp->flash_info->page_size);
|
|
/* Find the page_end addr */
|
|
page_end = page_start + bp->flash_info->page_size;
|
|
/* Find the data_start addr */
|
|
data_start = (written == 0) ? offset32 : page_start;
|
|
/* Find the data_end addr */
|
|
data_end = (page_end > offset32 + len32) ?
|
|
(offset32 + len32) : page_end;
|
|
|
|
/* Request access to the flash interface. */
|
|
if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
|
|
goto nvram_write_end;
|
|
|
|
/* Enable access to flash interface */
|
|
bnx2_enable_nvram_access(bp);
|
|
|
|
cmd_flags = BNX2_NVM_COMMAND_FIRST;
|
|
if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
|
|
int j;
|
|
|
|
/* Read the whole page into the buffer
|
|
* (non-buffer flash only) */
|
|
for (j = 0; j < bp->flash_info->page_size; j += 4) {
|
|
if (j == (bp->flash_info->page_size - 4)) {
|
|
cmd_flags |= BNX2_NVM_COMMAND_LAST;
|
|
}
|
|
rc = bnx2_nvram_read_dword(bp,
|
|
page_start + j,
|
|
&flash_buffer[j],
|
|
cmd_flags);
|
|
|
|
if (rc)
|
|
goto nvram_write_end;
|
|
|
|
cmd_flags = 0;
|
|
}
|
|
}
|
|
|
|
/* Enable writes to flash interface (unlock write-protect) */
|
|
if ((rc = bnx2_enable_nvram_write(bp)) != 0)
|
|
goto nvram_write_end;
|
|
|
|
/* Loop to write back the buffer data from page_start to
|
|
* data_start */
|
|
i = 0;
|
|
if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
|
|
/* Erase the page */
|
|
if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
|
|
goto nvram_write_end;
|
|
|
|
/* Re-enable the write again for the actual write */
|
|
bnx2_enable_nvram_write(bp);
|
|
|
|
for (addr = page_start; addr < data_start;
|
|
addr += 4, i += 4) {
|
|
|
|
rc = bnx2_nvram_write_dword(bp, addr,
|
|
&flash_buffer[i], cmd_flags);
|
|
|
|
if (rc != 0)
|
|
goto nvram_write_end;
|
|
|
|
cmd_flags = 0;
|
|
}
|
|
}
|
|
|
|
/* Loop to write the new data from data_start to data_end */
|
|
for (addr = data_start; addr < data_end; addr += 4, i += 4) {
|
|
if ((addr == page_end - 4) ||
|
|
((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
|
|
(addr == data_end - 4))) {
|
|
|
|
cmd_flags |= BNX2_NVM_COMMAND_LAST;
|
|
}
|
|
rc = bnx2_nvram_write_dword(bp, addr, buf,
|
|
cmd_flags);
|
|
|
|
if (rc != 0)
|
|
goto nvram_write_end;
|
|
|
|
cmd_flags = 0;
|
|
buf += 4;
|
|
}
|
|
|
|
/* Loop to write back the buffer data from data_end
|
|
* to page_end */
|
|
if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
|
|
for (addr = data_end; addr < page_end;
|
|
addr += 4, i += 4) {
|
|
|
|
if (addr == page_end-4) {
|
|
cmd_flags = BNX2_NVM_COMMAND_LAST;
|
|
}
|
|
rc = bnx2_nvram_write_dword(bp, addr,
|
|
&flash_buffer[i], cmd_flags);
|
|
|
|
if (rc != 0)
|
|
goto nvram_write_end;
|
|
|
|
cmd_flags = 0;
|
|
}
|
|
}
|
|
|
|
/* Disable writes to flash interface (lock write-protect) */
|
|
bnx2_disable_nvram_write(bp);
|
|
|
|
/* Disable access to flash interface */
|
|
bnx2_disable_nvram_access(bp);
|
|
bnx2_release_nvram_lock(bp);
|
|
|
|
/* Increment written */
|
|
written += data_end - data_start;
|
|
}
|
|
|
|
nvram_write_end:
|
|
kfree(flash_buffer);
|
|
kfree(align_buf);
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
bnx2_init_fw_cap(struct bnx2 *bp)
|
|
{
|
|
u32 val, sig = 0;
|
|
|
|
bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
|
|
bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
|
|
|
|
if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
|
|
bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
|
|
|
|
val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
|
|
if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
|
|
return;
|
|
|
|
if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
|
|
bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
|
|
sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
|
|
}
|
|
|
|
if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
|
|
(val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
|
|
u32 link;
|
|
|
|
bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
|
|
|
|
link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
|
|
if (link & BNX2_LINK_STATUS_SERDES_LINK)
|
|
bp->phy_port = PORT_FIBRE;
|
|
else
|
|
bp->phy_port = PORT_TP;
|
|
|
|
sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
|
|
BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
|
|
}
|
|
|
|
if (netif_running(bp->dev) && sig)
|
|
bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
|
|
}
|
|
|
|
static void
|
|
bnx2_setup_msix_tbl(struct bnx2 *bp)
|
|
{
|
|
REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
|
|
|
|
REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
|
|
REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
|
|
}
|
|
|
|
static int
|
|
bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
|
|
{
|
|
u32 val;
|
|
int i, rc = 0;
|
|
u8 old_port;
|
|
|
|
/* Wait for the current PCI transaction to complete before
|
|
* issuing a reset. */
|
|
REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
|
|
BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
|
|
BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
|
|
BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
|
|
BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
|
|
val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
|
|
udelay(5);
|
|
|
|
/* Wait for the firmware to tell us it is ok to issue a reset. */
|
|
bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
|
|
|
|
/* Deposit a driver reset signature so the firmware knows that
|
|
* this is a soft reset. */
|
|
bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
|
|
BNX2_DRV_RESET_SIGNATURE_MAGIC);
|
|
|
|
/* Do a dummy read to force the chip to complete all current transaction
|
|
* before we issue a reset. */
|
|
val = REG_RD(bp, BNX2_MISC_ID);
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
|
|
REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
|
|
REG_RD(bp, BNX2_MISC_COMMAND);
|
|
udelay(5);
|
|
|
|
val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
|
|
BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
|
|
|
|
pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
|
|
|
|
} else {
|
|
val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
|
|
BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
|
|
BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
|
|
|
|
/* Chip reset. */
|
|
REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
|
|
|
|
/* Reading back any register after chip reset will hang the
|
|
* bus on 5706 A0 and A1. The msleep below provides plenty
|
|
* of margin for write posting.
|
|
*/
|
|
if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
|
|
(CHIP_ID(bp) == CHIP_ID_5706_A1))
|
|
msleep(20);
|
|
|
|
/* Reset takes approximate 30 usec */
|
|
for (i = 0; i < 10; i++) {
|
|
val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
|
|
if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
|
|
BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
|
|
break;
|
|
udelay(10);
|
|
}
|
|
|
|
if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
|
|
BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
|
|
printk(KERN_ERR PFX "Chip reset did not complete\n");
|
|
return -EBUSY;
|
|
}
|
|
}
|
|
|
|
/* Make sure byte swapping is properly configured. */
|
|
val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
|
|
if (val != 0x01020304) {
|
|
printk(KERN_ERR PFX "Chip not in correct endian mode\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Wait for the firmware to finish its initialization. */
|
|
rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
|
|
if (rc)
|
|
return rc;
|
|
|
|
spin_lock_bh(&bp->phy_lock);
|
|
old_port = bp->phy_port;
|
|
bnx2_init_fw_cap(bp);
|
|
if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
|
|
old_port != bp->phy_port)
|
|
bnx2_set_default_remote_link(bp);
|
|
spin_unlock_bh(&bp->phy_lock);
|
|
|
|
if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
|
|
/* Adjust the voltage regular to two steps lower. The default
|
|
* of this register is 0x0000000e. */
|
|
REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
|
|
|
|
/* Remove bad rbuf memory from the free pool. */
|
|
rc = bnx2_alloc_bad_rbuf(bp);
|
|
}
|
|
|
|
if (bp->flags & BNX2_FLAG_USING_MSIX)
|
|
bnx2_setup_msix_tbl(bp);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
bnx2_init_chip(struct bnx2 *bp)
|
|
{
|
|
u32 val, mtu;
|
|
int rc, i;
|
|
|
|
/* Make sure the interrupt is not active. */
|
|
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
|
|
|
|
val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
|
|
BNX2_DMA_CONFIG_DATA_WORD_SWAP |
|
|
#ifdef __BIG_ENDIAN
|
|
BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
|
|
#endif
|
|
BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
|
|
DMA_READ_CHANS << 12 |
|
|
DMA_WRITE_CHANS << 16;
|
|
|
|
val |= (0x2 << 20) | (1 << 11);
|
|
|
|
if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
|
|
val |= (1 << 23);
|
|
|
|
if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
|
|
(CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
|
|
val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
|
|
|
|
REG_WR(bp, BNX2_DMA_CONFIG, val);
|
|
|
|
if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
|
|
val = REG_RD(bp, BNX2_TDMA_CONFIG);
|
|
val |= BNX2_TDMA_CONFIG_ONE_DMA;
|
|
REG_WR(bp, BNX2_TDMA_CONFIG, val);
|
|
}
|
|
|
|
if (bp->flags & BNX2_FLAG_PCIX) {
|
|
u16 val16;
|
|
|
|
pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
|
|
&val16);
|
|
pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
|
|
val16 & ~PCI_X_CMD_ERO);
|
|
}
|
|
|
|
REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
|
|
BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
|
|
BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
|
|
BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
|
|
|
|
/* Initialize context mapping and zero out the quick contexts. The
|
|
* context block must have already been enabled. */
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
|
|
rc = bnx2_init_5709_context(bp);
|
|
if (rc)
|
|
return rc;
|
|
} else
|
|
bnx2_init_context(bp);
|
|
|
|
if ((rc = bnx2_init_cpus(bp)) != 0)
|
|
return rc;
|
|
|
|
bnx2_init_nvram(bp);
|
|
|
|
bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
|
|
|
|
val = REG_RD(bp, BNX2_MQ_CONFIG);
|
|
val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
|
|
val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
|
|
val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
|
|
if (CHIP_REV(bp) == CHIP_REV_Ax)
|
|
val |= BNX2_MQ_CONFIG_HALT_DIS;
|
|
}
|
|
|
|
REG_WR(bp, BNX2_MQ_CONFIG, val);
|
|
|
|
val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
|
|
REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
|
|
REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
|
|
|
|
val = (BCM_PAGE_BITS - 8) << 24;
|
|
REG_WR(bp, BNX2_RV2P_CONFIG, val);
|
|
|
|
/* Configure page size. */
|
|
val = REG_RD(bp, BNX2_TBDR_CONFIG);
|
|
val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
|
|
val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
|
|
REG_WR(bp, BNX2_TBDR_CONFIG, val);
|
|
|
|
val = bp->mac_addr[0] +
|
|
(bp->mac_addr[1] << 8) +
|
|
(bp->mac_addr[2] << 16) +
|
|
bp->mac_addr[3] +
|
|
(bp->mac_addr[4] << 8) +
|
|
(bp->mac_addr[5] << 16);
|
|
REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
|
|
|
|
/* Program the MTU. Also include 4 bytes for CRC32. */
|
|
mtu = bp->dev->mtu;
|
|
val = mtu + ETH_HLEN + ETH_FCS_LEN;
|
|
if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
|
|
val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
|
|
REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
|
|
|
|
if (mtu < 1500)
|
|
mtu = 1500;
|
|
|
|
bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
|
|
bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
|
|
bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
|
|
|
|
memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
|
|
for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
|
|
bp->bnx2_napi[i].last_status_idx = 0;
|
|
|
|
bp->idle_chk_status_idx = 0xffff;
|
|
|
|
bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
|
|
|
|
/* Set up how to generate a link change interrupt. */
|
|
REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
|
|
|
|
REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
|
|
(u64) bp->status_blk_mapping & 0xffffffff);
|
|
REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
|
|
|
|
REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
|
|
(u64) bp->stats_blk_mapping & 0xffffffff);
|
|
REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
|
|
(u64) bp->stats_blk_mapping >> 32);
|
|
|
|
REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
|
|
(bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
