506 lines
16 KiB
C
506 lines
16 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _LINUX_RMAP_H
|
|
#define _LINUX_RMAP_H
|
|
/*
|
|
* Declarations for Reverse Mapping functions in mm/rmap.c
|
|
*/
|
|
|
|
#include <linux/list.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/rwsem.h>
|
|
#include <linux/memcontrol.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/memremap.h>
|
|
|
|
/*
|
|
* The anon_vma heads a list of private "related" vmas, to scan if
|
|
* an anonymous page pointing to this anon_vma needs to be unmapped:
|
|
* the vmas on the list will be related by forking, or by splitting.
|
|
*
|
|
* Since vmas come and go as they are split and merged (particularly
|
|
* in mprotect), the mapping field of an anonymous page cannot point
|
|
* directly to a vma: instead it points to an anon_vma, on whose list
|
|
* the related vmas can be easily linked or unlinked.
|
|
*
|
|
* After unlinking the last vma on the list, we must garbage collect
|
|
* the anon_vma object itself: we're guaranteed no page can be
|
|
* pointing to this anon_vma once its vma list is empty.
|
|
*/
|
|
struct anon_vma {
|
|
struct anon_vma *root; /* Root of this anon_vma tree */
|
|
struct rw_semaphore rwsem; /* W: modification, R: walking the list */
|
|
/*
|
|
* The refcount is taken on an anon_vma when there is no
|
|
* guarantee that the vma of page tables will exist for
|
|
* the duration of the operation. A caller that takes
|
|
* the reference is responsible for clearing up the
|
|
* anon_vma if they are the last user on release
|
|
*/
|
|
atomic_t refcount;
|
|
|
|
/*
|
|
* Count of child anon_vmas. Equals to the count of all anon_vmas that
|
|
* have ->parent pointing to this one, including itself.
|
|
*
|
|
* This counter is used for making decision about reusing anon_vma
|
|
* instead of forking new one. See comments in function anon_vma_clone.
|
|
*/
|
|
unsigned long num_children;
|
|
/* Count of VMAs whose ->anon_vma pointer points to this object. */
|
|
unsigned long num_active_vmas;
|
|
|
|
struct anon_vma *parent; /* Parent of this anon_vma */
|
|
|
|
/*
|
|
* NOTE: the LSB of the rb_root.rb_node is set by
|
|
* mm_take_all_locks() _after_ taking the above lock. So the
|
|
* rb_root must only be read/written after taking the above lock
|
|
* to be sure to see a valid next pointer. The LSB bit itself
|
|
* is serialized by a system wide lock only visible to
|
|
* mm_take_all_locks() (mm_all_locks_mutex).
|
|
*/
|
|
|
|
/* Interval tree of private "related" vmas */
|
|
struct rb_root_cached rb_root;
|
|
};
|
|
|
|
/*
|
|
* The copy-on-write semantics of fork mean that an anon_vma
|
|
* can become associated with multiple processes. Furthermore,
|
|
* each child process will have its own anon_vma, where new
|
|
* pages for that process are instantiated.
|
|
*
|
|
* This structure allows us to find the anon_vmas associated
|
|
* with a VMA, or the VMAs associated with an anon_vma.
|
|
* The "same_vma" list contains the anon_vma_chains linking
|
|
* all the anon_vmas associated with this VMA.
|
|
* The "rb" field indexes on an interval tree the anon_vma_chains
|
|
* which link all the VMAs associated with this anon_vma.
