OpenCloudOS-Kernel/fs/xfs/xfs_super.c

2268 lines
57 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
* All Rights Reserved.
*/
#include "xfs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_sb.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_btree.h"
#include "xfs_bmap.h"
#include "xfs_alloc.h"
#include "xfs_fsops.h"
#include "xfs_trans.h"
#include "xfs_buf_item.h"
#include "xfs_log.h"
#include "xfs_log_priv.h"
#include "xfs_dir2.h"
#include "xfs_extfree_item.h"
#include "xfs_mru_cache.h"
#include "xfs_inode_item.h"
#include "xfs_icache.h"
#include "xfs_trace.h"
#include "xfs_icreate_item.h"
#include "xfs_filestream.h"
#include "xfs_quota.h"
#include "xfs_sysfs.h"
#include "xfs_ondisk.h"
#include "xfs_rmap_item.h"
#include "xfs_refcount_item.h"
#include "xfs_bmap_item.h"
#include "xfs_reflink.h"
#include <linux/magic.h>
#include <linux/fs_context.h>
#include <linux/fs_parser.h>
static const struct super_operations xfs_super_operations;
static struct kset *xfs_kset; /* top-level xfs sysfs dir */
#ifdef DEBUG
static struct xfs_kobj xfs_dbg_kobj; /* global debug sysfs attrs */
#endif
enum xfs_dax_mode {
XFS_DAX_INODE = 0,
XFS_DAX_ALWAYS = 1,
XFS_DAX_NEVER = 2,
};
static void
xfs_mount_set_dax_mode(
struct xfs_mount *mp,
enum xfs_dax_mode mode)
{
switch (mode) {
case XFS_DAX_INODE:
mp->m_flags &= ~(XFS_MOUNT_DAX_ALWAYS | XFS_MOUNT_DAX_NEVER);
break;
case XFS_DAX_ALWAYS:
mp->m_flags |= XFS_MOUNT_DAX_ALWAYS;
mp->m_flags &= ~XFS_MOUNT_DAX_NEVER;
break;
case XFS_DAX_NEVER:
mp->m_flags |= XFS_MOUNT_DAX_NEVER;
mp->m_flags &= ~XFS_MOUNT_DAX_ALWAYS;
break;
}
}
static const struct constant_table dax_param_enums[] = {
{"inode", XFS_DAX_INODE },
{"always", XFS_DAX_ALWAYS },
{"never", XFS_DAX_NEVER },
{}
};
/*
* Table driven mount option parser.
*/
enum {
Opt_logbufs, Opt_logbsize, Opt_logdev, Opt_rtdev,
Opt_wsync, Opt_noalign, Opt_swalloc, Opt_sunit, Opt_swidth, Opt_nouuid,
Opt_grpid, Opt_nogrpid, Opt_bsdgroups, Opt_sysvgroups,
Opt_allocsize, Opt_norecovery, Opt_inode64, Opt_inode32, Opt_ikeep,
Opt_noikeep, Opt_largeio, Opt_nolargeio, Opt_attr2, Opt_noattr2,
Opt_filestreams, Opt_quota, Opt_noquota, Opt_usrquota, Opt_grpquota,
Opt_prjquota, Opt_uquota, Opt_gquota, Opt_pquota,
Opt_uqnoenforce, Opt_gqnoenforce, Opt_pqnoenforce, Opt_qnoenforce,
Opt_discard, Opt_nodiscard, Opt_dax, Opt_dax_enum,
};
static const struct fs_parameter_spec xfs_fs_parameters[] = {
fsparam_u32("logbufs", Opt_logbufs),
fsparam_string("logbsize", Opt_logbsize),
fsparam_string("logdev", Opt_logdev),
fsparam_string("rtdev", Opt_rtdev),
fsparam_flag("wsync", Opt_wsync),
fsparam_flag("noalign", Opt_noalign),
fsparam_flag("swalloc", Opt_swalloc),
fsparam_u32("sunit", Opt_sunit),
fsparam_u32("swidth", Opt_swidth),
fsparam_flag("nouuid", Opt_nouuid),
fsparam_flag("grpid", Opt_grpid),
fsparam_flag("nogrpid", Opt_nogrpid),
fsparam_flag("bsdgroups", Opt_bsdgroups),
fsparam_flag("sysvgroups", Opt_sysvgroups),
fsparam_string("allocsize", Opt_allocsize),
fsparam_flag("norecovery", Opt_norecovery),
fsparam_flag("inode64", Opt_inode64),
fsparam_flag("inode32", Opt_inode32),
fsparam_flag("ikeep", Opt_ikeep),
fsparam_flag("noikeep", Opt_noikeep),
fsparam_flag("largeio", Opt_largeio),
fsparam_flag("nolargeio", Opt_nolargeio),
fsparam_flag("attr2", Opt_attr2),
fsparam_flag("noattr2", Opt_noattr2),
fsparam_flag("filestreams", Opt_filestreams),
fsparam_flag("quota", Opt_quota),
fsparam_flag("noquota", Opt_noquota),
fsparam_flag("usrquota", Opt_usrquota),
fsparam_flag("grpquota", Opt_grpquota),
fsparam_flag("prjquota", Opt_prjquota),
fsparam_flag("uquota", Opt_uquota),
fsparam_flag("gquota", Opt_gquota),
fsparam_flag("pquota", Opt_pquota),
fsparam_flag("uqnoenforce", Opt_uqnoenforce),
fsparam_flag("gqnoenforce", Opt_gqnoenforce),
fsparam_flag("pqnoenforce", Opt_pqnoenforce),
fsparam_flag("qnoenforce", Opt_qnoenforce),
fsparam_flag("discard", Opt_discard),
fsparam_flag("nodiscard", Opt_nodiscard),
fsparam_flag("dax", Opt_dax),
fsparam_enum("dax", Opt_dax_enum, dax_param_enums),
{}
};
struct proc_xfs_info {
uint64_t flag;
char *str;
};
static int
xfs_fs_show_options(
struct seq_file *m,
struct dentry *root)
{
static struct proc_xfs_info xfs_info_set[] = {
/* the few simple ones we can get from the mount struct */
{ XFS_MOUNT_IKEEP, ",ikeep" },
{ XFS_MOUNT_WSYNC, ",wsync" },
{ XFS_MOUNT_NOALIGN, ",noalign" },
{ XFS_MOUNT_SWALLOC, ",swalloc" },
{ XFS_MOUNT_NOUUID, ",nouuid" },
{ XFS_MOUNT_NORECOVERY, ",norecovery" },
{ XFS_MOUNT_ATTR2, ",attr2" },
{ XFS_MOUNT_FILESTREAMS, ",filestreams" },
{ XFS_MOUNT_GRPID, ",grpid" },
{ XFS_MOUNT_DISCARD, ",discard" },
{ XFS_MOUNT_LARGEIO, ",largeio" },
{ XFS_MOUNT_DAX_ALWAYS, ",dax=always" },
{ XFS_MOUNT_DAX_NEVER, ",dax=never" },
{ 0, NULL }
};
struct xfs_mount *mp = XFS_M(root->d_sb);
struct proc_xfs_info *xfs_infop;
for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) {
if (mp->m_flags & xfs_infop->flag)
seq_puts(m, xfs_infop->str);
}
seq_printf(m, ",inode%d",
(mp->m_flags & XFS_MOUNT_SMALL_INUMS) ? 32 : 64);
if (mp->m_flags & XFS_MOUNT_ALLOCSIZE)
seq_printf(m, ",allocsize=%dk",
(1 << mp->m_allocsize_log) >> 10);
if (mp->m_logbufs > 0)
seq_printf(m, ",logbufs=%d", mp->m_logbufs);
if (mp->m_logbsize > 0)
seq_printf(m, ",logbsize=%dk", mp->m_logbsize >> 10);
if (mp->m_logname)
seq_show_option(m, "logdev", mp->m_logname);
if (mp->m_rtname)
seq_show_option(m, "rtdev", mp->m_rtname);
if (mp->m_dalign > 0)
seq_printf(m, ",sunit=%d",
(int)XFS_FSB_TO_BB(mp, mp->m_dalign));
if (mp->m_swidth > 0)
seq_printf(m, ",swidth=%d",
(int)XFS_FSB_TO_BB(mp, mp->m_swidth));
if (mp->m_qflags & XFS_UQUOTA_ACCT) {
if (mp->m_qflags & XFS_UQUOTA_ENFD)
seq_puts(m, ",usrquota");
else
seq_puts(m, ",uqnoenforce");
}
if (mp->m_qflags & XFS_PQUOTA_ACCT) {
if (mp->m_qflags & XFS_PQUOTA_ENFD)
seq_puts(m, ",prjquota");
else
seq_puts(m, ",pqnoenforce");
}
if (mp->m_qflags & XFS_GQUOTA_ACCT) {
if (mp->m_qflags & XFS_GQUOTA_ENFD)
seq_puts(m, ",grpquota");
else
seq_puts(m, ",gqnoenforce");
}
if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT))
seq_puts(m, ",noquota");
return 0;
}
/*
* Set parameters for inode allocation heuristics, taking into account
* filesystem size and inode32/inode64 mount options; i.e. specifically
* whether or not XFS_MOUNT_SMALL_INUMS is set.