|
|
|
|
REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
|
|
(bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
|
|
|
|
REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
|
|
(bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
|
|
|
|
REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
|
|
|
|
REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
|
|
|
|
REG_WR(bp, BNX2_HC_COM_TICKS,
|
|
(bp->com_ticks_int << 16) | bp->com_ticks);
|
|
|
|
REG_WR(bp, BNX2_HC_CMD_TICKS,
|
|
(bp->cmd_ticks_int << 16) | bp->cmd_ticks);
|
|
|
|
if (bp->flags & BNX2_FLAG_BROKEN_STATS)
|
|
REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
|
|
else
|
|
REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
|
|
REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
|
|
|
|
if (CHIP_ID(bp) == CHIP_ID_5706_A1)
|
|
val = BNX2_HC_CONFIG_COLLECT_STATS;
|
|
else {
|
|
val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
|
|
BNX2_HC_CONFIG_COLLECT_STATS;
|
|
}
|
|
|
|
if (bp->irq_nvecs > 1) {
|
|
REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
|
|
BNX2_HC_MSIX_BIT_VECTOR_VAL);
|
|
|
|
val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
|
|
}
|
|
|
|
if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
|
|
val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
|
|
|
|
REG_WR(bp, BNX2_HC_CONFIG, val);
|
|
|
|
for (i = 1; i < bp->irq_nvecs; i++) {
|
|
u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
|
|
BNX2_HC_SB_CONFIG_1;
|
|
|
|
REG_WR(bp, base,
|
|
BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
|
|
BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
|
|
BNX2_HC_SB_CONFIG_1_ONE_SHOT);
|
|
|
|
REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
|
|
(bp->tx_quick_cons_trip_int << 16) |
|
|
bp->tx_quick_cons_trip);
|
|
|
|
REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
|
|
(bp->tx_ticks_int << 16) | bp->tx_ticks);
|
|
|
|
REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
|
|
(bp->rx_quick_cons_trip_int << 16) |
|
|
bp->rx_quick_cons_trip);
|
|
|
|
REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
|
|
(bp->rx_ticks_int << 16) | bp->rx_ticks);
|
|
}
|
|
|
|
/* Clear internal stats counters. */
|
|
REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
|
|
|
|
REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
|
|
|
|
/* Initialize the receive filter. */
|
|
bnx2_set_rx_mode(bp->dev);
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
|
|
val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
|
|
val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
|
|
REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
|
|
}
|
|
rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
|
|
1, 0);
|
|
|
|
REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
|
|
REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
|
|
|
|
udelay(20);
|
|
|
|
bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
bnx2_clear_ring_states(struct bnx2 *bp)
|
|
{
|
|
struct bnx2_napi *bnapi;
|
|
struct bnx2_tx_ring_info *txr;
|
|
struct bnx2_rx_ring_info *rxr;
|
|
int i;
|
|
|
|
for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
|
|
bnapi = &bp->bnx2_napi[i];
|
|
txr = &bnapi->tx_ring;
|
|
rxr = &bnapi->rx_ring;
|
|
|
|
txr->tx_cons = 0;
|
|
txr->hw_tx_cons = 0;
|
|
rxr->rx_prod_bseq = 0;
|
|
rxr->rx_prod = 0;
|
|
rxr->rx_cons = 0;
|
|
rxr->rx_pg_prod = 0;
|
|
rxr->rx_pg_cons = 0;
|
|
}
|
|
}
|
|
|
|
static void
|
|
bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
|
|
{
|
|
u32 val, offset0, offset1, offset2, offset3;
|
|
u32 cid_addr = GET_CID_ADDR(cid);
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
|
|
offset0 = BNX2_L2CTX_TYPE_XI;
|
|
offset1 = BNX2_L2CTX_CMD_TYPE_XI;
|
|
offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
|
|
offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
|
|
} else {
|
|
offset0 = BNX2_L2CTX_TYPE;
|
|
offset1 = BNX2_L2CTX_CMD_TYPE;
|
|
offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
|
|
offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
|
|
}
|
|
val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
|
|
bnx2_ctx_wr(bp, cid_addr, offset0, val);
|
|
|
|
val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
|
|
bnx2_ctx_wr(bp, cid_addr, offset1, val);
|
|
|
|
val = (u64) txr->tx_desc_mapping >> 32;
|
|
bnx2_ctx_wr(bp, cid_addr, offset2, val);
|
|
|
|
val = (u64) txr->tx_desc_mapping & 0xffffffff;
|
|
bnx2_ctx_wr(bp, cid_addr, offset3, val);
|
|
}
|
|
|
|
static void
|
|
bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
|
|
{
|
|
struct tx_bd *txbd;
|
|
u32 cid = TX_CID;
|
|
struct bnx2_napi *bnapi;
|
|
struct bnx2_tx_ring_info *txr;
|
|
|
|
bnapi = &bp->bnx2_napi[ring_num];
|
|
txr = &bnapi->tx_ring;
|
|
|
|
if (ring_num == 0)
|
|
cid = TX_CID;
|
|
else
|
|
cid = TX_TSS_CID + ring_num - 1;
|
|
|
|
bp->tx_wake_thresh = bp->tx_ring_size / 2;
|
|
|
|
txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
|
|
|
|
txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
|
|
txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
|
|
|
|
txr->tx_prod = 0;
|
|
txr->tx_prod_bseq = 0;
|
|
|
|
txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
|
|
txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
|
|
|
|
bnx2_init_tx_context(bp, cid, txr);
|
|
}
|
|
|
|
static void
|
|
bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
|
|
int num_rings)
|
|
{
|
|
int i;
|
|
struct rx_bd *rxbd;
|
|
|
|
for (i = 0; i < num_rings; i++) {
|
|
int j;
|
|
|
|
rxbd = &rx_ring[i][0];
|
|
for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
|
|
rxbd->rx_bd_len = buf_size;
|
|
rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
|
|
}
|
|
if (i == (num_rings - 1))
|
|
j = 0;
|
|
else
|
|
j = i + 1;
|
|
rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
|
|
rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
|
|
}
|
|
}
|
|
|
|
static void
|
|
bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
|
|
{
|
|
int i;
|
|
u16 prod, ring_prod;
|
|
u32 cid, rx_cid_addr, val;
|
|
struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
|
|
struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
|
|
|
|
if (ring_num == 0)
|
|
cid = RX_CID;
|
|
else
|
|
cid = RX_RSS_CID + ring_num - 1;
|
|
|
|
rx_cid_addr = GET_CID_ADDR(cid);
|
|
|
|
bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
|
|
bp->rx_buf_use_size, bp->rx_max_ring);
|
|
|
|
bnx2_init_rx_context(bp, cid);
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
|
|
val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
|
|
REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
|
|
}
|
|
|
|
bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
|
|
if (bp->rx_pg_ring_size) {
|
|
bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
|
|
rxr->rx_pg_desc_mapping,
|
|
PAGE_SIZE, bp->rx_max_pg_ring);
|
|
val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
|
|
bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
|
|
bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
|
|
BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
|
|
|
|
val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
|
|
bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
|
|
|
|
val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
|
|
bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709)
|
|
REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
|
|
}
|
|
|
|
val = (u64) rxr->rx_desc_mapping[0] >> 32;
|
|
bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
|
|
|
|
val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
|
|
bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
|
|
|
|
ring_prod = prod = rxr->rx_pg_prod;
|
|
for (i = 0; i < bp->rx_pg_ring_size; i++) {
|
|
if (bnx2_alloc_rx_page(bp, rxr, ring_prod) < 0)
|
|
break;
|
|
prod = NEXT_RX_BD(prod);
|
|
ring_prod = RX_PG_RING_IDX(prod);
|
|
}
|
|
rxr->rx_pg_prod = prod;
|
|
|
|
ring_prod = prod = rxr->rx_prod;
|
|
for (i = 0; i < bp->rx_ring_size; i++) {
|
|
if (bnx2_alloc_rx_skb(bp, rxr, ring_prod) < 0)
|
|
break;
|
|
prod = NEXT_RX_BD(prod);
|
|
ring_prod = RX_RING_IDX(prod);
|
|
}
|
|
rxr->rx_prod = prod;
|
|
|
|
rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
|
|
rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
|
|
rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
|
|
|
|
REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
|
|
REG_WR16(bp, rxr->rx_bidx_addr, prod);
|
|
|
|
REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
|
|
}
|
|
|
|
static void
|
|
bnx2_init_all_rings(struct bnx2 *bp)
|
|
{
|
|
int i;
|
|
u32 val;
|
|
|
|
bnx2_clear_ring_states(bp);
|
|
|
|
REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
|
|
for (i = 0; i < bp->num_tx_rings; i++)
|
|
bnx2_init_tx_ring(bp, i);
|
|
|
|
if (bp->num_tx_rings > 1)
|
|
REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
|
|
(TX_TSS_CID << 7));
|
|
|
|
REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
|
|
bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
|
|
|
|
for (i = 0; i < bp->num_rx_rings; i++)
|
|
bnx2_init_rx_ring(bp, i);
|
|
|
|
if (bp->num_rx_rings > 1) {
|
|
u32 tbl_32;
|
|
u8 *tbl = (u8 *) &tbl_32;
|
|
|
|
bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ,
|
|
BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES);
|
|
|
|
for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
|
|
tbl[i % 4] = i % (bp->num_rx_rings - 1);
|
|
if ((i % 4) == 3)
|
|
bnx2_reg_wr_ind(bp,
|
|
BNX2_RXP_SCRATCH_RSS_TBL + i,
|
|
cpu_to_be32(tbl_32));
|
|
}
|
|
|
|
val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
|
|
BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
|
|
|
|
REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
|
|
|
|
}
|
|
}
|
|
|
|
static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
|
|
{
|
|
u32 max, num_rings = 1;
|
|
|
|
while (ring_size > MAX_RX_DESC_CNT) {
|
|
ring_size -= MAX_RX_DESC_CNT;
|
|
num_rings++;
|
|
}
|
|
/* round to next power of 2 */
|
|
max = max_size;
|
|
while ((max & num_rings) == 0)
|
|
max >>= 1;
|
|
|
|
if (num_rings != max)
|
|
max <<= 1;
|
|
|
|
return max;
|
|
}
|
|
|
|
static void
|
|
bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
|
|
{
|
|
u32 rx_size, rx_space, jumbo_size;
|
|
|
|
/* 8 for CRC and VLAN */
|
|
rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
|
|
|
|
rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
|
|
sizeof(struct skb_shared_info);
|
|
|
|
bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
|
|
bp->rx_pg_ring_size = 0;
|
|
bp->rx_max_pg_ring = 0;
|
|
bp->rx_max_pg_ring_idx = 0;
|
|
if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
|
|
int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
|
|
|
|
jumbo_size = size * pages;
|
|
if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
|
|
jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
|
|
|
|
bp->rx_pg_ring_size = jumbo_size;
|
|
bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
|
|
MAX_RX_PG_RINGS);
|
|
bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
|
|
rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
|
|
bp->rx_copy_thresh = 0;
|
|
}
|
|
|
|
bp->rx_buf_use_size = rx_size;
|
|
/* hw alignment */
|
|
bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
|
|
bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
|
|
bp->rx_ring_size = size;
|
|
bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
|
|
bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
|
|
}
|
|
|
|
static void
|
|
bnx2_free_tx_skbs(struct bnx2 *bp)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < bp->num_tx_rings; i++) {
|
|
struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
|
|
struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
|
|
int j;
|
|
|
|
if (txr->tx_buf_ring == NULL)
|
|
continue;
|
|
|
|
for (j = 0; j < TX_DESC_CNT; ) {
|
|
struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
|
|
struct sk_buff *skb = tx_buf->skb;
|
|
|
|
if (skb == NULL) {
|
|
j++;
|
|
continue;
|
|
}
|
|
|
|
skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
|
|
|
|
tx_buf->skb = NULL;
|
|
|
|
j += skb_shinfo(skb)->nr_frags + 1;
|
|
dev_kfree_skb(skb);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
bnx2_free_rx_skbs(struct bnx2 *bp)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < bp->num_rx_rings; i++) {
|
|
struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
|
|
struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
|
|
int j;
|
|
|
|
if (rxr->rx_buf_ring == NULL)
|
|
return;
|
|
|
|
for (j = 0; j < bp->rx_max_ring_idx; j++) {
|
|
struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
|
|
struct sk_buff *skb = rx_buf->skb;
|
|
|
|
if (skb == NULL)
|
|
continue;
|
|
|
|
pci_unmap_single(bp->pdev,
|
|
pci_unmap_addr(rx_buf, mapping),