|
|
*/
|
|
struct anon_vma_chain {
|
|
struct vm_area_struct *vma;
|
|
struct anon_vma *anon_vma;
|
|
struct list_head same_vma; /* locked by mmap_lock & page_table_lock */
|
|
struct rb_node rb; /* locked by anon_vma->rwsem */
|
|
unsigned long rb_subtree_last;
|
|
#ifdef CONFIG_DEBUG_VM_RB
|
|
unsigned long cached_vma_start, cached_vma_last;
|
|
#endif
|
|
};
|
|
|
|
enum ttu_flags {
|
|
TTU_SPLIT_HUGE_PMD = 0x4, /* split huge PMD if any */
|
|
TTU_IGNORE_MLOCK = 0x8, /* ignore mlock */
|
|
TTU_SYNC = 0x10, /* avoid racy checks with PVMW_SYNC */
|
|
TTU_HWPOISON = 0x20, /* do convert pte to hwpoison entry */
|
|
TTU_BATCH_FLUSH = 0x40, /* Batch TLB flushes where possible
|
|
* and caller guarantees they will
|
|
* do a final flush if necessary */
|
|
TTU_RMAP_LOCKED = 0x80, /* do not grab rmap lock:
|
|
* caller holds it */
|
|
};
|
|
|
|
#ifdef CONFIG_MMU
|
|
static inline void get_anon_vma(struct anon_vma *anon_vma)
|
|
{
|
|
atomic_inc(&anon_vma->refcount);
|
|
}
|
|
|
|
void __put_anon_vma(struct anon_vma *anon_vma);
|
|
|
|
static inline void put_anon_vma(struct anon_vma *anon_vma)
|
|
{
|
|
if (atomic_dec_and_test(&anon_vma->refcount))
|
|
__put_anon_vma(anon_vma);
|
|
}
|
|
|
|
static inline void anon_vma_lock_write(struct anon_vma *anon_vma)
|
|
{
|
|
down_write(&anon_vma->root->rwsem);
|
|
}
|
|
|
|
static inline void anon_vma_unlock_write(struct anon_vma *anon_vma)
|
|
{
|
|
up_write(&anon_vma->root->rwsem);
|
|
}
|
|
|
|
static inline void anon_vma_lock_read(struct anon_vma *anon_vma)
|
|
{
|
|
down_read(&anon_vma->root->rwsem);
|
|
}
|
|
|
|
static inline int anon_vma_trylock_read(struct anon_vma *anon_vma)
|
|
{
|
|
return down_read_trylock(&anon_vma->root->rwsem);
|
|
}
|
|
|
|
static inline void anon_vma_unlock_read(struct anon_vma *anon_vma)
|
|
{
|
|
up_read(&anon_vma->root->rwsem);
|
|
}
|
|
|
|
|
|
/*
|
|
* anon_vma helper functions.
|
|
*/
|
|
void anon_vma_init(void); /* create anon_vma_cachep */
|
|
int __anon_vma_prepare(struct vm_area_struct *);
|
|
void unlink_anon_vmas(struct vm_area_struct *);
|
|
int anon_vma_clone(struct vm_area_struct *, struct vm_area_struct *);
|
|
int anon_vma_fork(struct vm_area_struct *, struct vm_area_struct *);
|
|
|
|
static inline int anon_vma_prepare(struct vm_area_struct *vma)
|
|
{
|
|
if (likely(vma->anon_vma))
|
|
return 0;
|
|
|
|
return __anon_vma_prepare(vma);
|
|
}
|
|
|
|
static inline void anon_vma_merge(struct vm_area_struct *vma,
|
|
struct vm_area_struct *next)
|
|
{
|
|
VM_BUG_ON_VMA(vma->anon_vma != next->anon_vma, vma);
|
|
unlink_anon_vmas(next);
|
|
}
|
|
|
|
struct anon_vma *folio_get_anon_vma(struct folio *folio);
|
|
|
|
/* RMAP flags, currently only relevant for some anon rmap operations. */
|
|
typedef int __bitwise rmap_t;
|
|
|
|
/*
|
|
* No special request: if the page is a subpage of a compound page, it is
|
|
* mapped via a PTE. The mapped (sub)page is possibly shared between processes.
|
|
*/
|
|
#define RMAP_NONE ((__force rmap_t)0)
|
|
|
|
/* The (sub)page is exclusive to a single process. */
|
|
#define RMAP_EXCLUSIVE ((__force rmap_t)BIT(0))
|
|
|
|
/*
|
|
* The compound page is not mapped via PTEs, but instead via a single PMD and
|
|
* should be accounted accordingly.