*
* Inode allocation patterns are altered only if inode32 is requested
* (XFS_MOUNT_SMALL_INUMS), and the filesystem is sufficiently large.
* If altered, XFS_MOUNT_32BITINODES is set as well.
*
* An agcount independent of that in the mount structure is provided
* because in the growfs case, mp->m_sb.sb_agcount is not yet updated
* to the potentially higher ag count.
*
* Returns the maximum AG index which may contain inodes.
*/
xfs_agnumber_t
xfs_set_inode_alloc(
struct xfs_mount *mp,
xfs_agnumber_t agcount)
{
xfs_agnumber_t index;
xfs_agnumber_t maxagi = 0;
xfs_sb_t *sbp = &mp->m_sb;
xfs_agnumber_t max_metadata;
xfs_agino_t agino;
xfs_ino_t ino;
/*
* Calculate how much should be reserved for inodes to meet
* the max inode percentage. Used only for inode32.
*/
if (M_IGEO(mp)->maxicount) {
uint64_t icount;
icount = sbp->sb_dblocks * sbp->sb_imax_pct;
do_div(icount, 100);
icount += sbp->sb_agblocks - 1;
do_div(icount, sbp->sb_agblocks);
max_metadata = icount;
} else {
max_metadata = agcount;
}
/* Get the last possible inode in the filesystem */
agino = XFS_AGB_TO_AGINO(mp, sbp->sb_agblocks - 1);
ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
/*
* If user asked for no more than 32-bit inodes, and the fs is
* sufficiently large, set XFS_MOUNT_32BITINODES if we must alter
* the allocator to accommodate the request.
*/
if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
mp->m_flags |= XFS_MOUNT_32BITINODES;
else
mp->m_flags &= ~XFS_MOUNT_32BITINODES;
for (index = 0; index < agcount; index++) {
struct xfs_perag *pag;
ino = XFS_AGINO_TO_INO(mp, index, agino);
pag = xfs_perag_get(mp, index);
if (mp->m_flags & XFS_MOUNT_32BITINODES) {
if (ino > XFS_MAXINUMBER_32) {
pag->pagi_inodeok = 0;
pag->pagf_metadata = 0;
} else {
pag->pagi_inodeok = 1;
maxagi++;
if (index < max_metadata)
pag->pagf_metadata = 1;
else
pag->pagf_metadata = 0;
}
} else {
pag->pagi_inodeok = 1;
pag->pagf_metadata = 0;
}
xfs_perag_put(pag);
}
return (mp->m_flags & XFS_MOUNT_32BITINODES) ? maxagi : agcount;
}
STATIC int
xfs_blkdev_get(
xfs_mount_t *mp,
const char *name,
struct block_device **bdevp)
{
int error = 0;
*bdevp = blkdev_get_by_path(name, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
mp);
if (IS_ERR(*bdevp)) {
error = PTR_ERR(*bdevp);
xfs_warn(mp, "Invalid device [%s], error=%d", name, error);
}
return error;
}
STATIC void
xfs_blkdev_put(
struct block_device *bdev)
{
if (bdev)
blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
}
void
xfs_blkdev_issue_flush(
xfs_buftarg_t *buftarg)
{
blkdev_issue_flush(buftarg->bt_bdev, GFP_NOFS);
}
STATIC void
xfs_close_devices(
struct xfs_mount *mp)
{
struct dax_device *dax_ddev = mp->m_ddev_targp->bt_daxdev;
if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
struct block_device *logdev = mp->m_logdev_targp->bt_bdev;
struct dax_device *dax_logdev = mp->m_logdev_targp->bt_daxdev;
xfs_free_buftarg(mp->m_logdev_targp);
xfs_blkdev_put(logdev);
fs_put_dax(dax_logdev);
}
if (mp->m_rtdev_targp) {
struct block_device *rtdev = mp->m_rtdev_targp->bt_bdev;
struct dax_device *dax_rtdev = mp->m_rtdev_targp->bt_daxdev;
xfs_free_buftarg(mp->m_rtdev_targp);
xfs_blkdev_put(rtdev);
fs_put_dax(dax_rtdev);
}
xfs_free_buftarg(mp->m_ddev_targp);
fs_put_dax(dax_ddev);
}
/*
* The file system configurations are:
* (1) device (partition) with data and internal log
* (2) logical volume with data and log subvolumes.
* (3) logical volume with data, log, and realtime subvolumes.
*
* We only have to handle opening the log and realtime volumes here if
* they are present. The data subvolume has already been opened by
* get_sb_bdev() and is stored in sb->s_bdev.
*/
STATIC int
xfs_open_devices(
struct xfs_mount *mp)
{
struct block_device *ddev = mp->m_super->s_bdev;
struct dax_device *dax_ddev = fs_dax_get_by_bdev(ddev);
struct dax_device *dax_logdev = NULL, *dax_rtdev = NULL;
struct block_device *logdev = NULL, *rtdev = NULL;
int error;
/*
* Open real time and log devices - order is important.