|
|
bp->rx_buf_use_size,
|
|
PCI_DMA_FROMDEVICE);
|
|
|
|
rx_buf->skb = NULL;
|
|
|
|
dev_kfree_skb(skb);
|
|
}
|
|
for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
|
|
bnx2_free_rx_page(bp, rxr, j);
|
|
}
|
|
}
|
|
|
|
static void
|
|
bnx2_free_skbs(struct bnx2 *bp)
|
|
{
|
|
bnx2_free_tx_skbs(bp);
|
|
bnx2_free_rx_skbs(bp);
|
|
}
|
|
|
|
static int
|
|
bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
|
|
{
|
|
int rc;
|
|
|
|
rc = bnx2_reset_chip(bp, reset_code);
|
|
bnx2_free_skbs(bp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if ((rc = bnx2_init_chip(bp)) != 0)
|
|
return rc;
|
|
|
|
bnx2_init_all_rings(bp);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_init_nic(struct bnx2 *bp, int reset_phy)
|
|
{
|
|
int rc;
|
|
|
|
if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
|
|
return rc;
|
|
|
|
spin_lock_bh(&bp->phy_lock);
|
|
bnx2_init_phy(bp, reset_phy);
|
|
bnx2_set_link(bp);
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
|
|
bnx2_remote_phy_event(bp);
|
|
spin_unlock_bh(&bp->phy_lock);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_shutdown_chip(struct bnx2 *bp)
|
|
{
|
|
u32 reset_code;
|
|
|
|
if (bp->flags & BNX2_FLAG_NO_WOL)
|
|
reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
|
|
else if (bp->wol)
|
|
reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
|
|
else
|
|
reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
|
|
|
|
return bnx2_reset_chip(bp, reset_code);
|
|
}
|
|
|
|
static int
|
|
bnx2_test_registers(struct bnx2 *bp)
|
|
{
|
|
int ret;
|
|
int i, is_5709;
|
|
static const struct {
|
|
u16 offset;
|
|
u16 flags;
|
|
#define BNX2_FL_NOT_5709 1
|
|
u32 rw_mask;
|
|
u32 ro_mask;
|
|
} reg_tbl[] = {
|
|
{ 0x006c, 0, 0x00000000, 0x0000003f },
|
|
{ 0x0090, 0, 0xffffffff, 0x00000000 },
|
|
{ 0x0094, 0, 0x00000000, 0x00000000 },
|
|
|
|
{ 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
|
|
{ 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
|
|
{ 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
|
|
{ 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
|
|
{ 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
|
|
{ 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
|
|
{ 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
|
|
{ 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
|
|
{ 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
|
|
|
|
{ 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
|
|
{ 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
|
|
{ 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
|
|
{ 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
|
|
{ 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
|
|
{ 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
|
|
|
|
{ 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
|
|
{ 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
|
|
{ 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
|
|
|
|
{ 0x1000, 0, 0x00000000, 0x00000001 },
|
|
{ 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
|
|
|
|
{ 0x1408, 0, 0x01c00800, 0x00000000 },
|
|
{ 0x149c, 0, 0x8000ffff, 0x00000000 },
|
|
{ 0x14a8, 0, 0x00000000, 0x000001ff },
|
|
{ 0x14ac, 0, 0x0fffffff, 0x10000000 },
|
|
{ 0x14b0, 0, 0x00000002, 0x00000001 },
|
|
{ 0x14b8, 0, 0x00000000, 0x00000000 },
|
|
{ 0x14c0, 0, 0x00000000, 0x00000009 },
|
|
{ 0x14c4, 0, 0x00003fff, 0x00000000 },
|
|
{ 0x14cc, 0, 0x00000000, 0x00000001 },
|
|
{ 0x14d0, 0, 0xffffffff, 0x00000000 },
|
|
|
|
{ 0x1800, 0, 0x00000000, 0x00000001 },
|
|
{ 0x1804, 0, 0x00000000, 0x00000003 },
|
|
|
|
{ 0x2800, 0, 0x00000000, 0x00000001 },
|
|
{ 0x2804, 0, 0x00000000, 0x00003f01 },
|
|
{ 0x2808, 0, 0x0f3f3f03, 0x00000000 },
|
|
{ 0x2810, 0, 0xffff0000, 0x00000000 },
|
|
{ 0x2814, 0, 0xffff0000, 0x00000000 },
|
|
{ 0x2818, 0, 0xffff0000, 0x00000000 },
|
|
{ 0x281c, 0, 0xffff0000, 0x00000000 },
|
|
{ 0x2834, 0, 0xffffffff, 0x00000000 },
|
|
{ 0x2840, 0, 0x00000000, 0xffffffff },
|
|
{ 0x2844, 0, 0x00000000, 0xffffffff },
|
|
{ 0x2848, 0, 0xffffffff, 0x00000000 },
|
|
{ 0x284c, 0, 0xf800f800, 0x07ff07ff },
|
|
|
|
{ 0x2c00, 0, 0x00000000, 0x00000011 },
|
|
{ 0x2c04, 0, 0x00000000, 0x00030007 },
|
|
|
|
{ 0x3c00, 0, 0x00000000, 0x00000001 },
|
|
{ 0x3c04, 0, 0x00000000, 0x00070000 },
|
|
{ 0x3c08, 0, 0x00007f71, 0x07f00000 },
|
|
{ 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
|
|
{ 0x3c10, 0, 0xffffffff, 0x00000000 },
|
|
{ 0x3c14, 0, 0x00000000, 0xffffffff },
|
|
{ 0x3c18, 0, 0x00000000, 0xffffffff },
|
|
{ 0x3c1c, 0, 0xfffff000, 0x00000000 },
|
|
{ 0x3c20, 0, 0xffffff00, 0x00000000 },
|
|
|
|
{ 0x5004, 0, 0x00000000, 0x0000007f },
|
|
{ 0x5008, 0, 0x0f0007ff, 0x00000000 },
|
|
|
|
{ 0x5c00, 0, 0x00000000, 0x00000001 },
|
|
{ 0x5c04, 0, 0x00000000, 0x0003000f },
|
|
{ 0x5c08, 0, 0x00000003, 0x00000000 },
|
|
{ 0x5c0c, 0, 0x0000fff8, 0x00000000 },
|
|
{ 0x5c10, 0, 0x00000000, 0xffffffff },
|
|
{ 0x5c80, 0, 0x00000000, 0x0f7113f1 },
|
|
{ 0x5c84, 0, 0x00000000, 0x0000f333 },
|
|
{ 0x5c88, 0, 0x00000000, 0x00077373 },
|
|
{ 0x5c8c, 0, 0x00000000, 0x0007f737 },
|
|
|
|
{ 0x6808, 0, 0x0000ff7f, 0x00000000 },
|
|
{ 0x680c, 0, 0xffffffff, 0x00000000 },
|
|
{ 0x6810, 0, 0xffffffff, 0x00000000 },
|
|
{ 0x6814, 0, 0xffffffff, 0x00000000 },
|
|
{ 0x6818, 0, 0xffffffff, 0x00000000 },
|
|
{ 0x681c, 0, 0xffffffff, 0x00000000 },
|
|
{ 0x6820, 0, 0x00ff00ff, 0x00000000 },
|
|
{ 0x6824, 0, 0x00ff00ff, 0x00000000 },
|
|
{ 0x6828, 0, 0x00ff00ff, 0x00000000 },
|
|
{ 0x682c, 0, 0x03ff03ff, 0x00000000 },
|
|
{ 0x6830, 0, 0x03ff03ff, 0x00000000 },
|
|
{ 0x6834, 0, 0x03ff03ff, 0x00000000 },
|
|
{ 0x6838, 0, 0x03ff03ff, 0x00000000 },
|
|
{ 0x683c, 0, 0x0000ffff, 0x00000000 },
|
|
{ 0x6840, 0, 0x00000ff0, 0x00000000 },
|
|
{ 0x6844, 0, 0x00ffff00, 0x00000000 },
|
|
{ 0x684c, 0, 0xffffffff, 0x00000000 },
|
|
{ 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
|
|
{ 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
|
|
{ 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
|
|
{ 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
|
|
{ 0x6908, 0, 0x00000000, 0x0001ff0f },
|
|
{ 0x690c, 0, 0x00000000, 0x0ffe00f0 },
|
|
|
|
{ 0xffff, 0, 0x00000000, 0x00000000 },
|
|
};
|
|
|
|
ret = 0;
|
|
is_5709 = 0;
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709)
|
|
is_5709 = 1;
|
|
|
|
for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
|
|
u32 offset, rw_mask, ro_mask, save_val, val;
|
|
u16 flags = reg_tbl[i].flags;
|
|
|
|
if (is_5709 && (flags & BNX2_FL_NOT_5709))
|
|
continue;
|
|
|
|
offset = (u32) reg_tbl[i].offset;
|
|
rw_mask = reg_tbl[i].rw_mask;
|
|
ro_mask = reg_tbl[i].ro_mask;
|
|
|
|
save_val = readl(bp->regview + offset);
|
|
|
|
writel(0, bp->regview + offset);
|
|
|
|
val = readl(bp->regview + offset);
|
|
if ((val & rw_mask) != 0) {
|
|
goto reg_test_err;
|
|
}
|
|
|
|
if ((val & ro_mask) != (save_val & ro_mask)) {
|
|
goto reg_test_err;
|
|
}
|
|
|
|
writel(0xffffffff, bp->regview + offset);
|
|
|
|
val = readl(bp->regview + offset);
|
|
if ((val & rw_mask) != rw_mask) {
|
|
goto reg_test_err;
|
|
}
|
|
|
|
if ((val & ro_mask) != (save_val & ro_mask)) {
|
|
goto reg_test_err;
|
|
}
|
|
|
|
writel(save_val, bp->regview + offset);
|
|
continue;
|
|
|
|
reg_test_err:
|
|
writel(save_val, bp->regview + offset);
|
|
ret = -ENODEV;
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
|
|
{
|
|
static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
|
|
0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
|
|
int i;
|
|
|
|
for (i = 0; i < sizeof(test_pattern) / 4; i++) {
|
|
u32 offset;
|
|
|
|
for (offset = 0; offset < size; offset += 4) {
|
|
|
|
bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
|
|
|
|
if (bnx2_reg_rd_ind(bp, start + offset) !=
|
|
test_pattern[i]) {
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_test_memory(struct bnx2 *bp)
|
|
{
|
|
int ret = 0;
|
|
int i;
|
|
static struct mem_entry {
|
|
u32 offset;
|
|
u32 len;
|
|
} mem_tbl_5706[] = {
|
|
{ 0x60000, 0x4000 },
|
|
{ 0xa0000, 0x3000 },
|
|
{ 0xe0000, 0x4000 },
|
|
{ 0x120000, 0x4000 },
|
|
{ 0x1a0000, 0x4000 },
|
|
{ 0x160000, 0x4000 },
|
|
{ 0xffffffff, 0 },
|
|
},
|
|
mem_tbl_5709[] = {
|
|
{ 0x60000, 0x4000 },
|
|
{ 0xa0000, 0x3000 },
|
|
{ 0xe0000, 0x4000 },
|
|
{ 0x120000, 0x4000 },
|
|
{ 0x1a0000, 0x4000 },
|
|
{ 0xffffffff, 0 },
|
|
};
|
|
struct mem_entry *mem_tbl;
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709)
|
|
mem_tbl = mem_tbl_5709;
|
|
else
|
|
mem_tbl = mem_tbl_5706;
|
|
|
|
for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
|
|
if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
|
|
mem_tbl[i].len)) != 0) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define BNX2_MAC_LOOPBACK 0
|
|
#define BNX2_PHY_LOOPBACK 1
|
|
|
|
static int
|
|
bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
|
|
{
|
|
unsigned int pkt_size, num_pkts, i;
|
|
struct sk_buff *skb, *rx_skb;
|
|
unsigned char *packet;
|
|
u16 rx_start_idx, rx_idx;
|
|
dma_addr_t map;
|
|
struct tx_bd *txbd;
|
|
struct sw_bd *rx_buf;
|
|
struct l2_fhdr *rx_hdr;
|
|
int ret = -ENODEV;
|
|
struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
|
|
struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
|
|
struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
|
|
|
|
tx_napi = bnapi;
|
|
|
|
txr = &tx_napi->tx_ring;
|
|
rxr = &bnapi->rx_ring;
|
|
if (loopback_mode == BNX2_MAC_LOOPBACK) {
|
|
bp->loopback = MAC_LOOPBACK;
|
|
bnx2_set_mac_loopback(bp);
|
|
}
|
|
else if (loopback_mode == BNX2_PHY_LOOPBACK) {
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
|
|
return 0;
|
|
|
|
bp->loopback = PHY_LOOPBACK;
|
|
bnx2_set_phy_loopback(bp);
|
|
}
|
|
else
|
|
return -EINVAL;
|
|
|
|
pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
|
|
skb = netdev_alloc_skb(bp->dev, pkt_size);
|
|
if (!skb)
|
|
return -ENOMEM;
|
|
packet = skb_put(skb, pkt_size);
|
|
memcpy(packet, bp->dev->dev_addr, 6);
|
|
memset(packet + 6, 0x0, 8);
|
|
for (i = 14; i < pkt_size; i++)
|
|
packet[i] = (unsigned char) (i & 0xff);
|
|
|
|
if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
|
|
dev_kfree_skb(skb);
|
|
return -EIO;
|
|
}
|
|
map = skb_shinfo(skb)->dma_head;
|
|
|
|
REG_WR(bp, BNX2_HC_COMMAND,
|
|
bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
|
|
|
|
REG_RD(bp, BNX2_HC_COMMAND);
|
|
|
|
udelay(5);
|
|
rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
|
|
|
|
num_pkts = 0;
|
|
|
|
txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
|
|
|
|
txbd->tx_bd_haddr_hi = (u64) map >> 32;
|
|
txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
|
|
txbd->tx_bd_mss_nbytes = pkt_size;
|
|
txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
|
|
|
|
num_pkts++;
|
|
txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
|
|
txr->tx_prod_bseq += pkt_size;
|
|
|
|
REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
|
|
REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
|
|
|
|
udelay(100);
|
|
|
|
REG_WR(bp, BNX2_HC_COMMAND,
|
|
bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
|
|
|
|
REG_RD(bp, BNX2_HC_COMMAND);
|
|
|
|
udelay(5);
|
|
|
|
skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
|
|
dev_kfree_skb(skb);
|
|
|
|
if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
|
|
goto loopback_test_done;
|
|
|
|
rx_idx = bnx2_get_hw_rx_cons(bnapi);
|
|
if (rx_idx != rx_start_idx + num_pkts) {
|
|
goto loopback_test_done;
|
|
}
|
|
|
|
rx_buf = &rxr->rx_buf_ring[rx_start_idx];
|
|
rx_skb = rx_buf->skb;
|
|
|
|
rx_hdr = (struct l2_fhdr *) rx_skb->data;
|
|
skb_reserve(rx_skb, BNX2_RX_OFFSET);
|
|
|
|
pci_dma_sync_single_for_cpu(bp->pdev,
|
|
pci_unmap_addr(rx_buf, mapping),
|
|
bp->rx_buf_size, PCI_DMA_FROMDEVICE);
|
|
|
|
if (rx_hdr->l2_fhdr_status &
|
|
(L2_FHDR_ERRORS_BAD_CRC |
|
|
L2_FHDR_ERRORS_PHY_DECODE |
|
|
L2_FHDR_ERRORS_ALIGNMENT |
|
|
L2_FHDR_ERRORS_TOO_SHORT |
|
|
L2_FHDR_ERRORS_GIANT_FRAME)) {
|
|
|
|
goto loopback_test_done;
|
|
}
|
|
|
|
if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
|
|
goto loopback_test_done;
|
|
}
|
|
|
|
for (i = 14; i < pkt_size; i++) {
|
|
if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
|
|
goto loopback_test_done;
|
|
}
|
|
}
|
|
|
|
ret = 0;
|
|
|
|
loopback_test_done:
|
|
bp->loopback = 0;
|
|
return ret;
|
|
}
|
|
|
|
#define BNX2_MAC_LOOPBACK_FAILED 1
|
|
#define BNX2_PHY_LOOPBACK_FAILED 2
|
|
#define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
|
|
BNX2_PHY_LOOPBACK_FAILED)
|
|
|
|
static int
|
|
bnx2_test_loopback(struct bnx2 *bp)
|
|
{
|
|
int rc = 0;
|
|
|
|
if (!netif_running(bp->dev))
|
|
return BNX2_LOOPBACK_FAILED;
|
|
|
|
bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
|
|
spin_lock_bh(&bp->phy_lock);
|
|
bnx2_init_phy(bp, 1);
|
|