|
|
*/
|
|
#define RMAP_COMPOUND ((__force rmap_t)BIT(1))
|
|
|
|
/*
|
|
* rmap interfaces called when adding or removing pte of page
|
|
*/
|
|
void page_move_anon_rmap(struct page *, struct vm_area_struct *);
|
|
void page_add_anon_rmap(struct page *, struct vm_area_struct *,
|
|
unsigned long address, rmap_t flags);
|
|
void page_add_new_anon_rmap(struct page *, struct vm_area_struct *,
|
|
unsigned long address);
|
|
void folio_add_new_anon_rmap(struct folio *, struct vm_area_struct *,
|
|
unsigned long address);
|
|
void page_add_file_rmap(struct page *, struct vm_area_struct *,
|
|
bool compound);
|
|
void folio_add_file_rmap_range(struct folio *, struct page *, unsigned int nr,
|
|
struct vm_area_struct *, bool compound);
|
|
void page_remove_rmap(struct page *, struct vm_area_struct *,
|
|
bool compound);
|
|
|
|
void hugepage_add_anon_rmap(struct page *, struct vm_area_struct *,
|
|
unsigned long address, rmap_t flags);
|
|
void hugepage_add_new_anon_rmap(struct folio *, struct vm_area_struct *,
|
|
unsigned long address);
|
|
|
|
static inline void __page_dup_rmap(struct page *page, bool compound)
|
|
{
|
|
if (compound) {
|
|
struct folio *folio = (struct folio *)page;
|
|
|
|
VM_BUG_ON_PAGE(compound && !PageHead(page), page);
|
|
atomic_inc(&folio->_entire_mapcount);
|
|
} else {
|
|
atomic_inc(&page->_mapcount);
|
|
}
|
|
}
|
|
|
|
static inline void page_dup_file_rmap(struct page *page, bool compound)
|
|
{
|
|
__page_dup_rmap(page, compound);
|
|
}
|
|
|
|
/**
|
|
* page_try_dup_anon_rmap - try duplicating a mapping of an already mapped
|
|
* anonymous page
|
|
* @page: the page to duplicate the mapping for
|
|
* @compound: the page is mapped as compound or as a small page
|
|
* @vma: the source vma
|
|
*
|
|
* The caller needs to hold the PT lock and the vma->vma_mm->write_protect_seq.
|
|
*
|
|
* Duplicating the mapping can only fail if the page may be pinned; device
|
|
* private pages cannot get pinned and consequently this function cannot fail.
|
|
*
|
|
* If duplicating the mapping succeeds, the page has to be mapped R/O into
|
|
* the parent and the child. It must *not* get mapped writable after this call.
|
|
*
|
|
* Returns 0 if duplicating the mapping succeeded. Returns -EBUSY otherwise.
|
|
*/
|
|
static inline int page_try_dup_anon_rmap(struct page *page, bool compound,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
VM_BUG_ON_PAGE(!PageAnon(page), page);
|
|
|
|
/*
|
|
* No need to check+clear for already shared pages, including KSM
|
|
* pages.
|
|
*/
|
|
if (!PageAnonExclusive(page))
|
|
goto dup;
|
|
|
|
/*
|
|
* If this page may have been pinned by the parent process,
|
|
* don't allow to duplicate the mapping but instead require to e.g.,
|
|
* copy the page immediately for the child so that we'll always
|
|
* guarantee the pinned page won't be randomly replaced in the
|
|
* future on write faults.
|
|
*/
|
|
if (likely(!is_device_private_page(page)) &&
|
|
unlikely(page_needs_cow_for_dma(vma, page)))
|
|
return -EBUSY;
|
|
|
|
ClearPageAnonExclusive(page);
|
|
/*
|
|
* It's okay to share the anon page between both processes, mapping
|
|
* the page R/O into both processes.
|
|
*/
|
|
dup:
|
|
__page_dup_rmap(page, compound);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* page_try_share_anon_rmap - try marking an exclusive anonymous page possibly
|
|
* shared to prepare for KSM or temporary unmapping
|
|
* @page: the exclusive anonymous page to try marking possibly shared
|
|
*
|
|
* The caller needs to hold the PT lock and has to have the page table entry
|
|
* cleared/invalidated.
|
|
*
|
|
* This is similar to page_try_dup_anon_rmap(), however, not used during fork()
|
|
* to duplicate a mapping, but instead to prepare for KSM or temporarily
|
|
* unmapping a page (swap, migration) via page_remove_rmap().
|
|
*
|
|
* Marking the page shared can only fail if the page may be pinned; device
|
|
* private pages cannot get pinned and consequently this function cannot fail.
|
|
*
|
|
* Returns 0 if marking the page possibly shared succeeded. Returns -EBUSY
|
|
* otherwise.