*/
if (mp->m_logname) {
error = xfs_blkdev_get(mp, mp->m_logname, &logdev);
if (error)
goto out;
dax_logdev = fs_dax_get_by_bdev(logdev);
}
if (mp->m_rtname) {
error = xfs_blkdev_get(mp, mp->m_rtname, &rtdev);
if (error)
goto out_close_logdev;
if (rtdev == ddev || rtdev == logdev) {
xfs_warn(mp,
"Cannot mount filesystem with identical rtdev and ddev/logdev.");
error = -EINVAL;
goto out_close_rtdev;
}
dax_rtdev = fs_dax_get_by_bdev(rtdev);
}
/*
* Setup xfs_mount buffer target pointers
*/
error = -ENOMEM;
mp->m_ddev_targp = xfs_alloc_buftarg(mp, ddev, dax_ddev);
if (!mp->m_ddev_targp)
goto out_close_rtdev;
if (rtdev) {
mp->m_rtdev_targp = xfs_alloc_buftarg(mp, rtdev, dax_rtdev);
if (!mp->m_rtdev_targp)
goto out_free_ddev_targ;
}
if (logdev && logdev != ddev) {
mp->m_logdev_targp = xfs_alloc_buftarg(mp, logdev, dax_logdev);
if (!mp->m_logdev_targp)
goto out_free_rtdev_targ;
} else {
mp->m_logdev_targp = mp->m_ddev_targp;
}
return 0;
out_free_rtdev_targ:
if (mp->m_rtdev_targp)
xfs_free_buftarg(mp->m_rtdev_targp);
out_free_ddev_targ:
xfs_free_buftarg(mp->m_ddev_targp);
out_close_rtdev:
xfs_blkdev_put(rtdev);
fs_put_dax(dax_rtdev);
out_close_logdev:
if (logdev && logdev != ddev) {
xfs_blkdev_put(logdev);
fs_put_dax(dax_logdev);
}
out:
fs_put_dax(dax_ddev);
return error;
}
/*
* Setup xfs_mount buffer target pointers based on superblock
*/
STATIC int
xfs_setup_devices(
struct xfs_mount *mp)
{
int error;
error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_sectsize);
if (error)
return error;
if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
unsigned int log_sector_size = BBSIZE;
if (xfs_sb_version_hassector(&mp->m_sb))
log_sector_size = mp->m_sb.sb_logsectsize;
error = xfs_setsize_buftarg(mp->m_logdev_targp,
log_sector_size);
if (error)
return error;
}
if (mp->m_rtdev_targp) {
error = xfs_setsize_buftarg(mp->m_rtdev_targp,
mp->m_sb.sb_sectsize);
if (error)
return error;
}
return 0;
}
STATIC int
xfs_init_mount_workqueues(
struct xfs_mount *mp)
{
mp->m_buf_workqueue = alloc_workqueue("xfs-buf/%s",
WQ_MEM_RECLAIM|WQ_FREEZABLE, 1, mp->m_super->s_id);
if (!mp->m_buf_workqueue)
goto out;
mp->m_unwritten_workqueue = alloc_workqueue("xfs-conv/%s",
WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_super->s_id);
if (!mp->m_unwritten_workqueue)
goto out_destroy_buf;
mp->m_cil_workqueue = alloc_workqueue("xfs-cil/%s",
WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND,
0, mp->m_super->s_id);
if (!mp->m_cil_workqueue)
goto out_destroy_unwritten;
mp->m_reclaim_workqueue = alloc_workqueue("xfs-reclaim/%s",
WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_super->s_id);
if (!mp->m_reclaim_workqueue)
goto out_destroy_cil;
mp->m_eofblocks_workqueue = alloc_workqueue("xfs-eofblocks/%s",
WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_super->s_id);
if (!mp->m_eofblocks_workqueue)
goto out_destroy_reclaim;
mp->m_sync_workqueue = alloc_workqueue("xfs-sync/%s", WQ_FREEZABLE, 0,
mp->m_super->s_id);
if (!mp->m_sync_workqueue)
goto out_destroy_eofb;
return 0;
out_destroy_eofb:
destroy_workqueue(mp->m_eofblocks_workqueue);
out_destroy_reclaim:
destroy_workqueue(mp->m_reclaim_workqueue);
out_destroy_cil:
destroy_workqueue(mp->m_cil_workqueue);
out_destroy_unwritten:
destroy_workqueue(mp->m_unwritten_workqueue);
out_destroy_buf:
destroy_workqueue(mp->m_buf_workqueue);
out:
return -ENOMEM;
}
STATIC void
xfs_destroy_mount_workqueues(
struct xfs_mount *mp)
{
destroy_workqueue(mp->m_sync_workqueue);
destroy_workqueue(mp->m_eofblocks_workqueue);
destroy_workqueue(mp->m_reclaim_workqueue);
destroy_workqueue(mp->m_cil_workqueue);
destroy_workqueue(mp->m_unwritten_workqueue);
destroy_workqueue(mp->m_buf_workqueue);
}
static void
xfs_flush_inodes_worker(
struct work_struct *work)
{
struct xfs_mount *mp = container_of(work, struct xfs_mount,
m_flush_inodes_work);
struct super_block *sb = mp->m_super;
if (down_read_trylock(&sb->s_umount)) {
sync_inodes_sb(sb);
up_read(&sb->s_umount);
}
}
/*
* Flush all dirty data to disk. Must not be called while holding an XFS_ILOCK
* or a page lock. We use sync_inodes_sb() here to ensure we block while waiting
* for IO to complete so that we effectively throttle multiple callers to the
* rate at which IO is completing.
*/
void
xfs_flush_inodes(
struct xfs_mount *mp)
{
/*
* If flush_work() returns true then that means we waited for a flush
* which was already in progress. Don't bother running another scan.
*/
if (flush_work(&mp->m_flush_inodes_work))
return;
queue_work(mp->m_sync_workqueue, &mp->m_flush_inodes_work);
flush_work(&mp->m_flush_inodes_work);
}
/* Catch misguided souls that try to use this interface on XFS */
STATIC struct inode *
xfs_fs_alloc_inode(
struct super_block *sb)
{
BUG();
return NULL;
}
#ifdef DEBUG
static void
xfs_check_delalloc(
struct xfs_inode *ip,
int whichfork)
{
struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
struct xfs_bmbt_irec got;
struct xfs_iext_cursor icur;
if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
return;
do {
if (isnullstartblock(got.br_startblock)) {
xfs_warn(ip->i_mount,
"ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
ip->i_ino,
whichfork == XFS_DATA_FORK ? "data" : "cow",
got.br_startoff, got.br_blockcount);
}
} while (xfs_iext_next_extent(ifp, &icur, &got));
}
#else
#define xfs_check_delalloc(ip, whichfork) do { } while (0)
#endif
/*
* Now that the generic code is guaranteed not to be accessing
* the linux inode, we can inactivate and reclaim the inode.
*/
STATIC void
xfs_fs_destroy_inode(
struct inode *inode)
{
struct xfs_inode *ip = XFS_I(inode);
trace_xfs_destroy_inode(ip);
ASSERT(!rwsem_is_locked(&inode->i_rwsem));
XFS_STATS_INC(ip->i_mount, vn_rele);
XFS_STATS_INC(ip->i_mount, vn_remove);
xfs_inactive(ip);
if (!XFS_FORCED_SHUTDOWN(ip->i_mount) && ip->i_delayed_blks) {
xfs_check_delalloc(ip, XFS_DATA_FORK);
xfs_check_delalloc(ip, XFS_COW_FORK);
ASSERT(0);
}
XFS_STATS_INC(ip->i_mount, vn_reclaim);
/*
* We should never get here with one of the reclaim flags already set.
*/
ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIMABLE));
ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIM));
/*
* We always use background reclaim here because even if the inode is
* clean, it still may be under IO and hence we have wait for IO
* completion to occur before we can reclaim the inode. The background
* reclaim path handles this more efficiently than we can here, so
* simply let background reclaim tear down all inodes.
*/
xfs_inode_set_reclaim_tag(ip);
}
static void
xfs_fs_dirty_inode(
struct inode *inode,
int flag)
{
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
struct xfs_trans *tp;
if (!(inode->i_sb->s_flags & SB_LAZYTIME))
return;
if (flag != I_DIRTY_SYNC || !(inode->i_state & I_DIRTY_TIME))
return;
if (xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp))
return;
xfs_ilock(ip, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
xfs_trans_log_inode(tp, ip, XFS_ILOG_TIMESTAMP);
xfs_trans_commit(tp);
}
/*
* Slab object creation initialisation for the XFS inode.
* This covers only the idempotent fields in the XFS inode;
* all other fields need to be initialised on allocation
* from the slab. This avoids the need to repeatedly initialise
* fields in the xfs inode that left in the initialise state
* when freeing the inode.