spin_unlock_bh(&bp->phy_lock);
|
|
if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
|
|
rc |= BNX2_MAC_LOOPBACK_FAILED;
|
|
if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
|
|
rc |= BNX2_PHY_LOOPBACK_FAILED;
|
|
return rc;
|
|
}
|
|
|
|
#define NVRAM_SIZE 0x200
|
|
#define CRC32_RESIDUAL 0xdebb20e3
|
|
|
|
static int
|
|
bnx2_test_nvram(struct bnx2 *bp)
|
|
{
|
|
__be32 buf[NVRAM_SIZE / 4];
|
|
u8 *data = (u8 *) buf;
|
|
int rc = 0;
|
|
u32 magic, csum;
|
|
|
|
if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
|
|
goto test_nvram_done;
|
|
|
|
magic = be32_to_cpu(buf[0]);
|
|
if (magic != 0x669955aa) {
|
|
rc = -ENODEV;
|
|
goto test_nvram_done;
|
|
}
|
|
|
|
if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
|
|
goto test_nvram_done;
|
|
|
|
csum = ether_crc_le(0x100, data);
|
|
if (csum != CRC32_RESIDUAL) {
|
|
rc = -ENODEV;
|
|
goto test_nvram_done;
|
|
}
|
|
|
|
csum = ether_crc_le(0x100, data + 0x100);
|
|
if (csum != CRC32_RESIDUAL) {
|
|
rc = -ENODEV;
|
|
}
|
|
|
|
test_nvram_done:
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
bnx2_test_link(struct bnx2 *bp)
|
|
{
|
|
u32 bmsr;
|
|
|
|
if (!netif_running(bp->dev))
|
|
return -ENODEV;
|
|
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
|
|
if (bp->link_up)
|
|
return 0;
|
|
return -ENODEV;
|
|
}
|
|
spin_lock_bh(&bp->phy_lock);
|
|
bnx2_enable_bmsr1(bp);
|
|
bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
|
|
bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
|
|
bnx2_disable_bmsr1(bp);
|
|
spin_unlock_bh(&bp->phy_lock);
|
|
|
|
if (bmsr & BMSR_LSTATUS) {
|
|
return 0;
|
|
}
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int
|
|
bnx2_test_intr(struct bnx2 *bp)
|
|
{
|
|
int i;
|
|
u16 status_idx;
|
|
|
|
if (!netif_running(bp->dev))
|
|
return -ENODEV;
|
|
|
|
status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
|
|
|
|
/* This register is not touched during run-time. */
|
|
REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
|
|
REG_RD(bp, BNX2_HC_COMMAND);
|
|
|
|
for (i = 0; i < 10; i++) {
|
|
if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
|
|
status_idx) {
|
|
|
|
break;
|
|
}
|
|
|
|
msleep_interruptible(10);
|
|
}
|
|
if (i < 10)
|
|
return 0;
|
|
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Determining link for parallel detection. */
|
|
static int
|
|
bnx2_5706_serdes_has_link(struct bnx2 *bp)
|
|
{
|
|
u32 mode_ctl, an_dbg, exp;
|
|
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
|
|
return 0;
|
|
|
|
bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
|
|
bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
|
|
|
|
if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
|
|
return 0;
|
|
|
|
bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
|
|
bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
|
|
bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
|
|
|
|
if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
|
|
return 0;
|
|
|
|
bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
|
|
bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
|
|
bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
|
|
|
|
if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
bnx2_5706_serdes_timer(struct bnx2 *bp)
|
|
{
|
|
int check_link = 1;
|
|
|
|
spin_lock(&bp->phy_lock);
|
|
if (bp->serdes_an_pending) {
|
|
bp->serdes_an_pending--;
|
|
check_link = 0;
|
|
} else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
|
|
u32 bmcr;
|
|
|
|
bp->current_interval = BNX2_TIMER_INTERVAL;
|
|
|
|
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
|
|
|
|
if (bmcr & BMCR_ANENABLE) {
|
|
if (bnx2_5706_serdes_has_link(bp)) {
|
|
bmcr &= ~BMCR_ANENABLE;
|
|
bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
|
|
bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
|
|
bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
|
|
}
|
|
}
|
|
}
|
|
else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
|
|
(bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
|
|
u32 phy2;
|
|
|
|
bnx2_write_phy(bp, 0x17, 0x0f01);
|
|
bnx2_read_phy(bp, 0x15, &phy2);
|
|
if (phy2 & 0x20) {
|
|
u32 bmcr;
|
|
|
|
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
|
|
bmcr |= BMCR_ANENABLE;
|
|
bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
|
|
|
|
bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
|
|
}
|
|
} else
|
|
bp->current_interval = BNX2_TIMER_INTERVAL;
|
|
|
|
if (check_link) {
|
|
u32 val;
|
|
|
|
bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
|
|
bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
|
|
bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
|
|
|
|
if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
|
|
if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
|
|
bnx2_5706s_force_link_dn(bp, 1);
|
|
bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
|
|
} else
|
|
bnx2_set_link(bp);
|
|
} else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
|
|
bnx2_set_link(bp);
|
|
}
|
|
spin_unlock(&bp->phy_lock);
|
|
}
|
|
|
|
static void
|
|
bnx2_5708_serdes_timer(struct bnx2 *bp)
|
|
{
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
|
|
return;
|
|
|
|
if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
|
|
bp->serdes_an_pending = 0;
|
|
return;
|
|
}
|
|
|
|
spin_lock(&bp->phy_lock);
|
|
if (bp->serdes_an_pending)
|
|
bp->serdes_an_pending--;
|
|
else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
|
|
u32 bmcr;
|
|
|
|
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
|
|
if (bmcr & BMCR_ANENABLE) {
|
|
bnx2_enable_forced_2g5(bp);
|
|
bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
|
|
} else {
|
|
bnx2_disable_forced_2g5(bp);
|
|
bp->serdes_an_pending = 2;
|
|
bp->current_interval = BNX2_TIMER_INTERVAL;
|
|
}
|
|
|
|
} else
|
|
bp->current_interval = BNX2_TIMER_INTERVAL;
|
|
|
|
spin_unlock(&bp->phy_lock);
|
|
}
|
|
|
|
static void
|
|
bnx2_timer(unsigned long data)
|
|
{
|
|
struct bnx2 *bp = (struct bnx2 *) data;
|
|
|
|
if (!netif_running(bp->dev))
|
|
return;
|
|
|
|
if (atomic_read(&bp->intr_sem) != 0)
|
|
goto bnx2_restart_timer;
|
|
|
|
if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
|
|
BNX2_FLAG_USING_MSI)
|
|
bnx2_chk_missed_msi(bp);
|
|
|
|
bnx2_send_heart_beat(bp);
|
|
|
|
bp->stats_blk->stat_FwRxDrop =
|
|
bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
|
|
|
|
/* workaround occasional corrupted counters */
|
|
if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
|
|
REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
|
|
BNX2_HC_COMMAND_STATS_NOW);
|
|
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5706)
|
|
bnx2_5706_serdes_timer(bp);
|
|
else
|
|
bnx2_5708_serdes_timer(bp);
|
|
}
|
|
|
|
bnx2_restart_timer:
|
|
mod_timer(&bp->timer, jiffies + bp->current_interval);
|
|
}
|
|
|
|
static int
|
|
bnx2_request_irq(struct bnx2 *bp)
|
|
{
|
|
unsigned long flags;
|
|
struct bnx2_irq *irq;
|
|
int rc = 0, i;
|
|
|
|
if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
|
|
flags = 0;
|
|
else
|
|
flags = IRQF_SHARED;
|
|
|
|
for (i = 0; i < bp->irq_nvecs; i++) {
|
|
irq = &bp->irq_tbl[i];
|
|
rc = request_irq(irq->vector, irq->handler, flags, irq->name,
|
|
&bp->bnx2_napi[i]);
|
|
if (rc)
|
|
break;
|
|
irq->requested = 1;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
bnx2_free_irq(struct bnx2 *bp)
|
|
{
|
|
struct bnx2_irq *irq;
|
|
int i;
|
|
|
|
for (i = 0; i < bp->irq_nvecs; i++) {
|
|
irq = &bp->irq_tbl[i];
|
|
if (irq->requested)
|
|
free_irq(irq->vector, &bp->bnx2_napi[i]);
|
|
irq->requested = 0;
|
|
}
|
|
if (bp->flags & BNX2_FLAG_USING_MSI)
|
|
pci_disable_msi(bp->pdev);
|
|
else if (bp->flags & BNX2_FLAG_USING_MSIX)
|
|
pci_disable_msix(bp->pdev);
|
|
|
|
bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
|
|
}
|
|
|
|
static void
|
|
bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
|
|
{
|
|
int i, rc;
|
|
struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
|
|
struct net_device *dev = bp->dev;
|
|
const int len = sizeof(bp->irq_tbl[0].name);
|
|
|
|
bnx2_setup_msix_tbl(bp);
|
|
REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
|
|
REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
|
|
REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
|
|
|
|
for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
|
|
msix_ent[i].entry = i;
|
|
msix_ent[i].vector = 0;
|
|
}
|
|
|
|
rc = pci_enable_msix(bp->pdev, msix_ent, BNX2_MAX_MSIX_VEC);
|
|
if (rc != 0)
|
|
return;
|
|
|
|
bp->irq_nvecs = msix_vecs;
|
|
bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
|
|
for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
|
|
bp->irq_tbl[i].vector = msix_ent[i].vector;
|
|
snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
|
|
bp->irq_tbl[i].handler = bnx2_msi_1shot;
|
|
}
|
|
}
|
|
|
|
static void
|
|
bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
|
|
{
|
|
int cpus = num_online_cpus();
|
|
int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
|
|
|
|
bp->irq_tbl[0].handler = bnx2_interrupt;
|
|
strcpy(bp->irq_tbl[0].name, bp->dev->name);
|
|
bp->irq_nvecs = 1;
|
|
bp->irq_tbl[0].vector = bp->pdev->irq;
|
|
|
|
if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi && cpus > 1)
|
|
bnx2_enable_msix(bp, msix_vecs);
|
|
|
|
if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
|
|
!(bp->flags & BNX2_FLAG_USING_MSIX)) {
|
|
if (pci_enable_msi(bp->pdev) == 0) {
|
|
bp->flags |= BNX2_FLAG_USING_MSI;
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
|
|
bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
|
|
bp->irq_tbl[0].handler = bnx2_msi_1shot;
|
|
} else
|
|
bp->irq_tbl[0].handler = bnx2_msi;
|
|
|
|
bp->irq_tbl[0].vector = bp->pdev->irq;
|
|
}
|
|
}
|
|
|
|
bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
|
|
bp->dev->real_num_tx_queues = bp->num_tx_rings;
|
|
|
|
bp->num_rx_rings = bp->irq_nvecs;
|
|
}
|
|
|
|
/* Called with rtnl_lock */
|
|
static int
|
|
bnx2_open(struct net_device *dev)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
int rc;
|
|
|
|
netif_carrier_off(dev);
|
|
|
|
bnx2_set_power_state(bp, PCI_D0);
|
|
bnx2_disable_int(bp);
|
|
|
|
bnx2_setup_int_mode(bp, disable_msi);
|
|
bnx2_napi_enable(bp);
|
|
rc = bnx2_alloc_mem(bp);
|
|
if (rc)
|
|
goto open_err;
|
|
|
|
rc = bnx2_request_irq(bp);
|
|
if (rc)
|
|
goto open_err;
|
|
|
|
rc = bnx2_init_nic(bp, 1);
|
|
if (rc)
|
|
goto open_err;
|
|
|
|
mod_timer(&bp->timer, jiffies + bp->current_interval);
|
|
|
|
atomic_set(&bp->intr_sem, 0);
|
|
|
|
bnx2_enable_int(bp);
|
|
|
|
if (bp->flags & BNX2_FLAG_USING_MSI) {
|
|
/* Test MSI to make sure it is working
|
|
* If MSI test fails, go back to INTx mode
|
|
*/
|
|
if (bnx2_test_intr(bp) != 0) {
|
|
printk(KERN_WARNING PFX "%s: No interrupt was generated"
|
|
" using MSI, switching to INTx mode. Please"
|
|
" report this failure to the PCI maintainer"
|
|
" and include system chipset information.\n",
|
|
bp->dev->name);
|
|
|
|
bnx2_disable_int(bp);
|
|
bnx2_free_irq(bp);
|
|
|
|
bnx2_setup_int_mode(bp, 1);
|
|
|
|
rc = bnx2_init_nic(bp, 0);
|
|
|
|
if (!rc)
|
|
rc = bnx2_request_irq(bp);
|
|
|
|
if (rc) {
|
|
del_timer_sync(&bp->timer);
|
|
goto open_err;
|
|
}
|
|
bnx2_enable_int(bp);
|
|
}
|
|
}
|
|
if (bp->flags & BNX2_FLAG_USING_MSI)
|
|
printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
|
|
else if (bp->flags & BNX2_FLAG_USING_MSIX)
|
|
printk(KERN_INFO PFX "%s: using MSIX\n", dev->name);
|
|
|
|
netif_tx_start_all_queues(dev);
|
|
|
|
return 0;
|
|
|
|
open_err:
|
|
bnx2_napi_disable(bp);
|
|
bnx2_free_skbs(bp);
|
|
bnx2_free_irq(bp);
|
|
bnx2_free_mem(bp);
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
bnx2_reset_task(struct work_struct *work)
|
|
{
|
|
struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
|
|
|
|
if (!netif_running(bp->dev))
|
|
return;
|
|
|
|
bnx2_netif_stop(bp);
|
|
|
|
bnx2_init_nic(bp, 1);
|
|
|
|
atomic_set(&bp->intr_sem, 1);
|
|
bnx2_netif_start(bp);
|
|
}
|
|
|
|
static void
|
|
bnx2_tx_timeout(struct net_device *dev)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
/* This allows the netif to be shutdown gracefully before resetting */
|
|
schedule_work(&bp->reset_task);
|
|
}
|
|
|
|
#ifdef BCM_VLAN
|
|
/* Called with rtnl_lock */
|
|
static void
|
|
bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
if (netif_running(dev))
|
|
bnx2_netif_stop(bp);
|
|
|
|
bp->vlgrp = vlgrp;
|
|
|
|
if (!netif_running(dev))
|
|
return;
|
|
|
|
bnx2_set_rx_mode(dev);
|
|
if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
|
|
bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
|
|
|
|
bnx2_netif_start(bp);
|
|
}
|
|
#endif
|
|
|
|
/* Called with netif_tx_lock.
|
|
* bnx2_tx_int() runs without netif_tx_lock unless it needs to call
|
|
* netif_wake_queue().