|
|
*/
|
|
static inline int page_try_share_anon_rmap(struct page *page)
|
|
{
|
|
VM_BUG_ON_PAGE(!PageAnon(page) || !PageAnonExclusive(page), page);
|
|
|
|
/* device private pages cannot get pinned via GUP. */
|
|
if (unlikely(is_device_private_page(page))) {
|
|
ClearPageAnonExclusive(page);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We have to make sure that when we clear PageAnonExclusive, that
|
|
* the page is not pinned and that concurrent GUP-fast won't succeed in
|
|
* concurrently pinning the page.
|
|
*
|
|
* Conceptually, PageAnonExclusive clearing consists of:
|
|
* (A1) Clear PTE
|
|
* (A2) Check if the page is pinned; back off if so.
|
|
* (A3) Clear PageAnonExclusive
|
|
* (A4) Restore PTE (optional, but certainly not writable)
|
|
*
|
|
* When clearing PageAnonExclusive, we cannot possibly map the page
|
|
* writable again, because anon pages that may be shared must never
|
|
* be writable. So in any case, if the PTE was writable it cannot
|
|
* be writable anymore afterwards and there would be a PTE change. Only
|
|
* if the PTE wasn't writable, there might not be a PTE change.
|
|
*
|
|
* Conceptually, GUP-fast pinning of an anon page consists of:
|
|
* (B1) Read the PTE
|
|
* (B2) FOLL_WRITE: check if the PTE is not writable; back off if so.
|
|
* (B3) Pin the mapped page
|
|
* (B4) Check if the PTE changed by re-reading it; back off if so.
|
|
* (B5) If the original PTE is not writable, check if
|
|
* PageAnonExclusive is not set; back off if so.
|
|
*
|
|
* If the PTE was writable, we only have to make sure that GUP-fast
|
|
* observes a PTE change and properly backs off.
|
|
*
|
|
* If the PTE was not writable, we have to make sure that GUP-fast either
|
|
* detects a (temporary) PTE change or that PageAnonExclusive is cleared
|
|
* and properly backs off.
|
|
*
|
|
* Consequently, when clearing PageAnonExclusive(), we have to make
|
|
* sure that (A1), (A2)/(A3) and (A4) happen in the right memory
|
|
* order. In GUP-fast pinning code, we have to make sure that (B3),(B4)
|
|
* and (B5) happen in the right memory order.
|
|
*
|
|
* We assume that there might not be a memory barrier after
|
|
* clearing/invalidating the PTE (A1) and before restoring the PTE (A4),
|
|
* so we use explicit ones here.
|
|
*/
|
|
|
|
/* Paired with the memory barrier in try_grab_folio(). */
|
|
if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
|
|
smp_mb();
|
|
|
|
if (unlikely(page_maybe_dma_pinned(page)))
|
|
return -EBUSY;
|
|
ClearPageAnonExclusive(page);
|
|
|
|
/*
|
|
* This is conceptually a smp_wmb() paired with the smp_rmb() in
|
|
* gup_must_unshare().