*/
STATIC void
xfs_fs_inode_init_once(
void *inode)
{
struct xfs_inode *ip = inode;
memset(ip, 0, sizeof(struct xfs_inode));
/* vfs inode */
inode_init_once(VFS_I(ip));
/* xfs inode */
atomic_set(&ip->i_pincount, 0);
spin_lock_init(&ip->i_flags_lock);
mrlock_init(&ip->i_mmaplock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER,
"xfsino", ip->i_ino);
mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER,
"xfsino", ip->i_ino);
}
/*
* We do an unlocked check for XFS_IDONTCACHE here because we are already
* serialised against cache hits here via the inode->i_lock and igrab() in
* xfs_iget_cache_hit(). Hence a lookup that might clear this flag will not be
* racing with us, and it avoids needing to grab a spinlock here for every inode
* we drop the final reference on.
*/
STATIC int
xfs_fs_drop_inode(
struct inode *inode)
{
struct xfs_inode *ip = XFS_I(inode);
/*
* If this unlinked inode is in the middle of recovery, don't
* drop the inode just yet; log recovery will take care of
* that. See the comment for this inode flag.
*/
if (ip->i_flags & XFS_IRECOVERY) {
ASSERT(ip->i_mount->m_log->l_flags & XLOG_RECOVERY_NEEDED);
return 0;
}
return generic_drop_inode(inode);
}
static void
xfs_mount_free(
struct xfs_mount *mp)
{
kfree(mp->m_rtname);
kfree(mp->m_logname);
kmem_free(mp);
}
STATIC int
xfs_fs_sync_fs(
struct super_block *sb,
int wait)
{
struct xfs_mount *mp = XFS_M(sb);
/*
* Doing anything during the async pass would be counterproductive.
*/
if (!wait)
return 0;
xfs_log_force(mp, XFS_LOG_SYNC);
if (laptop_mode) {
/*
* The disk must be active because we're syncing.
* We schedule log work now (now that the disk is
* active) instead of later (when it might not be).
*/
flush_delayed_work(&mp->m_log->l_work);
}
return 0;
}
STATIC int
xfs_fs_statfs(
struct dentry *dentry,
struct kstatfs *statp)
{
struct xfs_mount *mp = XFS_M(dentry->d_sb);
xfs_sb_t *sbp = &mp->m_sb;
struct xfs_inode *ip = XFS_I(d_inode(dentry));
uint64_t fakeinos, id;
uint64_t icount;
uint64_t ifree;
uint64_t fdblocks;
xfs_extlen_t lsize;
int64_t ffree;
statp->f_type = XFS_SUPER_MAGIC;
statp->f_namelen = MAXNAMELEN - 1;
id = huge_encode_dev(mp->m_ddev_targp->bt_dev);
statp->f_fsid = u64_to_fsid(id);
icount = percpu_counter_sum(&mp->m_icount);
ifree = percpu_counter_sum(&mp->m_ifree);
fdblocks = percpu_counter_sum(&mp->m_fdblocks);
spin_lock(&mp->m_sb_lock);
statp->f_bsize = sbp->sb_blocksize;
lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0;
statp->f_blocks = sbp->sb_dblocks - lsize;
spin_unlock(&mp->m_sb_lock);
/* make sure statp->f_bfree does not underflow */
statp->f_bfree = max_t(int64_t, fdblocks - mp->m_alloc_set_aside, 0);
statp->f_bavail = statp->f_bfree;
fakeinos = XFS_FSB_TO_INO(mp, statp->f_bfree);
statp->f_files = min(icount + fakeinos, (uint64_t)XFS_MAXINUMBER);
if (M_IGEO(mp)->maxicount)
statp->f_files = min_t(typeof(statp->f_files),
statp->f_files,
M_IGEO(mp)->maxicount);
/* If sb_icount overshot maxicount, report actual allocation */
statp->f_files = max_t(typeof(statp->f_files),
statp->f_files,
sbp->sb_icount);
/* make sure statp->f_ffree does not underflow */
ffree = statp->f_files - (icount - ifree);
statp->f_ffree = max_t(int64_t, ffree, 0);
if ((ip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
((mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))) ==
(XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))
xfs_qm_statvfs(ip, statp);
if (XFS_IS_REALTIME_MOUNT(mp) &&
(ip->i_d.di_flags & (XFS_DIFLAG_RTINHERIT | XFS_DIFLAG_REALTIME))) {
statp->f_blocks = sbp->sb_rblocks;
statp->f_bavail = statp->f_bfree =
sbp->sb_frextents * sbp->sb_rextsize;
}
return 0;
}
STATIC void
xfs_save_resvblks(struct xfs_mount *mp)
{
uint64_t resblks = 0;
mp->m_resblks_save = mp->m_resblks;
xfs_reserve_blocks(mp, &resblks, NULL);
}
STATIC void
xfs_restore_resvblks(struct xfs_mount *mp)
{
uint64_t resblks;
if (mp->m_resblks_save) {
resblks = mp->m_resblks_save;
mp->m_resblks_save = 0;
} else
resblks = xfs_default_resblks(mp);
xfs_reserve_blocks(mp, &resblks, NULL);
}
/*
* Trigger writeback of all the dirty metadata in the file system.
*
* This ensures that the metadata is written to their location on disk rather
* than just existing in transactions in the log. This means after a quiesce
* there is no log replay required to write the inodes to disk - this is the
* primary difference between a sync and a quiesce.
*
* We cancel log work early here to ensure all transactions the log worker may
* run have finished before we clean up and log the superblock and write an
* unmount record. The unfreeze process is responsible for restarting the log
* worker correctly.
*/
void
xfs_quiesce_attr(
struct xfs_mount *mp)
{
int error = 0;
cancel_delayed_work_sync(&mp->m_log->l_work);
/* force the log to unpin objects from the now complete transactions */
xfs_log_force(mp, XFS_LOG_SYNC);
/* Push the superblock and write an unmount record */
error = xfs_log_sbcount(mp);
if (error)
xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. "
"Frozen image may not be consistent.");
xfs_log_quiesce(mp);
}
/*
* Second stage of a freeze. The data is already frozen so we only
* need to take care of the metadata. Once that's done sync the superblock
* to the log to dirty it in case of a crash while frozen. This ensures that we
* will recover the unlinked inode lists on the next mount.
*/
STATIC int
xfs_fs_freeze(
struct super_block *sb)
{
struct xfs_mount *mp = XFS_M(sb);
unsigned int flags;
int ret;
/*
* The filesystem is now frozen far enough that memory reclaim
* cannot safely operate on the filesystem. Hence we need to
* set a GFP_NOFS context here to avoid recursion deadlocks.
*/
flags = memalloc_nofs_save();
xfs_stop_block_reaping(mp);
xfs_save_resvblks(mp);
xfs_quiesce_attr(mp);
ret = xfs_sync_sb(mp, true);
memalloc_nofs_restore(flags);
return ret;
}
STATIC int
xfs_fs_unfreeze(
struct super_block *sb)
{
struct xfs_mount *mp = XFS_M(sb);
xfs_restore_resvblks(mp);
xfs_log_work_queue(mp);
xfs_start_block_reaping(mp);
return 0;
}
/*
* This function fills in xfs_mount_t fields based on mount args.
* Note: the superblock _has_ now been read in.