|
|
*/
|
|
static netdev_tx_t
|
|
bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
dma_addr_t mapping;
|
|
struct tx_bd *txbd;
|
|
struct sw_tx_bd *tx_buf;
|
|
u32 len, vlan_tag_flags, last_frag, mss;
|
|
u16 prod, ring_prod;
|
|
int i;
|
|
struct bnx2_napi *bnapi;
|
|
struct bnx2_tx_ring_info *txr;
|
|
struct netdev_queue *txq;
|
|
struct skb_shared_info *sp;
|
|
|
|
/* Determine which tx ring we will be placed on */
|
|
i = skb_get_queue_mapping(skb);
|
|
bnapi = &bp->bnx2_napi[i];
|
|
txr = &bnapi->tx_ring;
|
|
txq = netdev_get_tx_queue(dev, i);
|
|
|
|
if (unlikely(bnx2_tx_avail(bp, txr) <
|
|
(skb_shinfo(skb)->nr_frags + 1))) {
|
|
netif_tx_stop_queue(txq);
|
|
printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
|
|
dev->name);
|
|
|
|
return NETDEV_TX_BUSY;
|
|
}
|
|
len = skb_headlen(skb);
|
|
prod = txr->tx_prod;
|
|
ring_prod = TX_RING_IDX(prod);
|
|
|
|
vlan_tag_flags = 0;
|
|
if (skb->ip_summed == CHECKSUM_PARTIAL) {
|
|
vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
|
|
}
|
|
|
|
#ifdef BCM_VLAN
|
|
if (bp->vlgrp && vlan_tx_tag_present(skb)) {
|
|
vlan_tag_flags |=
|
|
(TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
|
|
}
|
|
#endif
|
|
if ((mss = skb_shinfo(skb)->gso_size)) {
|
|
u32 tcp_opt_len;
|
|
struct iphdr *iph;
|
|
|
|
vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
|
|
|
|
tcp_opt_len = tcp_optlen(skb);
|
|
|
|
if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
|
|
u32 tcp_off = skb_transport_offset(skb) -
|
|
sizeof(struct ipv6hdr) - ETH_HLEN;
|
|
|
|
vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
|
|
TX_BD_FLAGS_SW_FLAGS;
|
|
if (likely(tcp_off == 0))
|
|
vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
|
|
else {
|
|
tcp_off >>= 3;
|
|
vlan_tag_flags |= ((tcp_off & 0x3) <<
|
|
TX_BD_FLAGS_TCP6_OFF0_SHL) |
|
|
((tcp_off & 0x10) <<
|
|
TX_BD_FLAGS_TCP6_OFF4_SHL);
|
|
mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
|
|
}
|
|
} else {
|
|
iph = ip_hdr(skb);
|
|
if (tcp_opt_len || (iph->ihl > 5)) {
|
|
vlan_tag_flags |= ((iph->ihl - 5) +
|
|
(tcp_opt_len >> 2)) << 8;
|
|
}
|
|
}
|
|
} else
|
|
mss = 0;
|
|
|
|
if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
|
|
dev_kfree_skb(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
sp = skb_shinfo(skb);
|
|
mapping = sp->dma_head;
|
|
|
|
tx_buf = &txr->tx_buf_ring[ring_prod];
|
|
tx_buf->skb = skb;
|
|
|
|
txbd = &txr->tx_desc_ring[ring_prod];
|
|
|
|
txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
|
|
txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
|
|
txbd->tx_bd_mss_nbytes = len | (mss << 16);
|
|
txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
|
|
|
|
last_frag = skb_shinfo(skb)->nr_frags;
|
|
tx_buf->nr_frags = last_frag;
|
|
tx_buf->is_gso = skb_is_gso(skb);
|
|
|
|
for (i = 0; i < last_frag; i++) {
|
|
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
|
|
|
|
prod = NEXT_TX_BD(prod);
|
|
ring_prod = TX_RING_IDX(prod);
|
|
txbd = &txr->tx_desc_ring[ring_prod];
|
|
|
|
len = frag->size;
|
|
mapping = sp->dma_maps[i];
|
|
|
|
txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
|
|
txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
|
|
txbd->tx_bd_mss_nbytes = len | (mss << 16);
|
|
txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
|
|
|
|
}
|
|
txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
|
|
|
|
prod = NEXT_TX_BD(prod);
|
|
txr->tx_prod_bseq += skb->len;
|
|
|
|
REG_WR16(bp, txr->tx_bidx_addr, prod);
|
|
REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
|
|
|
|
mmiowb();
|
|
|
|
txr->tx_prod = prod;
|
|
|
|
if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
|
|
netif_tx_stop_queue(txq);
|
|
if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
|
|
netif_tx_wake_queue(txq);
|
|
}
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/* Called with rtnl_lock */
|
|
static int
|
|
bnx2_close(struct net_device *dev)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
cancel_work_sync(&bp->reset_task);
|
|
|
|
bnx2_disable_int_sync(bp);
|
|
bnx2_napi_disable(bp);
|
|
del_timer_sync(&bp->timer);
|
|
bnx2_shutdown_chip(bp);
|
|
bnx2_free_irq(bp);
|
|
bnx2_free_skbs(bp);
|
|
bnx2_free_mem(bp);
|
|
bp->link_up = 0;
|
|
netif_carrier_off(bp->dev);
|
|
bnx2_set_power_state(bp, PCI_D3hot);
|
|
return 0;
|
|
}
|
|
|
|
#define GET_NET_STATS64(ctr) \
|
|
(unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
|
|
(unsigned long) (ctr##_lo)
|
|
|
|
#define GET_NET_STATS32(ctr) \
|
|
(ctr##_lo)
|
|
|
|
#if (BITS_PER_LONG == 64)
|
|
#define GET_NET_STATS GET_NET_STATS64
|
|
#else
|
|
#define GET_NET_STATS GET_NET_STATS32
|
|
#endif
|
|
|
|
static struct net_device_stats *
|
|
bnx2_get_stats(struct net_device *dev)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
struct statistics_block *stats_blk = bp->stats_blk;
|
|
struct net_device_stats *net_stats = &dev->stats;
|
|
|
|
if (bp->stats_blk == NULL) {
|
|
return net_stats;
|
|
}
|
|
net_stats->rx_packets =
|
|
GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
|
|
GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
|
|
GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
|
|
|
|
net_stats->tx_packets =
|
|
GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
|
|
GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
|
|
GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
|
|
|
|
net_stats->rx_bytes =
|
|
GET_NET_STATS(stats_blk->stat_IfHCInOctets);
|
|
|
|
net_stats->tx_bytes =
|
|
GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
|
|
|
|
net_stats->multicast =
|
|
GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
|
|
|
|
net_stats->collisions =
|
|
(unsigned long) stats_blk->stat_EtherStatsCollisions;
|
|
|
|
net_stats->rx_length_errors =
|
|
(unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
|
|
stats_blk->stat_EtherStatsOverrsizePkts);
|
|
|
|
net_stats->rx_over_errors =
|
|
(unsigned long) (stats_blk->stat_IfInFTQDiscards +
|
|
stats_blk->stat_IfInMBUFDiscards);
|
|
|
|
net_stats->rx_frame_errors =
|
|
(unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
|
|
|
|
net_stats->rx_crc_errors =
|
|
(unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
|
|
|
|
net_stats->rx_errors = net_stats->rx_length_errors +
|
|
net_stats->rx_over_errors + net_stats->rx_frame_errors +
|
|
net_stats->rx_crc_errors;
|
|
|
|
net_stats->tx_aborted_errors =
|
|
(unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
|
|
stats_blk->stat_Dot3StatsLateCollisions);
|
|
|
|
if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
|
|
(CHIP_ID(bp) == CHIP_ID_5708_A0))
|
|
net_stats->tx_carrier_errors = 0;
|
|
else {
|
|
net_stats->tx_carrier_errors =
|
|
(unsigned long)
|
|
stats_blk->stat_Dot3StatsCarrierSenseErrors;
|
|
}
|
|
|
|
net_stats->tx_errors =
|
|
(unsigned long)
|
|
stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
|
|
+
|
|
net_stats->tx_aborted_errors +
|
|
net_stats->tx_carrier_errors;
|
|
|
|
net_stats->rx_missed_errors =
|
|
(unsigned long) (stats_blk->stat_IfInFTQDiscards +
|
|
stats_blk->stat_IfInMBUFDiscards + stats_blk->stat_FwRxDrop);
|
|
|
|
return net_stats;
|
|
}
|
|
|
|
/* All ethtool functions called with rtnl_lock */
|
|
|
|
static int
|
|
bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
int support_serdes = 0, support_copper = 0;
|
|
|
|
cmd->supported = SUPPORTED_Autoneg;
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
|
|
support_serdes = 1;
|
|
support_copper = 1;
|
|
} else if (bp->phy_port == PORT_FIBRE)
|
|
support_serdes = 1;
|
|
else
|
|
support_copper = 1;
|
|
|
|
if (support_serdes) {
|
|
cmd->supported |= SUPPORTED_1000baseT_Full |
|
|
SUPPORTED_FIBRE;
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
|
|
cmd->supported |= SUPPORTED_2500baseX_Full;
|
|
|
|
}
|
|
if (support_copper) {
|
|
cmd->supported |= SUPPORTED_10baseT_Half |
|
|
SUPPORTED_10baseT_Full |
|
|
SUPPORTED_100baseT_Half |
|
|
SUPPORTED_100baseT_Full |
|
|
SUPPORTED_1000baseT_Full |
|
|
SUPPORTED_TP;
|
|
|
|
}
|
|
|
|
spin_lock_bh(&bp->phy_lock);
|
|
cmd->port = bp->phy_port;
|
|
cmd->advertising = bp->advertising;
|
|
|
|
if (bp->autoneg & AUTONEG_SPEED) {
|
|
cmd->autoneg = AUTONEG_ENABLE;
|
|
}
|
|
else {
|
|
cmd->autoneg = AUTONEG_DISABLE;
|
|
}
|
|
|
|
if (netif_carrier_ok(dev)) {
|
|
cmd->speed = bp->line_speed;
|
|
cmd->duplex = bp->duplex;
|
|
}
|
|
else {
|
|
cmd->speed = -1;
|
|
cmd->duplex = -1;
|
|
}
|
|
spin_unlock_bh(&bp->phy_lock);
|
|
|
|
cmd->transceiver = XCVR_INTERNAL;
|
|
cmd->phy_address = bp->phy_addr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
u8 autoneg = bp->autoneg;
|
|
u8 req_duplex = bp->req_duplex;
|
|
u16 req_line_speed = bp->req_line_speed;
|
|
u32 advertising = bp->advertising;
|
|
int err = -EINVAL;
|
|
|
|
spin_lock_bh(&bp->phy_lock);
|
|
|
|
if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
|
|
goto err_out_unlock;
|
|
|
|
if (cmd->port != bp->phy_port &&
|
|
!(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
|
|
goto err_out_unlock;
|
|
|
|
/* If device is down, we can store the settings only if the user
|
|
* is setting the currently active port.
|
|
*/
|
|
if (!netif_running(dev) && cmd->port != bp->phy_port)
|
|
goto err_out_unlock;
|
|
|
|
if (cmd->autoneg == AUTONEG_ENABLE) {
|
|
autoneg |= AUTONEG_SPEED;
|
|
|
|
cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
|
|
|
|
/* allow advertising 1 speed */
|
|
if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
|
|
(cmd->advertising == ADVERTISED_10baseT_Full) ||
|
|
(cmd->advertising == ADVERTISED_100baseT_Half) ||
|
|
(cmd->advertising == ADVERTISED_100baseT_Full)) {
|
|
|
|
if (cmd->port == PORT_FIBRE)
|
|
goto err_out_unlock;
|
|
|
|
advertising = cmd->advertising;
|
|
|
|
} else if (cmd->advertising == ADVERTISED_2500baseX_Full) {
|
|
if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ||
|
|
(cmd->port == PORT_TP))
|
|
goto err_out_unlock;
|
|
} else if (cmd->advertising == ADVERTISED_1000baseT_Full)
|
|
advertising = cmd->advertising;
|
|
else if (cmd->advertising == ADVERTISED_1000baseT_Half)
|
|
goto err_out_unlock;
|
|
else {
|
|
if (cmd->port == PORT_FIBRE)
|
|
advertising = ETHTOOL_ALL_FIBRE_SPEED;
|
|
else
|
|
advertising = ETHTOOL_ALL_COPPER_SPEED;
|
|
}
|
|
advertising |= ADVERTISED_Autoneg;
|
|
}
|
|
else {
|
|
if (cmd->port == PORT_FIBRE) {
|
|
if ((cmd->speed != SPEED_1000 &&
|
|
cmd->speed != SPEED_2500) ||
|
|
(cmd->duplex != DUPLEX_FULL))
|
|
goto err_out_unlock;
|
|
|
|
if (cmd->speed == SPEED_2500 &&
|
|
!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
|
|
goto err_out_unlock;
|
|
}
|
|
else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
|
|
goto err_out_unlock;
|
|
|
|
autoneg &= ~AUTONEG_SPEED;
|
|
req_line_speed = cmd->speed;
|
|
req_duplex = cmd->duplex;
|
|
advertising = 0;
|
|
}
|
|
|
|
bp->autoneg = autoneg;
|
|
bp->advertising = advertising;
|
|
bp->req_line_speed = req_line_speed;
|
|
bp->req_duplex = req_duplex;
|
|
|
|
err = 0;
|
|
/* If device is down, the new settings will be picked up when it is
|
|
* brought up.
|
|
*/
|
|
if (netif_running(dev))
|
|
err = bnx2_setup_phy(bp, cmd->port);
|
|
|
|
err_out_unlock:
|
|
spin_unlock_bh(&bp->phy_lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void
|
|
bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
strcpy(info->driver, DRV_MODULE_NAME);
|
|
strcpy(info->version, DRV_MODULE_VERSION);
|
|
strcpy(info->bus_info, pci_name(bp->pdev));
|
|
strcpy(info->fw_version, bp->fw_version);
|
|
}
|
|
|
|
#define BNX2_REGDUMP_LEN (32 * 1024)
|
|
|
|
static int
|
|
bnx2_get_regs_len(struct net_device *dev)
|
|
{
|
|
return BNX2_REGDUMP_LEN;
|
|
}
|
|
|
|
static void
|
|
bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
|
|
{
|
|
u32 *p = _p, i, offset;
|
|
u8 *orig_p = _p;
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
|
|
0x0800, 0x0880, 0x0c00, 0x0c10,
|
|
0x0c30, 0x0d08, 0x1000, 0x101c,
|
|
0x1040, 0x1048, 0x1080, 0x10a4,
|
|
0x1400, 0x1490, 0x1498, 0x14f0,
|
|
0x1500, 0x155c, 0x1580, 0x15dc,
|
|
0x1600, 0x1658, 0x1680, 0x16d8,
|
|
0x1800, 0x1820, 0x1840, 0x1854,
|
|
0x1880, 0x1894, 0x1900, 0x1984,
|
|
0x1c00, 0x1c0c, 0x1c40, 0x1c54,
|
|
0x1c80, 0x1c94, 0x1d00, 0x1d84,
|
|
0x2000, 0x2030, 0x23c0, 0x2400,
|
|
0x2800, 0x2820, 0x2830, 0x2850,
|
|
0x2b40, 0x2c10, 0x2fc0, 0x3058,
|
|
0x3c00, 0x3c94, 0x4000, 0x4010,
|
|
0x4080, 0x4090, 0x43c0, 0x4458,
|
|
0x4c00, 0x4c18, 0x4c40, 0x4c54,
|
|
0x4fc0, 0x5010, 0x53c0, 0x5444,
|
|
0x5c00, 0x5c18, 0x5c80, 0x5c90,
|
|
0x5fc0, 0x6000, 0x6400, 0x6428,
|
|
0x6800, 0x6848, 0x684c, 0x6860,
|
|
0x6888, 0x6910, 0x8000 };
|
|
|
|
regs->version = 0;
|
|
|
|
memset(p, 0, BNX2_REGDUMP_LEN);
|
|
|
|
if (!netif_running(bp->dev))
|
|
return;
|
|
|
|
i = 0;
|
|
offset = reg_boundaries[0];
|
|
p += offset;
|
|
while (offset < BNX2_REGDUMP_LEN) {
|
|
*p++ = REG_RD(bp, offset);
|
|
offset += 4;
|
|
if (offset == reg_boundaries[i + 1]) {
|
|
offset = reg_boundaries[i + 2];
|
|
p = (u32 *) (orig_p + offset);
|
|
i += 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
if (bp->flags & BNX2_FLAG_NO_WOL) {
|
|
wol->supported = 0;
|
|
wol->wolopts = 0;
|
|
}
|
|
else {
|
|
wol->supported = WAKE_MAGIC;
|
|
if (bp->wol)
|
|
wol->wolopts = WAKE_MAGIC;
|
|
else
|
|
wol->wolopts = 0;
|
|
}
|
|
memset(&wol->sopass, 0, sizeof(wol->sopass));
|
|
}
|
|
|
|
static int
|
|
bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
if (wol->wolopts & ~WAKE_MAGIC)
|
|
return -EINVAL;
|
|
|
|
if (wol->wolopts & WAKE_MAGIC) {
|
|
if (bp->flags & BNX2_FLAG_NO_WOL)
|
|
return -EINVAL;
|
|
|
|
bp->wol = 1;
|
|
}
|
|
else {
|
|
bp->wol = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_nway_reset(struct net_device *dev)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
u32 bmcr;
|
|
|
|
if (!netif_running(dev))
|
|
return -EAGAIN;
|
|
|
|
if (!(bp->autoneg & AUTONEG_SPEED)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
spin_lock_bh(&bp->phy_lock);
|
|
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
|
|
int rc;
|
|
|
|
rc = bnx2_setup_remote_phy(bp, bp->phy_port);
|
|
spin_unlock_bh(&bp->phy_lock);
|
|
return rc;
|
|
}
|
|
|
|
/* Force a link down visible on the other side */
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
|
|
bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
|
|
spin_unlock_bh(&bp->phy_lock);
|
|
|
|
msleep(20);
|
|
|
|
spin_lock_bh(&bp->phy_lock);
|
|
|
|
bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
|
|
bp->serdes_an_pending = 1;
|
|
mod_timer(&bp->timer, jiffies + bp->current_interval);
|
|
}
|
|
|
|