|
|
*/
|
|
if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
|
|
smp_mb__after_atomic();
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Called from mm/vmscan.c to handle paging out
|
|
*/
|
|
int folio_referenced(struct folio *, int is_locked,
|
|
struct mem_cgroup *memcg, unsigned long *vm_flags);
|
|
|
|
void try_to_migrate(struct folio *folio, enum ttu_flags flags);
|
|
void try_to_unmap(struct folio *, enum ttu_flags flags);
|
|
|
|
int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
|
|
unsigned long end, struct page **pages,
|
|
void *arg);
|
|
|
|
/* Avoid racy checks */
|
|
#define PVMW_SYNC (1 << 0)
|
|
/* Look for migration entries rather than present PTEs */
|
|
#define PVMW_MIGRATION (1 << 1)
|
|
|
|
struct page_vma_mapped_walk {
|
|
unsigned long pfn;
|
|
unsigned long nr_pages;
|
|
pgoff_t pgoff;
|
|
struct vm_area_struct *vma;
|
|
unsigned long address;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
spinlock_t *ptl;
|
|
unsigned int flags;
|
|
};
|
|
|
|
#define DEFINE_PAGE_VMA_WALK(name, _page, _vma, _address, _flags) \
|
|
struct page_vma_mapped_walk name = { \
|
|
.pfn = page_to_pfn(_page), \
|
|
.nr_pages = compound_nr(_page), \
|
|
.pgoff = page_to_pgoff(_page), \
|
|
.vma = _vma, \
|
|
.address = _address, \
|
|
.flags = _flags, \
|
|
}
|
|
|
|
#define DEFINE_FOLIO_VMA_WALK(name, _folio, _vma, _address, _flags) \
|
|
struct page_vma_mapped_walk name = { \
|
|
.pfn = folio_pfn(_folio), \
|
|
.nr_pages = folio_nr_pages(_folio), \
|
|
.pgoff = folio_pgoff(_folio), \
|
|
.vma = _vma, \
|
|
.address = _address, \
|
|
.flags = _flags, \
|
|
}
|
|
|
|
static inline void page_vma_mapped_walk_done(struct page_vma_mapped_walk *pvmw)
|
|
{
|
|
/* HugeTLB pte is set to the relevant page table entry without pte_mapped. */
|
|
if (pvmw->pte && !is_vm_hugetlb_page(pvmw->vma))
|
|
pte_unmap(pvmw->pte);
|
|
if (pvmw->ptl)
|
|
spin_unlock(pvmw->ptl);
|
|
}
|
|
|
|
bool page_vma_mapped_walk(struct page_vma_mapped_walk *pvmw);
|
|
|
|
/*
|
|
* Used by swapoff to help locate where page is expected in vma.
|
|
*/
|
|
unsigned long page_address_in_vma(struct page *, struct vm_area_struct *);
|
|
|
|
/*
|
|
* Cleans the PTEs of shared mappings.
|
|
* (and since clean PTEs should also be readonly, write protects them too)
|
|
*
|
|
* returns the number of cleaned PTEs.
|
|
*/
|
|
int folio_mkclean(struct folio *);
|
|
|
|
int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
|
|
struct vm_area_struct *vma);
|
|
|
|
void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked);
|
|
|
|
int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma);
|
|
|
|
/*
|
|
* rmap_walk_control: To control rmap traversing for specific needs
|
|
*
|
|
* arg: passed to rmap_one() and invalid_vma()
|
|
* try_lock: bail out if the rmap lock is contended
|
|
* contended: indicate the rmap traversal bailed out due to lock contention
|
|
* rmap_one: executed on each vma where page is mapped
|
|
* done: for checking traversing termination condition
|
|
* anon_lock: for getting anon_lock by optimized way rather than default
|
|
* invalid_vma: for skipping uninterested vma
|
|
*/
|
|
struct rmap_walk_control {
|
|
void *arg;
|
|
bool try_lock;
|
|
bool contended;
|
|
/*
|
|
* Return false if page table scanning in rmap_walk should be stopped.
|
|
* Otherwise, return true.
|
|
*/
|
|
bool (*rmap_one)(struct folio *folio, struct vm_area_struct *vma,
|
|
unsigned long addr, void *arg);
|
|
int (*done)(struct folio *folio);
|
|
struct anon_vma *(*anon_lock)(struct folio *folio,
|
|
struct rmap_walk_control *rwc);
|
|
bool (*invalid_vma)(struct vm_area_struct *vma, void *arg);
|
|
};
|
|
|
|
void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc);
|
|
void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc);
|
|
struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
|
|
struct rmap_walk_control *rwc);
|
|
|
|
#else /* !CONFIG_MMU */
|
|
|
|
#define anon_vma_init() do {} while (0)
|
|
#define anon_vma_prepare(vma) (0)
|
|
|
|
static inline int folio_referenced(struct folio *folio, int is_locked,
|
|
struct mem_cgroup *memcg,
|
|
unsigned long *vm_flags)
|
|
{
|
|
*vm_flags = 0;
|
|
return 0;
|
|
}
|
|
|
|
static inline void try_to_unmap(struct folio *folio, enum ttu_flags flags)
|
|
{
|
|
}
|
|
|
|
static inline int folio_mkclean(struct folio *folio)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_MMU */
|
|
|
|
static inline int page_mkclean(struct page *page)
|
|
{
|
|
return folio_mkclean(page_folio(page));
|
|
}
|
|
#endif /* _LINUX_RMAP_H */
|