*/
STATIC int
xfs_finish_flags(
struct xfs_mount *mp)
{
int ronly = (mp->m_flags & XFS_MOUNT_RDONLY);
/* Fail a mount where the logbuf is smaller than the log stripe */
if (xfs_sb_version_haslogv2(&mp->m_sb)) {
if (mp->m_logbsize <= 0 &&
mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE) {
mp->m_logbsize = mp->m_sb.sb_logsunit;
} else if (mp->m_logbsize > 0 &&
mp->m_logbsize < mp->m_sb.sb_logsunit) {
xfs_warn(mp,
"logbuf size must be greater than or equal to log stripe size");
return -EINVAL;
}
} else {
/* Fail a mount if the logbuf is larger than 32K */
if (mp->m_logbsize > XLOG_BIG_RECORD_BSIZE) {
xfs_warn(mp,
"logbuf size for version 1 logs must be 16K or 32K");
return -EINVAL;
}
}
/*
* V5 filesystems always use attr2 format for attributes.
*/
if (xfs_sb_version_hascrc(&mp->m_sb) &&
(mp->m_flags & XFS_MOUNT_NOATTR2)) {
xfs_warn(mp, "Cannot mount a V5 filesystem as noattr2. "
"attr2 is always enabled for V5 filesystems.");
return -EINVAL;
}
/*
* mkfs'ed attr2 will turn on attr2 mount unless explicitly
* told by noattr2 to turn it off
*/
if (xfs_sb_version_hasattr2(&mp->m_sb) &&
!(mp->m_flags & XFS_MOUNT_NOATTR2))
mp->m_flags |= XFS_MOUNT_ATTR2;
/*
* prohibit r/w mounts of read-only filesystems
*/
if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) {
xfs_warn(mp,
"cannot mount a read-only filesystem as read-write");
return -EROFS;
}
if ((mp->m_qflags & (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE)) &&
(mp->m_qflags & (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE)) &&
!xfs_sb_version_has_pquotino(&mp->m_sb)) {
xfs_warn(mp,
"Super block does not support project and group quota together");
return -EINVAL;
}
return 0;
}
static int
xfs_init_percpu_counters(
struct xfs_mount *mp)
{
int error;
error = percpu_counter_init(&mp->m_icount, 0, GFP_KERNEL);
if (error)
return -ENOMEM;
error = percpu_counter_init(&mp->m_ifree, 0, GFP_KERNEL);
if (error)
goto free_icount;
error = percpu_counter_init(&mp->m_fdblocks, 0, GFP_KERNEL);
if (error)
goto free_ifree;
error = percpu_counter_init(&mp->m_delalloc_blks, 0, GFP_KERNEL);
if (error)
goto free_fdblocks;
return 0;
free_fdblocks:
percpu_counter_destroy(&mp->m_fdblocks);
free_ifree:
percpu_counter_destroy(&mp->m_ifree);
free_icount:
percpu_counter_destroy(&mp->m_icount);
return -ENOMEM;
}
void
xfs_reinit_percpu_counters(
struct xfs_mount *mp)
{
percpu_counter_set(&mp->m_icount, mp->m_sb.sb_icount);
percpu_counter_set(&mp->m_ifree, mp->m_sb.sb_ifree);
percpu_counter_set(&mp->m_fdblocks, mp->m_sb.sb_fdblocks);
}
static void
xfs_destroy_percpu_counters(
struct xfs_mount *mp)
{
percpu_counter_destroy(&mp->m_icount);
percpu_counter_destroy(&mp->m_ifree);
percpu_counter_destroy(&mp->m_fdblocks);
ASSERT(XFS_FORCED_SHUTDOWN(mp) ||
percpu_counter_sum(&mp->m_delalloc_blks) == 0);
percpu_counter_destroy(&mp->m_delalloc_blks);
}
static void
xfs_fs_put_super(
struct super_block *sb)
{
struct xfs_mount *mp = XFS_M(sb);
/* if ->fill_super failed, we have no mount to tear down */
if (!sb->s_fs_info)
return;
xfs_notice(mp, "Unmounting Filesystem");
xfs_filestream_unmount(mp);
xfs_unmountfs(mp);
xfs_freesb(mp);
free_percpu(mp->m_stats.xs_stats);
xfs_destroy_percpu_counters(mp);
xfs_destroy_mount_workqueues(mp);
xfs_close_devices(mp);
sb->s_fs_info = NULL;
xfs_mount_free(mp);
}
static long
xfs_fs_nr_cached_objects(
struct super_block *sb,
struct shrink_control *sc)
{
/* Paranoia: catch incorrect calls during mount setup or teardown */
if (WARN_ON_ONCE(!sb->s_fs_info))
return 0;
return xfs_reclaim_inodes_count(XFS_M(sb));
}
static long
xfs_fs_free_cached_objects(
struct super_block *sb,
struct shrink_control *sc)
{
return xfs_reclaim_inodes_nr(XFS_M(sb), sc->nr_to_scan);
}
static const struct super_operations xfs_super_operations = {
.alloc_inode = xfs_fs_alloc_inode,
.destroy_inode = xfs_fs_destroy_inode,
.dirty_inode = xfs_fs_dirty_inode,
.drop_inode = xfs_fs_drop_inode,
.put_super = xfs_fs_put_super,
.sync_fs = xfs_fs_sync_fs,
.freeze_fs = xfs_fs_freeze,
.unfreeze_fs = xfs_fs_unfreeze,
.statfs = xfs_fs_statfs,
.show_options = xfs_fs_show_options,
.nr_cached_objects = xfs_fs_nr_cached_objects,
.free_cached_objects = xfs_fs_free_cached_objects,
};
static int
suffix_kstrtoint(
const char *s,
unsigned int base,
int *res)
{
int last, shift_left_factor = 0, _res;
char *value;
int ret = 0;
value = kstrdup(s, GFP_KERNEL);
if (!value)
return -ENOMEM;
last = strlen(value) - 1;
if (value[last] == 'K' || value[last] == 'k') {
shift_left_factor = 10;
value[last] = '\0';
}
if (value[last] == 'M' || value[last] == 'm') {
shift_left_factor = 20;
value[last] = '\0';
}
if (value[last] == 'G' || value[last] == 'g') {
shift_left_factor = 30;
value[last] = '\0';
}
if (kstrtoint(value, base, &_res))
ret = -EINVAL;
kfree(value);
*res = _res << shift_left_factor;
return ret;
}
/*
* Set mount state from a mount option.
*
* NOTE: mp->m_super is NULL here!