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
|
|
bmcr &= ~BMCR_LOOPBACK;
|
|
bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
|
|
|
|
spin_unlock_bh(&bp->phy_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u32
|
|
bnx2_get_link(struct net_device *dev)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
return bp->link_up;
|
|
}
|
|
|
|
static int
|
|
bnx2_get_eeprom_len(struct net_device *dev)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
if (bp->flash_info == NULL)
|
|
return 0;
|
|
|
|
return (int) bp->flash_size;
|
|
}
|
|
|
|
static int
|
|
bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
|
|
u8 *eebuf)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
int rc;
|
|
|
|
if (!netif_running(dev))
|
|
return -EAGAIN;
|
|
|
|
/* parameters already validated in ethtool_get_eeprom */
|
|
|
|
rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
|
|
u8 *eebuf)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
int rc;
|
|
|
|
if (!netif_running(dev))
|
|
return -EAGAIN;
|
|
|
|
/* parameters already validated in ethtool_set_eeprom */
|
|
|
|
rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
memset(coal, 0, sizeof(struct ethtool_coalesce));
|
|
|
|
coal->rx_coalesce_usecs = bp->rx_ticks;
|
|
coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
|
|
coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
|
|
coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
|
|
|
|
coal->tx_coalesce_usecs = bp->tx_ticks;
|
|
coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
|
|
coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
|
|
coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
|
|
|
|
coal->stats_block_coalesce_usecs = bp->stats_ticks;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
|
|
if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
|
|
|
|
bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
|
|
if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
|
|
|
|
bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
|
|
if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
|
|
|
|
bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
|
|
if (bp->rx_quick_cons_trip_int > 0xff)
|
|
bp->rx_quick_cons_trip_int = 0xff;
|
|
|
|
bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
|
|
if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
|
|
|
|
bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
|
|
if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
|
|
|
|
bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
|
|
if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
|
|
|
|
bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
|
|
if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
|
|
0xff;
|
|
|
|
bp->stats_ticks = coal->stats_block_coalesce_usecs;
|
|
if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
|
|
if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
|
|
bp->stats_ticks = USEC_PER_SEC;
|
|
}
|
|
if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
|
|
bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
|
|
bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
|
|
|
|
if (netif_running(bp->dev)) {
|
|
bnx2_netif_stop(bp);
|
|
bnx2_init_nic(bp, 0);
|
|
bnx2_netif_start(bp);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
|
|
ering->rx_mini_max_pending = 0;
|
|
ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
|
|
|
|
ering->rx_pending = bp->rx_ring_size;
|
|
ering->rx_mini_pending = 0;
|
|
ering->rx_jumbo_pending = bp->rx_pg_ring_size;
|
|
|
|
ering->tx_max_pending = MAX_TX_DESC_CNT;
|
|
ering->tx_pending = bp->tx_ring_size;
|
|
}
|
|
|
|
static int
|
|
bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
|
|
{
|
|
if (netif_running(bp->dev)) {
|
|
bnx2_netif_stop(bp);
|
|
bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
|
|
bnx2_free_skbs(bp);
|
|
bnx2_free_mem(bp);
|
|
}
|
|
|
|
bnx2_set_rx_ring_size(bp, rx);
|
|
bp->tx_ring_size = tx;
|
|
|
|
if (netif_running(bp->dev)) {
|
|
int rc;
|
|
|
|
rc = bnx2_alloc_mem(bp);
|
|
if (!rc)
|
|
rc = bnx2_init_nic(bp, 0);
|
|
|
|
if (rc) {
|
|
bnx2_napi_enable(bp);
|
|
dev_close(bp->dev);
|
|
return rc;
|
|
}
|
|
bnx2_netif_start(bp);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
int rc;
|
|
|
|
if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
|
|
(ering->tx_pending > MAX_TX_DESC_CNT) ||
|
|
(ering->tx_pending <= MAX_SKB_FRAGS)) {
|
|
|
|
return -EINVAL;
|
|
}
|
|
rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
|
|
epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
|
|
epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
|
|
}
|
|
|
|
static int
|
|
bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
bp->req_flow_ctrl = 0;
|
|
if (epause->rx_pause)
|
|
bp->req_flow_ctrl |= FLOW_CTRL_RX;
|
|
if (epause->tx_pause)
|
|
bp->req_flow_ctrl |= FLOW_CTRL_TX;
|
|
|
|
if (epause->autoneg) {
|
|
bp->autoneg |= AUTONEG_FLOW_CTRL;
|
|
}
|
|
else {
|
|
bp->autoneg &= ~AUTONEG_FLOW_CTRL;
|
|
}
|
|
|
|
if (netif_running(dev)) {
|
|
spin_lock_bh(&bp->phy_lock);
|
|
bnx2_setup_phy(bp, bp->phy_port);
|
|
spin_unlock_bh(&bp->phy_lock);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u32
|
|
bnx2_get_rx_csum(struct net_device *dev)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
return bp->rx_csum;
|
|
}
|
|
|
|
static int
|
|
bnx2_set_rx_csum(struct net_device *dev, u32 data)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
bp->rx_csum = data;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_set_tso(struct net_device *dev, u32 data)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
if (data) {
|
|
dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709)
|
|
dev->features |= NETIF_F_TSO6;
|
|
} else
|
|
dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
|
|
NETIF_F_TSO_ECN);
|
|
return 0;
|
|
}
|
|
|
|
static struct {
|
|
char string[ETH_GSTRING_LEN];
|
|
} bnx2_stats_str_arr[] = {
|
|
{ "rx_bytes" },
|
|
{ "rx_error_bytes" },
|
|
{ "tx_bytes" },
|
|
{ "tx_error_bytes" },
|
|
{ "rx_ucast_packets" },
|
|
{ "rx_mcast_packets" },
|
|
{ "rx_bcast_packets" },
|
|
{ "tx_ucast_packets" },
|
|
{ "tx_mcast_packets" },
|
|
{ "tx_bcast_packets" },
|
|
{ "tx_mac_errors" },
|
|
{ "tx_carrier_errors" },
|
|
{ "rx_crc_errors" },
|
|
{ "rx_align_errors" },
|
|
{ "tx_single_collisions" },
|
|
{ "tx_multi_collisions" },
|
|
{ "tx_deferred" },
|
|
{ "tx_excess_collisions" },
|
|
{ "tx_late_collisions" },
|
|
{ "tx_total_collisions" },
|
|
{ "rx_fragments" },
|
|
{ "rx_jabbers" },
|
|
{ "rx_undersize_packets" },
|
|
{ "rx_oversize_packets" },
|
|
{ "rx_64_byte_packets" },
|
|
{ "rx_65_to_127_byte_packets" },
|
|
{ "rx_128_to_255_byte_packets" },
|
|
{ "rx_256_to_511_byte_packets" },
|
|
{ "rx_512_to_1023_byte_packets" },
|
|
{ "rx_1024_to_1522_byte_packets" },
|
|
{ "rx_1523_to_9022_byte_packets" },
|
|
{ "tx_64_byte_packets" },
|
|
{ "tx_65_to_127_byte_packets" },
|
|
{ "tx_128_to_255_byte_packets" },
|
|
{ "tx_256_to_511_byte_packets" },
|
|
{ "tx_512_to_1023_byte_packets" },
|
|
{ "tx_1024_to_1522_byte_packets" },
|
|
{ "tx_1523_to_9022_byte_packets" },
|
|
{ "rx_xon_frames" },
|
|
{ "rx_xoff_frames" },
|
|
{ "tx_xon_frames" },
|
|
{ "tx_xoff_frames" },
|
|
{ "rx_mac_ctrl_frames" },
|
|
{ "rx_filtered_packets" },
|
|
{ "rx_ftq_discards" },
|
|
{ "rx_discards" },
|
|
{ "rx_fw_discards" },
|
|
};
|
|
|
|
#define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
|
|
sizeof(bnx2_stats_str_arr[0]))
|
|
|
|
#define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
|
|
|
|
static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
|
|
STATS_OFFSET32(stat_IfHCInOctets_hi),
|
|
STATS_OFFSET32(stat_IfHCInBadOctets_hi),
|
|
STATS_OFFSET32(stat_IfHCOutOctets_hi),
|
|
STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
|
|
STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
|
|
STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
|
|
STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
|
|
STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
|
|
STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
|
|
STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
|
|
STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
|
|
STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
|
|
STATS_OFFSET32(stat_Dot3StatsFCSErrors),
|
|
STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
|
|
STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
|
|
STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
|
|
STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
|
|
STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
|
|
STATS_OFFSET32(stat_Dot3StatsLateCollisions),
|
|
STATS_OFFSET32(stat_EtherStatsCollisions),
|
|
STATS_OFFSET32(stat_EtherStatsFragments),
|
|
STATS_OFFSET32(stat_EtherStatsJabbers),
|
|
STATS_OFFSET32(stat_EtherStatsUndersizePkts),
|
|
STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
|
|
STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
|
|
STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
|
|
STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
|
|
STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
|
|
STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
|
|
STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
|
|
STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
|
|
STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
|
|
STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
|
|
STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
|
|
STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
|
|
STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
|
|
STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
|
|
STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
|
|
STATS_OFFSET32(stat_XonPauseFramesReceived),
|
|
STATS_OFFSET32(stat_XoffPauseFramesReceived),
|
|
STATS_OFFSET32(stat_OutXonSent),
|
|
STATS_OFFSET32(stat_OutXoffSent),
|
|
STATS_OFFSET32(stat_MacControlFramesReceived),
|
|
STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
|
|
STATS_OFFSET32(stat_IfInFTQDiscards),
|
|
STATS_OFFSET32(stat_IfInMBUFDiscards),
|
|
STATS_OFFSET32(stat_FwRxDrop),
|
|
};
|
|
|
|
/* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
|
|
* skipped because of errata.
|
|
*/
|
|
static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
|
|
8,0,8,8,8,8,8,8,8,8,
|
|
4,0,4,4,4,4,4,4,4,4,
|
|
4,4,4,4,4,4,4,4,4,4,
|
|
4,4,4,4,4,4,4,4,4,4,
|
|
4,4,4,4,4,4,4,
|
|
};
|
|
|
|
static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
|
|
8,0,8,8,8,8,8,8,8,8,
|
|
4,4,4,4,4,4,4,4,4,4,
|
|
4,4,4,4,4,4,4,4,4,4,
|
|
4,4,4,4,4,4,4,4,4,4,
|
|
4,4,4,4,4,4,4,
|
|
};
|
|
|
|
#define BNX2_NUM_TESTS 6
|
|
|
|
static struct {
|
|
char string[ETH_GSTRING_LEN];
|
|
} bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
|
|
{ "register_test (offline)" },
|
|
{ "memory_test (offline)" },
|
|
{ "loopback_test (offline)" },
|
|
{ "nvram_test (online)" },
|
|
{ "interrupt_test (online)" },
|
|
{ "link_test (online)" },
|
|
};
|
|
|
|
static int
|
|
bnx2_get_sset_count(struct net_device *dev, int sset)
|
|
{
|
|
switch (sset) {
|
|
case ETH_SS_TEST:
|
|
return BNX2_NUM_TESTS;
|
|
case ETH_SS_STATS:
|
|
return BNX2_NUM_STATS;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
}
|
|
|
|
static void
|
|
bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
bnx2_set_power_state(bp, PCI_D0);
|
|
|
|
memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
|
|
if (etest->flags & ETH_TEST_FL_OFFLINE) {
|
|
int i;
|
|
|
|
bnx2_netif_stop(bp);
|
|
bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
|
|
bnx2_free_skbs(bp);
|
|
|
|
if (bnx2_test_registers(bp) != 0) {
|
|
buf[0] = 1;
|
|
etest->flags |= ETH_TEST_FL_FAILED;
|
|
}
|
|
if (bnx2_test_memory(bp) != 0) {
|
|
buf[1] = 1;
|
|
etest->flags |= ETH_TEST_FL_FAILED;
|
|
}
|
|
if ((buf[2] = bnx2_test_loopback(bp)) != 0)
|
|
etest->flags |= ETH_TEST_FL_FAILED;
|
|
|
|
if (!netif_running(bp->dev))
|
|
bnx2_shutdown_chip(bp);
|
|
else {
|
|
bnx2_init_nic(bp, 1);
|
|
bnx2_netif_start(bp);
|
|
}
|
|
|
|
/* wait for link up */
|
|
for (i = 0; i < 7; i++) {
|
|
if (bp->link_up)
|
|
break;
|
|
msleep_interruptible(1000);
|
|
}
|
|
}
|
|
|
|
if (bnx2_test_nvram(bp) != 0) {
|
|
buf[3] = 1;
|
|
etest->flags |= ETH_TEST_FL_FAILED;
|
|
}
|
|
if (bnx2_test_intr(bp) != 0) {
|
|
buf[4] = 1;
|
|
etest->flags |= ETH_TEST_FL_FAILED;
|
|
}
|
|
|
|
if (bnx2_test_link(bp) != 0) {
|
|
buf[5] = 1;
|
|
etest->flags |= ETH_TEST_FL_FAILED;
|
|
|
|
}
|
|
if (!netif_running(bp->dev))
|
|
bnx2_set_power_state(bp, PCI_D3hot);
|
|
}
|
|
|
|
static void
|
|
bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
|
|
{
|
|
switch (stringset) {
|
|
case ETH_SS_STATS:
|
|
memcpy(buf, bnx2_stats_str_arr,
|
|
sizeof(bnx2_stats_str_arr));
|
|
break;
|
|
case ETH_SS_TEST:
|
|
memcpy(buf, bnx2_tests_str_arr,
|
|
sizeof(bnx2_tests_str_arr));
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
bnx2_get_ethtool_stats(struct net_device *dev,
|
|
struct ethtool_stats *stats, u64 *buf)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
int i;
|
|
u32 *hw_stats = (u32 *) bp->stats_blk;
|
|
u8 *stats_len_arr = NULL;
|
|
|
|
if (hw_stats == NULL) {
|
|
memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
|
|
return;
|
|
}
|
|
|
|
if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
|
|
(CHIP_ID(bp) == CHIP_ID_5706_A1) ||
|
|
(CHIP_ID(bp) == CHIP_ID_5706_A2) ||
|
|
(CHIP_ID(bp) == CHIP_ID_5708_A0))
|
|
stats_len_arr = bnx2_5706_stats_len_arr;
|
|
else
|
|
stats_len_arr = bnx2_5708_stats_len_arr;
|
|
|
|
for (i = 0; i < BNX2_NUM_STATS; i++) {
|
|
if (stats_len_arr[i] == 0) {
|
|
/* skip this counter */
|
|
buf[i] = 0;
|
|
continue;
|
|
}
|
|
if (stats_len_arr[i] == 4) {
|
|
/* 4-byte counter */
|
|
buf[i] = (u64)
|
|
*(hw_stats + bnx2_stats_offset_arr[i]);
|
|
continue;
|
|
}
|
|
/* 8-byte counter */
|
|
buf[i] = (((u64) *(hw_stats +
|
|
bnx2_stats_offset_arr[i])) << 32) +
|
|
*(hw_stats + bnx2_stats_offset_arr[i] + 1);
|
|
}
|
|
}
|
|
|
|
static int
|
|
bnx2_phys_id(struct net_device *dev, u32 data)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
int i;
|
|
u32 save;
|
|
|
|
bnx2_set_power_state(bp, PCI_D0);
|
|
|
|
if (data == 0)
|
|
data = 2;
|
|
|
|
save = REG_RD(bp, BNX2_MISC_CFG);
|
|
REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
|
|
|
|
for (i = 0; i < (data * 2); i++) {
|
|
if ((i % 2) == 0) {
|
|
REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
|
|
}
|
|
else {
|
|
REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
|
|