*/
static int
xfs_fs_parse_param(
struct fs_context *fc,
struct fs_parameter *param)
{
struct xfs_mount *mp = fc->s_fs_info;
struct fs_parse_result result;
int size = 0;
int opt;
opt = fs_parse(fc, xfs_fs_parameters, param, &result);
if (opt < 0)
return opt;
switch (opt) {
case Opt_logbufs:
mp->m_logbufs = result.uint_32;
return 0;
case Opt_logbsize:
if (suffix_kstrtoint(param->string, 10, &mp->m_logbsize))
return -EINVAL;
return 0;
case Opt_logdev:
kfree(mp->m_logname);
mp->m_logname = kstrdup(param->string, GFP_KERNEL);
if (!mp->m_logname)
return -ENOMEM;
return 0;
case Opt_rtdev:
kfree(mp->m_rtname);
mp->m_rtname = kstrdup(param->string, GFP_KERNEL);
if (!mp->m_rtname)
return -ENOMEM;
return 0;
case Opt_allocsize:
if (suffix_kstrtoint(param->string, 10, &size))
return -EINVAL;
mp->m_allocsize_log = ffs(size) - 1;
mp->m_flags |= XFS_MOUNT_ALLOCSIZE;
return 0;
case Opt_grpid:
case Opt_bsdgroups:
mp->m_flags |= XFS_MOUNT_GRPID;
return 0;
case Opt_nogrpid:
case Opt_sysvgroups:
mp->m_flags &= ~XFS_MOUNT_GRPID;
return 0;
case Opt_wsync:
mp->m_flags |= XFS_MOUNT_WSYNC;
return 0;
case Opt_norecovery:
mp->m_flags |= XFS_MOUNT_NORECOVERY;
return 0;
case Opt_noalign:
mp->m_flags |= XFS_MOUNT_NOALIGN;
return 0;
case Opt_swalloc:
mp->m_flags |= XFS_MOUNT_SWALLOC;
return 0;
case Opt_sunit:
mp->m_dalign = result.uint_32;
return 0;
case Opt_swidth:
mp->m_swidth = result.uint_32;
return 0;
case Opt_inode32:
mp->m_flags |= XFS_MOUNT_SMALL_INUMS;
return 0;
case Opt_inode64:
mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS;
return 0;
case Opt_nouuid:
mp->m_flags |= XFS_MOUNT_NOUUID;
return 0;
case Opt_largeio:
mp->m_flags |= XFS_MOUNT_LARGEIO;
return 0;
case Opt_nolargeio:
mp->m_flags &= ~XFS_MOUNT_LARGEIO;
return 0;
case Opt_filestreams:
mp->m_flags |= XFS_MOUNT_FILESTREAMS;
return 0;
case Opt_noquota:
mp->m_qflags &= ~XFS_ALL_QUOTA_ACCT;
mp->m_qflags &= ~XFS_ALL_QUOTA_ENFD;
mp->m_qflags &= ~XFS_ALL_QUOTA_ACTIVE;
return 0;
case Opt_quota:
case Opt_uquota:
case Opt_usrquota:
mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE |
XFS_UQUOTA_ENFD);
return 0;
case Opt_qnoenforce:
case Opt_uqnoenforce:
mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE);
mp->m_qflags &= ~XFS_UQUOTA_ENFD;
return 0;
case Opt_pquota:
case Opt_prjquota:
mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE |
XFS_PQUOTA_ENFD);
return 0;
case Opt_pqnoenforce:
mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE);
mp->m_qflags &= ~XFS_PQUOTA_ENFD;
return 0;
case Opt_gquota:
case Opt_grpquota:
mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE |
XFS_GQUOTA_ENFD);
return 0;
case Opt_gqnoenforce:
mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE);
mp->m_qflags &= ~XFS_GQUOTA_ENFD;
return 0;
case Opt_discard:
mp->m_flags |= XFS_MOUNT_DISCARD;
return 0;
case Opt_nodiscard:
mp->m_flags &= ~XFS_MOUNT_DISCARD;
return 0;
#ifdef CONFIG_FS_DAX
case Opt_dax:
xfs_mount_set_dax_mode(mp, XFS_DAX_ALWAYS);
return 0;
case Opt_dax_enum:
xfs_mount_set_dax_mode(mp, result.uint_32);
return 0;
#endif
/* Following mount options will be removed in September 2025 */
case Opt_ikeep:
xfs_warn(mp, "%s mount option is deprecated.", param->key);
mp->m_flags |= XFS_MOUNT_IKEEP;
return 0;
case Opt_noikeep:
xfs_warn(mp, "%s mount option is deprecated.", param->key);
mp->m_flags &= ~XFS_MOUNT_IKEEP;
return 0;
case Opt_attr2:
xfs_warn(mp, "%s mount option is deprecated.", param->key);
mp->m_flags |= XFS_MOUNT_ATTR2;
return 0;
case Opt_noattr2:
xfs_warn(mp, "%s mount option is deprecated.", param->key);
mp->m_flags &= ~XFS_MOUNT_ATTR2;
mp->m_flags |= XFS_MOUNT_NOATTR2;
return 0;
default:
xfs_warn(mp, "unknown mount option [%s].", param->key);
return -EINVAL;
}
return 0;
}
static int
xfs_fs_validate_params(
struct xfs_mount *mp)
{
/*
* no recovery flag requires a read-only mount
*/
if ((mp->m_flags & XFS_MOUNT_NORECOVERY) &&
!(mp->m_flags & XFS_MOUNT_RDONLY)) {
xfs_warn(mp, "no-recovery mounts must be read-only.");
return -EINVAL;
}
if ((mp->m_flags & XFS_MOUNT_NOALIGN) &&
(mp->m_dalign || mp->m_swidth)) {
xfs_warn(mp,
"sunit and swidth options incompatible with the noalign option");
return -EINVAL;
}
if (!IS_ENABLED(CONFIG_XFS_QUOTA) && mp->m_qflags != 0) {
xfs_warn(mp, "quota support not available in this kernel.");
return -EINVAL;
}
if ((mp->m_dalign && !mp->m_swidth) ||
(!mp->m_dalign && mp->m_swidth)) {
xfs_warn(mp, "sunit and swidth must be specified together");
return -EINVAL;
}
if (mp->m_dalign && (mp->m_swidth % mp->m_dalign != 0)) {
xfs_warn(mp,
"stripe width (%d) must be a multiple of the stripe unit (%d)",
mp->m_swidth, mp->m_dalign);
return -EINVAL;
}
if (mp->m_logbufs != -1 &&
mp->m_logbufs != 0 &&
(mp->m_logbufs < XLOG_MIN_ICLOGS ||
mp->m_logbufs > XLOG_MAX_ICLOGS)) {
xfs_warn(mp, "invalid logbufs value: %d [not %d-%d]",
mp->m_logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS);
return -EINVAL;
}
if (mp->m_logbsize != -1 &&
mp->m_logbsize != 0 &&
(mp->m_logbsize < XLOG_MIN_RECORD_BSIZE ||
mp->m_logbsize > XLOG_MAX_RECORD_BSIZE ||
!is_power_of_2(mp->m_logbsize))) {
xfs_warn(mp,
"invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]",
mp->m_logbsize);
return -EINVAL;
}
if ((mp->m_flags & XFS_MOUNT_ALLOCSIZE) &&
(mp->m_allocsize_log > XFS_MAX_IO_LOG ||
mp->m_allocsize_log < XFS_MIN_IO_LOG)) {
xfs_warn(mp, "invalid log iosize: %d [not %d-%d]",
mp->m_allocsize_log, XFS_MIN_IO_LOG, XFS_MAX_IO_LOG);
return -EINVAL;
}
return 0;
}
static int
xfs_fs_fill_super(
struct super_block *sb,
struct fs_context *fc)
{
struct xfs_mount *mp = sb->s_fs_info;
struct inode *root;
int flags = 0, error;
mp->m_super = sb;
error = xfs_fs_validate_params(mp);
if (error)
goto out_free_names;
sb_min_blocksize(sb, BBSIZE);
sb->s_xattr = xfs_xattr_handlers;
sb->s_export_op = &xfs_export_operations;
#ifdef CONFIG_XFS_QUOTA
sb->s_qcop = &xfs_quotactl_operations;
sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
#endif
sb->s_op = &xfs_super_operations;
/*
* Delay mount work if the debug hook is set. This is debug
* instrumention to coordinate simulation of xfs mount failures with
* VFS superblock operations
*/
if (xfs_globals.mount_delay) {
xfs_notice(mp, "Delaying mount for %d seconds.",
xfs_globals.mount_delay);
msleep(xfs_globals.mount_delay * 1000);
}
if (fc->sb_flags & SB_SILENT)
flags |= XFS_MFSI_QUIET;
error = xfs_open_devices(mp);
if (error)
goto out_free_names;
error = xfs_init_mount_workqueues(mp);
if (error)
goto out_close_devices;
error = xfs_init_percpu_counters(mp);
if (error)
goto out_destroy_workqueues;
/* Allocate stats memory before we do operations that might use it */
mp->m_stats.xs_stats = alloc_percpu(struct xfsstats);
if (!mp->m_stats.xs_stats) {
error = -ENOMEM;
goto out_destroy_counters;
}
error = xfs_readsb(mp, flags);
if (error)
goto out_free_stats;
error = xfs_finish_flags(mp);
if (error)
goto out_free_sb;
error = xfs_setup_devices(mp);
if (error)
goto out_free_sb;
/* V4 support is undergoing deprecation. */
if (!xfs_sb_version_hascrc(&mp->m_sb)) {
#ifdef CONFIG_XFS_SUPPORT_V4
xfs_warn_once(mp,
"Deprecated V4 format (crc=0) will not be supported after September 2030.");
#else
xfs_warn(mp,
"Deprecated V4 format (crc=0) not supported by kernel.");
error = -EINVAL;
goto out_free_sb;
#endif
}
/* Filesystem claims it needs repair, so refuse the mount. */
if (xfs_sb_version_needsrepair(&mp->m_sb)) {
xfs_warn(mp, "Filesystem needs repair. Please run xfs_repair.");
error = -EFSCORRUPTED;
goto out_free_sb;
}
/*
* Don't touch the filesystem if a user tool thinks it owns the primary
* superblock. mkfs doesn't clear the flag from secondary supers, so
* we don't check them at all.