BNX2_EMAC_LED_1000MB_OVERRIDE |
|
|
BNX2_EMAC_LED_100MB_OVERRIDE |
|
|
BNX2_EMAC_LED_10MB_OVERRIDE |
|
|
BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
|
|
BNX2_EMAC_LED_TRAFFIC);
|
|
}
|
|
msleep_interruptible(500);
|
|
if (signal_pending(current))
|
|
break;
|
|
}
|
|
REG_WR(bp, BNX2_EMAC_LED, 0);
|
|
REG_WR(bp, BNX2_MISC_CFG, save);
|
|
|
|
if (!netif_running(dev))
|
|
bnx2_set_power_state(bp, PCI_D3hot);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_set_tx_csum(struct net_device *dev, u32 data)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709)
|
|
return (ethtool_op_set_tx_ipv6_csum(dev, data));
|
|
else
|
|
return (ethtool_op_set_tx_csum(dev, data));
|
|
}
|
|
|
|
static const struct ethtool_ops bnx2_ethtool_ops = {
|
|
.get_settings = bnx2_get_settings,
|
|
.set_settings = bnx2_set_settings,
|
|
.get_drvinfo = bnx2_get_drvinfo,
|
|
.get_regs_len = bnx2_get_regs_len,
|
|
.get_regs = bnx2_get_regs,
|
|
.get_wol = bnx2_get_wol,
|
|
.set_wol = bnx2_set_wol,
|
|
.nway_reset = bnx2_nway_reset,
|
|
.get_link = bnx2_get_link,
|
|
.get_eeprom_len = bnx2_get_eeprom_len,
|
|
.get_eeprom = bnx2_get_eeprom,
|
|
.set_eeprom = bnx2_set_eeprom,
|
|
.get_coalesce = bnx2_get_coalesce,
|
|
.set_coalesce = bnx2_set_coalesce,
|
|
.get_ringparam = bnx2_get_ringparam,
|
|
.set_ringparam = bnx2_set_ringparam,
|
|
.get_pauseparam = bnx2_get_pauseparam,
|
|
.set_pauseparam = bnx2_set_pauseparam,
|
|
.get_rx_csum = bnx2_get_rx_csum,
|
|
.set_rx_csum = bnx2_set_rx_csum,
|
|
.set_tx_csum = bnx2_set_tx_csum,
|
|
.set_sg = ethtool_op_set_sg,
|
|
.set_tso = bnx2_set_tso,
|
|
.self_test = bnx2_self_test,
|
|
.get_strings = bnx2_get_strings,
|
|
.phys_id = bnx2_phys_id,
|
|
.get_ethtool_stats = bnx2_get_ethtool_stats,
|
|
.get_sset_count = bnx2_get_sset_count,
|
|
};
|
|
|
|
/* Called with rtnl_lock */
|
|
static int
|
|
bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
|
|
{
|
|
struct mii_ioctl_data *data = if_mii(ifr);
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
int err;
|
|
|
|
switch(cmd) {
|
|
case SIOCGMIIPHY:
|
|
data->phy_id = bp->phy_addr;
|
|
|
|
/* fallthru */
|
|
case SIOCGMIIREG: {
|
|
u32 mii_regval;
|
|
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
|
|
return -EOPNOTSUPP;
|
|
|
|
if (!netif_running(dev))
|
|
return -EAGAIN;
|
|
|
|
spin_lock_bh(&bp->phy_lock);
|
|
err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
|
|
spin_unlock_bh(&bp->phy_lock);
|
|
|
|
data->val_out = mii_regval;
|
|
|
|
return err;
|
|
}
|
|
|
|
case SIOCSMIIREG:
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
|
|
return -EOPNOTSUPP;
|
|
|
|
if (!netif_running(dev))
|
|
return -EAGAIN;
|
|
|
|
spin_lock_bh(&bp->phy_lock);
|
|
err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
|
|
spin_unlock_bh(&bp->phy_lock);
|
|
|
|
return err;
|
|
|
|
default:
|
|
/* do nothing */
|
|
break;
|
|
}
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
/* Called with rtnl_lock */
|
|
static int
|
|
bnx2_change_mac_addr(struct net_device *dev, void *p)
|
|
{
|
|
struct sockaddr *addr = p;
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
if (!is_valid_ether_addr(addr->sa_data))
|
|
return -EINVAL;
|
|
|
|
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
|
|
if (netif_running(dev))
|
|
bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Called with rtnl_lock */
|
|
static int
|
|
bnx2_change_mtu(struct net_device *dev, int new_mtu)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
|
|
((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
|
|
return -EINVAL;
|
|
|
|
dev->mtu = new_mtu;
|
|
return (bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size));
|
|
}
|
|
|
|
#if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
|
|
static void
|
|
poll_bnx2(struct net_device *dev)
|
|
{
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
int i;
|
|
|
|
for (i = 0; i < bp->irq_nvecs; i++) {
|
|
disable_irq(bp->irq_tbl[i].vector);
|
|
bnx2_interrupt(bp->irq_tbl[i].vector, &bp->bnx2_napi[i]);
|
|
enable_irq(bp->irq_tbl[i].vector);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void __devinit
|
|
bnx2_get_5709_media(struct bnx2 *bp)
|
|
{
|
|
u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
|
|
u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
|
|
u32 strap;
|
|
|
|
if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
|
|
return;
|
|
else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
|
|
bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
|
|
return;
|
|
}
|
|
|
|
if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
|
|
strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
|
|
else
|
|
strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
|
|
|
|
if (PCI_FUNC(bp->pdev->devfn) == 0) {
|
|
switch (strap) {
|
|
case 0x4:
|
|
case 0x5:
|
|
case 0x6:
|
|
bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
|
|
return;
|
|
}
|
|
} else {
|
|
switch (strap) {
|
|
case 0x1:
|
|
case 0x2:
|
|
case 0x4:
|
|
bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void __devinit
|
|
bnx2_get_pci_speed(struct bnx2 *bp)
|
|
{
|
|
u32 reg;
|
|
|
|
reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
|
|
if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
|
|
u32 clkreg;
|
|
|
|
bp->flags |= BNX2_FLAG_PCIX;
|
|
|
|
clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
|
|
|
|
clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
|
|
switch (clkreg) {
|
|
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
|
|
bp->bus_speed_mhz = 133;
|
|
break;
|
|
|
|
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
|
|
bp->bus_speed_mhz = 100;
|
|
break;
|
|
|
|
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
|
|
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
|
|
bp->bus_speed_mhz = 66;
|
|
break;
|
|
|
|
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
|
|
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
|
|
bp->bus_speed_mhz = 50;
|
|
break;
|
|
|
|
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
|
|
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
|
|
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
|
|
bp->bus_speed_mhz = 33;
|
|
break;
|
|
}
|
|
}
|
|
else {
|
|
if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
|
|
bp->bus_speed_mhz = 66;
|
|
else
|
|
bp->bus_speed_mhz = 33;
|
|
}
|
|
|
|
if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
|
|
bp->flags |= BNX2_FLAG_PCI_32BIT;
|
|
|
|
}
|
|
|
|
static int __devinit
|
|
bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
|
|
{
|
|
struct bnx2 *bp;
|
|
unsigned long mem_len;
|
|
int rc, i, j;
|
|
u32 reg;
|
|
u64 dma_mask, persist_dma_mask;
|
|
|
|
SET_NETDEV_DEV(dev, &pdev->dev);
|
|
bp = netdev_priv(dev);
|
|
|
|
bp->flags = 0;
|
|
bp->phy_flags = 0;
|
|
|
|
/* enable device (incl. PCI PM wakeup), and bus-mastering */
|
|
rc = pci_enable_device(pdev);
|
|
if (rc) {
|
|
dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
|
|
goto err_out;
|
|
}
|
|
|
|
if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
|
|
dev_err(&pdev->dev,
|
|
"Cannot find PCI device base address, aborting.\n");
|
|
rc = -ENODEV;
|
|
goto err_out_disable;
|
|
}
|
|
|
|
rc = pci_request_regions(pdev, DRV_MODULE_NAME);
|
|
if (rc) {
|
|
dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
|
|
goto err_out_disable;
|
|
}
|
|
|
|
pci_set_master(pdev);
|
|
pci_save_state(pdev);
|
|
|
|
bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
|
|
if (bp->pm_cap == 0) {
|
|
dev_err(&pdev->dev,
|
|
"Cannot find power management capability, aborting.\n");
|
|
rc = -EIO;
|
|
goto err_out_release;
|
|
}
|
|
|
|
bp->dev = dev;
|
|
bp->pdev = pdev;
|
|
|
|
spin_lock_init(&bp->phy_lock);
|
|
spin_lock_init(&bp->indirect_lock);
|
|
#ifdef BCM_CNIC
|
|
mutex_init(&bp->cnic_lock);
|
|
#endif
|
|
INIT_WORK(&bp->reset_task, bnx2_reset_task);
|
|
|
|
dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
|
|
mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
|
|
dev->mem_end = dev->mem_start + mem_len;
|
|
dev->irq = pdev->irq;
|
|
|
|
bp->regview = ioremap_nocache(dev->base_addr, mem_len);
|
|
|
|
if (!bp->regview) {
|
|
dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
|
|
rc = -ENOMEM;
|
|
goto err_out_release;
|
|
}
|
|
|
|
/* Configure byte swap and enable write to the reg_window registers.
|
|
* Rely on CPU to do target byte swapping on big endian systems
|
|
* The chip's target access swapping will not swap all accesses
|
|
*/
|
|
pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
|
|
BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
|
|
BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
|
|
|
|
bnx2_set_power_state(bp, PCI_D0);
|
|
|
|
bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
|
|
if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
|
|
dev_err(&pdev->dev,
|
|
"Cannot find PCIE capability, aborting.\n");
|
|
rc = -EIO;
|
|
goto err_out_unmap;
|
|
}
|
|
bp->flags |= BNX2_FLAG_PCIE;
|
|
if (CHIP_REV(bp) == CHIP_REV_Ax)
|
|
bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
|
|
} else {
|
|
bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
|
|
if (bp->pcix_cap == 0) {
|
|
dev_err(&pdev->dev,
|
|
"Cannot find PCIX capability, aborting.\n");
|
|
rc = -EIO;
|
|
goto err_out_unmap;
|
|
}
|
|
bp->flags |= BNX2_FLAG_BROKEN_STATS;
|
|
}
|
|
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
|
|
if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
|
|
bp->flags |= BNX2_FLAG_MSIX_CAP;
|
|
}
|
|
|
|
if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
|
|
if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
|
|
bp->flags |= BNX2_FLAG_MSI_CAP;
|
|
}
|
|
|
|
/* 5708 cannot support DMA addresses > 40-bit. */
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5708)
|
|
persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
|
|
else
|
|
persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
|
|
|
|
/* Configure DMA attributes. */
|
|
if (pci_set_dma_mask(pdev, dma_mask) == 0) {
|
|
dev->features |= NETIF_F_HIGHDMA;
|
|
rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
|
|
if (rc) {
|
|
dev_err(&pdev->dev,
|
|
"pci_set_consistent_dma_mask failed, aborting.\n");
|
|
goto err_out_unmap;
|
|
}
|
|
} else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
|
|
dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
|
|
goto err_out_unmap;
|
|
}
|
|
|
|
if (!(bp->flags & BNX2_FLAG_PCIE))
|
|
bnx2_get_pci_speed(bp);
|
|
|
|
/* 5706A0 may falsely detect SERR and PERR. */
|
|
if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
|
|
reg = REG_RD(bp, PCI_COMMAND);
|
|
reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
|
|
REG_WR(bp, PCI_COMMAND, reg);
|
|
}
|
|
else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
|
|
!(bp->flags & BNX2_FLAG_PCIX)) {
|
|
|
|
dev_err(&pdev->dev,
|
|
"5706 A1 can only be used in a PCIX bus, aborting.\n");
|
|
goto err_out_unmap;
|
|
}
|
|
|
|
bnx2_init_nvram(bp);
|
|
|
|
reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
|
|
|
|
if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
|
|
BNX2_SHM_HDR_SIGNATURE_SIG) {
|
|
u32 off = PCI_FUNC(pdev->devfn) << 2;
|
|
|
|
bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
|
|
} else
|
|
bp->shmem_base = HOST_VIEW_SHMEM_BASE;
|
|
|
|
/* Get the permanent MAC address. First we need to make sure the
|
|
* firmware is actually running.
|
|
*/
|
|
reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
|
|
|
|
if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
|
|
BNX2_DEV_INFO_SIGNATURE_MAGIC) {
|
|
dev_err(&pdev->dev, "Firmware not running, aborting.\n");
|
|
rc = -ENODEV;
|
|
goto err_out_unmap;
|
|
}
|
|
|
|
reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
|
|
for (i = 0, j = 0; i < 3; i++) {
|
|
u8 num, k, skip0;
|
|
|
|
num = (u8) (reg >> (24 - (i * 8)));
|
|
for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
|
|
if (num >= k || !skip0 || k == 1) {
|
|
bp->fw_version[j++] = (num / k) + '0';
|
|
skip0 = 0;
|
|
}
|
|
}
|
|
if (i != 2)
|
|
bp->fw_version[j++] = '.';
|
|
}
|
|
reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
|
|
if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
|
|
bp->wol = 1;
|
|
|
|
if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
|
|
bp->flags |= BNX2_FLAG_ASF_ENABLE;
|
|
|
|
for (i = 0; i < 30; i++) {
|
|
reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
|
|
if (reg & BNX2_CONDITION_MFW_RUN_MASK)
|
|
break;
|
|
msleep(10);
|
|
}
|
|
}
|
|
reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
|
|
reg &= BNX2_CONDITION_MFW_RUN_MASK;
|
|
if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
|
|
reg != BNX2_CONDITION_MFW_RUN_NONE) {
|
|
u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
|
|
|
|
bp->fw_version[j++] = ' ';
|
|
for (i = 0; i < 3; i++) {
|
|
reg = bnx2_reg_rd_ind(bp, addr + i * 4);
|
|
reg = swab32(reg);
|
|
memcpy(&bp->fw_version[j], ®, 4);
|
|
j += 4;
|
|
}
|
|
}
|
|
|
|
reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
|
|
bp->mac_addr[0] = (u8) (reg >> 8);
|
|
bp->mac_addr[1] = (u8) reg;
|
|
|
|
reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
|
|
bp->mac_addr[2] = (u8) (reg >> 24);
|
|
bp->mac_addr[3] = (u8) (reg >> 16);
|
|
bp->mac_addr[4] = (u8) (reg >> 8);
|
|
bp->mac_addr[5] = (u8) reg;
|
|
|
|
bp->tx_ring_size = MAX_TX_DESC_CNT;
|
|
bnx2_set_rx_ring_size(bp, 255);
|
|
|
|
bp->rx_csum = 1;
|
|
|
|
bp->tx_quick_cons_trip_int = 2;
|
|
bp->tx_quick_cons_trip = 20;
|
|
bp->tx_ticks_int = 18;
|
|
bp->tx_ticks = 80;
|
|
|
|
bp->rx_quick_cons_trip_int = 2;
|
|
bp->rx_quick_cons_trip = 12;
|
|
bp->rx_ticks_int = 18;
|
|
bp->rx_ticks = 18;
|
|
|
|
bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
|
|
|
|
bp->current_interval = BNX2_TIMER_INTERVAL;
|
|
|
|
bp->phy_addr = 1;
|
|
|
|
/* Disable WOL support if we are running on a SERDES chip. */
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709)
|
|
bnx2_get_5709_media(bp);
|
|
else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
|
|
bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
|
|
|
|
bp->phy_port = PORT_TP;
|
|
if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
|
|
bp->phy_port = PORT_FIBRE;
|
|
reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
|
|
if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
|
|
bp->flags |= BNX2_FLAG_NO_WOL;
|
|
bp->wol = 0;
|
|
}
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5706) {
|
|
/* Don't do parallel detect on this board because of
|
|
* some board problems. The link will not go down
|
|
* if we do parallel detect.
|
|
*/
|
|
if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
|
|
pdev->subsystem_device == 0x310c)
|
|
bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
|
|
} else {
|
|
bp->phy_addr = 2;
|
|
if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
|
|
bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
|
|
}
|
|
} else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
|
|
CHIP_NUM(bp) == CHIP_NUM_5708)
|
|
bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
|
|
else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
|
|
(CHIP_REV(bp) == CHIP_REV_Ax ||
|
|
CHIP_REV(bp) == CHIP_REV_Bx))
|
|
bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
|
|
|
|
bnx2_init_fw_cap(bp);
|
|
|
|
if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
|
|
(CHIP_ID(bp) == CHIP_ID_5708_B0) ||
|
|
(CHIP_ID(bp) == CHIP_ID_5708_B1) ||
|
|
!(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
|
|
bp->flags |= BNX2_FLAG_NO_WOL;
|
|
bp->wol = 0;
|
|
}
|
|
|
|
if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
|
|
bp->tx_quick_cons_trip_int =
|
|
bp->tx_quick_cons_trip;
|
|
bp->tx_ticks_int = bp->tx_ticks;
|
|
bp->rx_quick_cons_trip_int =
|
|
bp->rx_quick_cons_trip;
|
|
bp->rx_ticks_int = bp->rx_ticks;
|
|
bp->comp_prod_trip_int = bp->comp_prod_trip;
|
|
bp->com_ticks_int = bp->com_ticks;
|
|
bp->cmd_ticks_int = bp->cmd_ticks;
|
|
}
|
|
|
|
/* Disable MSI on 5706 if AMD 8132 bridge is found.
|
|
*
|
|
* MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
|
|
* with byte enables disabled on the unused 32-bit word. This is legal
|
|
* but causes problems on the AMD 8132 which will eventually stop
|
|
* responding after a while.
|
|
*
|
|
* AMD believes this incompatibility is unique to the 5706, and
|
|
* prefers to locally disable MSI rather than globally disabling it.
|
|
*/
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
|
|
struct pci_dev *amd_8132 = NULL;
|
|
|
|
while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
|
|
PCI_DEVICE_ID_AMD_8132_BRIDGE,
|
|
amd_8132))) {
|
|
|
|
if (amd_8132->revision >= 0x10 &&
|
|
amd_8132->revision <= 0x13) {
|
|
disable_msi = 1;
|
|
pci_dev_put(amd_8132);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
bnx2_set_default_link(bp);
|
|
bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
|
|
|
|
init_timer(&bp->timer);
|
|
bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
|
|
bp->timer.data = (unsigned long) bp;
|
|
bp->timer.function = bnx2_timer;
|
|
|
|
return 0;
|
|
|
|
err_out_unmap:
|
|
if (bp->regview) {
|
|
iounmap(bp->regview);
|
|
bp->regview = NULL;
|
|
}
|
|
|
|
err_out_release:
|
|
pci_release_regions(pdev);
|
|
|
|
err_out_disable:
|
|
pci_disable_device(pdev);
|
|
pci_set_drvdata(pdev, NULL);
|
|
|
|
err_out:
|
|
return rc;
|
|
}
|
|
|
|
static char * __devinit
|
|
bnx2_bus_string(struct bnx2 *bp, char *str)
|
|
{
|
|
char *s = str;
|
|
|
|
if (bp->flags & BNX2_FLAG_PCIE) {
|
|
s += sprintf(s, "PCI Express");
|
|
} else {
|
|
s += sprintf(s, "PCI");
|
|
if (bp->flags & BNX2_FLAG_PCIX)
|
|
s += sprintf(s, "-X");
|
|
if (bp->flags & BNX2_FLAG_PCI_32BIT)
|
|
s += sprintf(s, " 32-bit");
|
|
else
|
|
s += sprintf(s, " 64-bit");
|
|
s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
|
|
}
|
|
return str;
|
|
}
|
|
|
|
static void __devinit
|
|
bnx2_init_napi(struct bnx2 *bp)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
|
|
struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
|
|
int (*poll)(struct napi_struct *, int);
|
|
|
|
if (i == 0)
|
|
poll = bnx2_poll;
|
|
else
|
|
poll = bnx2_poll_msix;
|
|
|
|
netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
|
|
bnapi->bp = bp;
|
|
}
|
|
}
|
|
|
|
static const struct net_device_ops bnx2_netdev_ops = {
|
|
.ndo_open = bnx2_open,
|
|
.ndo_start_xmit = bnx2_start_xmit,
|
|
.ndo_stop = bnx2_close,
|
|
.ndo_get_stats = bnx2_get_stats,
|
|
.ndo_set_rx_mode = bnx2_set_rx_mode,
|
|
.ndo_do_ioctl = bnx2_ioctl,
|
|
.ndo_validate_addr = eth_validate_addr,
|
|
.ndo_set_mac_address = bnx2_change_mac_addr,
|
|
.ndo_change_mtu = bnx2_change_mtu,
|
|
.ndo_tx_timeout = bnx2_tx_timeout,
|
|
#ifdef BCM_VLAN
|
|
.ndo_vlan_rx_register = bnx2_vlan_rx_register,
|
|
#endif
|
|
#if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
|
|
.ndo_poll_controller = poll_bnx2,
|
|
#endif
|
|
};
|
|
|
|
static void inline vlan_features_add(struct net_device *dev, unsigned long flags)
|
|
{
|
|
#ifdef BCM_VLAN
|
|
dev->vlan_features |= flags;
|
|
#endif
|
|
}
|
|
|
|
static int __devinit
|
|
bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
|
|
{
|
|
static int version_printed = 0;
|
|
struct net_device *dev = NULL;
|
|
struct bnx2 *bp;
|
|
int rc;
|
|
char str[40];
|
|
|
|
if (version_printed++ == 0)
|
|
printk(KERN_INFO "%s", version);
|
|
|
|
/* dev zeroed in init_etherdev */
|
|
dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
|
|
|
|
if (!dev)
|
|
return -ENOMEM;
|
|
|
|
rc = bnx2_init_board(pdev, dev);
|
|
if (rc < 0) {
|
|
free_netdev(dev);
|
|
return rc;
|
|
}
|
|
|
|
dev->netdev_ops = &bnx2_netdev_ops;
|
|
dev->watchdog_timeo = TX_TIMEOUT;
|
|
dev->ethtool_ops = &bnx2_ethtool_ops;
|
|
|
|
bp = netdev_priv(dev);
|
|
bnx2_init_napi(bp);
|
|
|
|
pci_set_drvdata(pdev, dev);
|
|
|
|
rc = bnx2_request_firmware(bp);
|
|
if (rc)
|
|
goto error;
|
|
|
|
memcpy(dev->dev_addr, bp->mac_addr, 6);
|
|
memcpy(dev->perm_addr, bp->mac_addr, 6);
|
|
|
|
dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
|
|
vlan_features_add(dev, NETIF_F_IP_CSUM | NETIF_F_SG);
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
|
|
dev->features |= NETIF_F_IPV6_CSUM;
|
|
vlan_features_add(dev, NETIF_F_IPV6_CSUM);
|
|
}
|
|
#ifdef BCM_VLAN
|
|
dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
|
|
#endif
|
|
dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
|
|
vlan_features_add(dev, NETIF_F_TSO | NETIF_F_TSO_ECN);
|
|
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
|
|
dev->features |= NETIF_F_TSO6;
|
|
vlan_features_add(dev, NETIF_F_TSO6);
|
|
}
|
|
if ((rc = register_netdev(dev))) {
|
|
dev_err(&pdev->dev, "Cannot register net device\n");
|
|
goto error;
|
|
}
|
|
|
|
printk(KERN_INFO "%s: %s (%c%d) %s found at mem %lx, "
|
|
"IRQ %d, node addr %pM\n",
|
|
dev->name,
|
|
board_info[ent->driver_data].name,
|
|
((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
|
|
((CHIP_ID(bp) & 0x0ff0) >> 4),
|
|
bnx2_bus_string(bp, str),
|
|
dev->base_addr,
|
|
bp->pdev->irq, dev->dev_addr);
|
|
|
|
return 0;
|
|
|
|
error:
|
|
if (bp->mips_firmware)
|
|
release_firmware(bp->mips_firmware);
|
|
if (bp->rv2p_firmware)
|
|
release_firmware(bp->rv2p_firmware);
|
|
|
|
if (bp->regview)
|
|
iounmap(bp->regview);
|
|
pci_release_regions(pdev);
|
|
pci_disable_device(pdev);
|
|
pci_set_drvdata(pdev, NULL);
|
|
free_netdev(dev);
|
|
return rc;
|
|
}
|
|
|
|
static void __devexit
|
|
bnx2_remove_one(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
flush_scheduled_work();
|
|
|
|
unregister_netdev(dev);
|
|
|
|
if (bp->mips_firmware)
|
|
release_firmware(bp->mips_firmware);
|
|
if (bp->rv2p_firmware)
|
|
release_firmware(bp->rv2p_firmware);
|
|
|
|
if (bp->regview)
|
|
iounmap(bp->regview);
|
|
|
|
free_netdev(dev);
|
|
pci_release_regions(pdev);
|
|
pci_disable_device(pdev);
|
|
pci_set_drvdata(pdev, NULL);
|
|
}
|
|
|
|
static int
|
|
bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
/* PCI register 4 needs to be saved whether netif_running() or not.
|
|
* MSI address and data need to be saved if using MSI and
|
|
* netif_running().
|
|
*/
|
|
pci_save_state(pdev);
|
|
if (!netif_running(dev))
|
|
return 0;
|
|
|
|
flush_scheduled_work();
|
|
bnx2_netif_stop(bp);
|
|
netif_device_detach(dev);
|
|
del_timer_sync(&bp->timer);
|
|
bnx2_shutdown_chip(bp);
|
|
bnx2_free_skbs(bp);
|
|
bnx2_set_power_state(bp, pci_choose_state(pdev, state));
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bnx2_resume(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
pci_restore_state(pdev);
|
|
if (!netif_running(dev))
|
|
return 0;
|
|
|
|
bnx2_set_power_state(bp, PCI_D0);
|
|
netif_device_attach(dev);
|
|
bnx2_init_nic(bp, 1);
|
|
bnx2_netif_start(bp);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* bnx2_io_error_detected - called when PCI error is detected
|
|
* @pdev: Pointer to PCI device
|
|
* @state: The current pci connection state
|
|
*
|
|
* This function is called after a PCI bus error affecting
|
|
* this device has been detected.
|
|
*/
|
|
static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
|
|
pci_channel_state_t state)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
rtnl_lock();
|
|
netif_device_detach(dev);
|
|
|
|
if (state == pci_channel_io_perm_failure) {
|
|
rtnl_unlock();
|
|
return PCI_ERS_RESULT_DISCONNECT;
|
|
}
|
|
|
|
if (netif_running(dev)) {
|
|
bnx2_netif_stop(bp);
|
|
del_timer_sync(&bp->timer);
|
|
bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
|
|
}
|
|
|
|
pci_disable_device(pdev);
|
|
rtnl_unlock();
|
|
|
|
/* Request a slot slot reset. */
|
|
return PCI_ERS_RESULT_NEED_RESET;
|
|
}
|
|
|
|
/**
|
|
* bnx2_io_slot_reset - called after the pci bus has been reset.
|
|
* @pdev: Pointer to PCI device
|
|
*
|
|
* Restart the card from scratch, as if from a cold-boot.
|
|
*/
|
|
static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
rtnl_lock();
|
|
if (pci_enable_device(pdev)) {
|
|
dev_err(&pdev->dev,
|
|
"Cannot re-enable PCI device after reset.\n");
|
|
rtnl_unlock();
|
|
return PCI_ERS_RESULT_DISCONNECT;
|
|
}
|
|
pci_set_master(pdev);
|
|
pci_restore_state(pdev);
|
|
|
|
if (netif_running(dev)) {
|
|
bnx2_set_power_state(bp, PCI_D0);
|
|
bnx2_init_nic(bp, 1);
|
|
}
|
|
|
|
rtnl_unlock();
|
|
return PCI_ERS_RESULT_RECOVERED;
|
|
}
|
|
|
|
/**
|
|
* bnx2_io_resume - called when traffic can start flowing again.
|
|
* @pdev: Pointer to PCI device
|
|
*
|
|
* This callback is called when the error recovery driver tells us that
|
|
* its OK to resume normal operation.
|
|
*/
|
|
static void bnx2_io_resume(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata(pdev);
|
|
struct bnx2 *bp = netdev_priv(dev);
|
|
|
|
rtnl_lock();
|
|
if (netif_running(dev))
|
|
bnx2_netif_start(bp);
|
|
|
|
netif_device_attach(dev);
|
|
rtnl_unlock();
|
|
}
|
|
|
|
static struct pci_error_handlers bnx2_err_handler = {
|
|
.error_detected = bnx2_io_error_detected,
|
|
.slot_reset = bnx2_io_slot_reset,
|
|
.resume = bnx2_io_resume,
|
|
};
|
|
|
|
static struct pci_driver bnx2_pci_driver = {
|
|
.name = DRV_MODULE_NAME,
|
|
.id_table = bnx2_pci_tbl,
|
|
.probe = bnx2_init_one,
|
|
.remove = __devexit_p(bnx2_remove_one),
|
|
.suspend = bnx2_suspend,
|
|
.resume = bnx2_resume,
|
|
.err_handler = &bnx2_err_handler,
|
|
};
|
|
|
|
static int __init bnx2_init(void)
|
|
{
|
|
return pci_register_driver(&bnx2_pci_driver);
|
|
}
|
|
|
|
static void __exit bnx2_cleanup(void)
|
|
{
|
|
pci_unregister_driver(&bnx2_pci_driver);
|
|
}
|
|
|
|
module_init(bnx2_init);
|
|
module_exit(bnx2_cleanup);
|
|
|
|
|
|
|