*/
if (mp->m_sb.sb_inprogress) {
xfs_warn(mp, "Offline file system operation in progress!");
error = -EFSCORRUPTED;
goto out_free_sb;
}
/*
* Until this is fixed only page-sized or smaller data blocks work.
*/
if (mp->m_sb.sb_blocksize > PAGE_SIZE) {
xfs_warn(mp,
"File system with blocksize %d bytes. "
"Only pagesize (%ld) or less will currently work.",
mp->m_sb.sb_blocksize, PAGE_SIZE);
error = -ENOSYS;
goto out_free_sb;
}
/* Ensure this filesystem fits in the page cache limits */
if (xfs_sb_validate_fsb_count(&mp->m_sb, mp->m_sb.sb_dblocks) ||
xfs_sb_validate_fsb_count(&mp->m_sb, mp->m_sb.sb_rblocks)) {
xfs_warn(mp,
"file system too large to be mounted on this system.");
error = -EFBIG;
goto out_free_sb;
}
/*
* XFS block mappings use 54 bits to store the logical block offset.
* This should suffice to handle the maximum file size that the VFS
* supports (currently 2^63 bytes on 64-bit and ULONG_MAX << PAGE_SHIFT
* bytes on 32-bit), but as XFS and VFS have gotten the s_maxbytes
* calculation wrong on 32-bit kernels in the past, we'll add a WARN_ON
* to check this assertion.
*
* Avoid integer overflow by comparing the maximum bmbt offset to the
* maximum pagecache offset in units of fs blocks.
*/
if (!xfs_verify_fileoff(mp, XFS_B_TO_FSBT(mp, MAX_LFS_FILESIZE))) {
xfs_warn(mp,
"MAX_LFS_FILESIZE block offset (%llu) exceeds extent map maximum (%llu)!",
XFS_B_TO_FSBT(mp, MAX_LFS_FILESIZE),
XFS_MAX_FILEOFF);
error = -EINVAL;
goto out_free_sb;
}
error = xfs_filestream_mount(mp);
if (error)
goto out_free_sb;
/*
* we must configure the block size in the superblock before we run the
* full mount process as the mount process can lookup and cache inodes.
*/
sb->s_magic = XFS_SUPER_MAGIC;
sb->s_blocksize = mp->m_sb.sb_blocksize;
sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1;
sb->s_maxbytes = MAX_LFS_FILESIZE;
sb->s_max_links = XFS_MAXLINK;
sb->s_time_gran = 1;
if (xfs_sb_version_hasbigtime(&mp->m_sb)) {
sb->s_time_min = xfs_bigtime_to_unix(XFS_BIGTIME_TIME_MIN);
sb->s_time_max = xfs_bigtime_to_unix(XFS_BIGTIME_TIME_MAX);
} else {
sb->s_time_min = XFS_LEGACY_TIME_MIN;
sb->s_time_max = XFS_LEGACY_TIME_MAX;
}
trace_xfs_inode_timestamp_range(mp, sb->s_time_min, sb->s_time_max);
sb->s_iflags |= SB_I_CGROUPWB;
set_posix_acl_flag(sb);
/* version 5 superblocks support inode version counters. */
if (XFS_SB_VERSION_NUM(&mp->m_sb) == XFS_SB_VERSION_5)
sb->s_flags |= SB_I_VERSION;
if (xfs_sb_version_hasbigtime(&mp->m_sb))
xfs_warn(mp,
"EXPERIMENTAL big timestamp feature in use. Use at your own risk!");
if (mp->m_flags & XFS_MOUNT_DAX_ALWAYS) {
bool rtdev_is_dax = false, datadev_is_dax;
xfs_warn(mp,
"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
datadev_is_dax = bdev_dax_supported(mp->m_ddev_targp->bt_bdev,
sb->s_blocksize);
if (mp->m_rtdev_targp)
rtdev_is_dax = bdev_dax_supported(
mp->m_rtdev_targp->bt_bdev, sb->s_blocksize);
if (!rtdev_is_dax && !datadev_is_dax) {
xfs_alert(mp,
"DAX unsupported by block device. Turning off DAX.");
xfs_mount_set_dax_mode(mp, XFS_DAX_NEVER);
}
if (xfs_sb_version_hasreflink(&mp->m_sb)) {
xfs_alert(mp,
"DAX and reflink cannot be used together!");
error = -EINVAL;
goto out_filestream_unmount;
}
}
if (mp->m_flags & XFS_MOUNT_DISCARD) {
struct request_queue *q = bdev_get_queue(sb->s_bdev);
if (!blk_queue_discard(q)) {
xfs_warn(mp, "mounting with \"discard\" option, but "
"the device does not support discard");
mp->m_flags &= ~XFS_MOUNT_DISCARD;
}
}
if (xfs_sb_version_hasreflink(&mp->m_sb)) {
if (mp->m_sb.sb_rblocks) {
xfs_alert(mp,
"reflink not compatible with realtime device!");
error = -EINVAL;
goto out_filestream_unmount;
}
if (xfs_globals.always_cow) {
xfs_info(mp, "using DEBUG-only always_cow mode.");
mp->m_always_cow = true;
}
}
if (xfs_sb_version_hasrmapbt(&mp->m_sb) && mp->m_sb.sb_rblocks) {
xfs_alert(mp,
"reverse mapping btree not compatible with realtime device!");
error = -EINVAL;
goto out_filestream_unmount;
}
if (xfs_sb_version_hasinobtcounts(&mp->m_sb))
xfs_warn(mp,
"EXPERIMENTAL inode btree counters feature in use. Use at your own risk!");
error = xfs_mountfs(mp);
if (error)
goto out_filestream_unmount;
root = igrab(VFS_I(mp->m_rootip));
if (!root) {
error = -ENOENT;
goto out_unmount;
}
sb->s_root = d_make_root(root);
if (!sb->s_root) {
error = -ENOMEM;
goto out_unmount;
}
return 0;
out_filestream_unmount:
xfs_filestream_unmount(mp);
out_free_sb:
xfs_freesb(mp);
out_free_stats:
free_percpu(mp->m_stats.xs_stats);
out_destroy_counters:
xfs_destroy_percpu_counters(mp);
out_destroy_workqueues:
xfs_destroy_mount_workqueues(mp);
out_close_devices:
xfs_close_devices(mp);
out_free_names:
sb->s_fs_info = NULL;
xfs_mount_free(mp);
return error;
out_unmount:
xfs_filestream_unmount(mp);
xfs_unmountfs(mp);
goto out_free_sb;
}
static int
xfs_fs_get_tree(
struct fs_context *fc)
{
return get_tree_bdev(fc, xfs_fs_fill_super);
}
static int
xfs_remount_rw(
struct xfs_mount *mp)
{
struct xfs_sb *sbp = &mp->m_sb;
int error;
if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
xfs_warn(mp,
"ro->rw transition prohibited on norecovery mount");
return -EINVAL;
}
if (XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5 &&
xfs_sb_has_ro_compat_feature(sbp, XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) {
xfs_warn(mp,
"ro->rw transition prohibited on unknown (0x%x) ro-compat filesystem",
(sbp->sb_features_ro_compat &
XFS_SB_FEAT_RO_COMPAT_UNKNOWN));
return -EINVAL;
}
mp->m_flags &= ~XFS_MOUNT_RDONLY;
/*
* If this is the first remount to writeable state we might have some
* superblock changes to update.
*/
if (mp->m_update_sb) {
error = xfs_sync_sb(mp, false);
if (error) {
xfs_warn(mp, "failed to write sb changes");
return error;
}
mp->m_update_sb = false;
}
/*
* Fill out the reserve pool if it is empty. Use the stashed value if
* it is non-zero, otherwise go with the default.
*/
xfs_restore_resvblks(mp);
xfs_log_work_queue(mp);
/* Recover any CoW blocks that never got remapped. */
error = xfs_reflink_recover_cow(mp);
if (error) {
xfs_err(mp,
"Error %d recovering leftover CoW allocations.", error);
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
return error;
}
xfs_start_block_reaping(mp);
/* Create the per-AG metadata reservation pool .*/
error = xfs_fs_reserve_ag_blocks(mp);
if (error && error != -ENOSPC)
return error;
return 0;
}
static int
xfs_remount_ro(
struct xfs_mount *mp)
{
int error;
/*
* Cancel background eofb scanning so it cannot race with the final
* log force+buftarg wait and deadlock the remount.
*/
xfs_stop_block_reaping(mp);
/* Get rid of any leftover CoW reservations... */
error = xfs_icache_free_cowblocks(mp, NULL);
if (error) {
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
return error;
}
/* Free the per-AG metadata reservation pool. */
error = xfs_fs_unreserve_ag_blocks(mp);
if (error) {
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
return error;
}
/*
* Before we sync the metadata, we need to free up the reserve block
* pool so that the used block count in the superblock on disk is
* correct at the end of the remount. Stash the current* reserve pool
* size so that if we get remounted rw, we can return it to the same
* size.
*/
xfs_save_resvblks(mp);
xfs_quiesce_attr(mp);
mp->m_flags |= XFS_MOUNT_RDONLY;
return 0;
}
/*
* Logically we would return an error here to prevent users from believing
* they might have changed mount options using remount which can't be changed.
*
* But unfortunately mount(8) adds all options from mtab and fstab to the mount
* arguments in some cases so we can't blindly reject options, but have to
* check for each specified option if it actually differs from the currently
* set option and only reject it if that's the case.
*
* Until that is implemented we return success for every remount request, and
* silently ignore all options that we can't actually change.
*/
static int
xfs_fs_reconfigure(
struct fs_context *fc)
{
struct xfs_mount *mp = XFS_M(fc->root->d_sb);
struct xfs_mount *new_mp = fc->s_fs_info;
xfs_sb_t *sbp = &mp->m_sb;
int flags = fc->sb_flags;
int error;
/* version 5 superblocks always support version counters. */
if (XFS_SB_VERSION_NUM(&mp->m_sb) == XFS_SB_VERSION_5)
fc->sb_flags |= SB_I_VERSION;
error = xfs_fs_validate_params(new_mp);
if (error)
return error;
sync_filesystem(mp->m_super);
/* inode32 -> inode64 */
if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) &&
!(new_mp->m_flags & XFS_MOUNT_SMALL_INUMS)) {
mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS;
mp->m_maxagi = xfs_set_inode_alloc(mp, sbp->sb_agcount);
}
/* inode64 -> inode32 */
if (!(mp->m_flags & XFS_MOUNT_SMALL_INUMS) &&
(new_mp->m_flags & XFS_MOUNT_SMALL_INUMS)) {
mp->m_flags |= XFS_MOUNT_SMALL_INUMS;
mp->m_maxagi = xfs_set_inode_alloc(mp, sbp->sb_agcount);
}
/* ro -> rw */
if ((mp->m_flags & XFS_MOUNT_RDONLY) && !(flags & SB_RDONLY)) {
error = xfs_remount_rw(mp);
if (error)
return error;
}
/* rw -> ro */
if (!(mp->m_flags & XFS_MOUNT_RDONLY) && (flags & SB_RDONLY)) {
error = xfs_remount_ro(mp);
if (error)
return error;
}
return 0;
}
static void xfs_fs_free(
struct fs_context *fc)
{
struct xfs_mount *mp = fc->s_fs_info;
/*
* mp is stored in the fs_context when it is initialized.
* mp is transferred to the superblock on a successful mount,
* but if an error occurs before the transfer we have to free
* it here.
*/
if (mp)
xfs_mount_free(mp);
}
static const struct fs_context_operations xfs_context_ops = {
.parse_param = xfs_fs_parse_param,
.get_tree = xfs_fs_get_tree,
.reconfigure = xfs_fs_reconfigure,
.free = xfs_fs_free,
};
static int xfs_init_fs_context(
struct fs_context *fc)
{
struct xfs_mount *mp;
mp = kmem_alloc(sizeof(struct xfs_mount), KM_ZERO);
if (!mp)
return -ENOMEM;
spin_lock_init(&mp->m_sb_lock);
spin_lock_init(&mp->m_agirotor_lock);
INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
spin_lock_init(&mp->m_perag_lock);
mutex_init(&mp->m_growlock);
INIT_WORK(&mp->m_flush_inodes_work, xfs_flush_inodes_worker);
INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker);
INIT_DELAYED_WORK(&mp->m_eofblocks_work, xfs_eofblocks_worker);
INIT_DELAYED_WORK(&mp->m_cowblocks_work, xfs_cowblocks_worker);
mp->m_kobj.kobject.kset = xfs_kset;
/*
* We don't create the finobt per-ag space reservation until after log
* recovery, so we must set this to true so that an ifree transaction
* started during log recovery will not depend on space reservations
* for finobt expansion.
*/
mp->m_finobt_nores = true;
/*
* These can be overridden by the mount option parsing.
*/
mp->m_logbufs = -1;
mp->m_logbsize = -1;
mp->m_allocsize_log = 16; /* 64k */
/*
* Copy binary VFS mount flags we are interested in.
*/
if (fc->sb_flags & SB_RDONLY)
mp->m_flags |= XFS_MOUNT_RDONLY;
if (fc->sb_flags & SB_DIRSYNC)
mp->m_flags |= XFS_MOUNT_DIRSYNC;
if (fc->sb_flags & SB_SYNCHRONOUS)
mp->m_flags |= XFS_MOUNT_WSYNC;
fc->s_fs_info = mp;
fc->ops = &xfs_context_ops;
return 0;
}
static struct file_system_type xfs_fs_type = {
.owner = THIS_MODULE,
.name = "xfs",
.init_fs_context = xfs_init_fs_context,
.parameters = xfs_fs_parameters,
.kill_sb = kill_block_super,
.fs_flags = FS_REQUIRES_DEV,
};
MODULE_ALIAS_FS("xfs");
STATIC int __init
xfs_init_zones(void)
{
xfs_log_ticket_zone = kmem_cache_create("xfs_log_ticket",
sizeof(struct xlog_ticket),
0, 0, NULL);
if (!xfs_log_ticket_zone)
goto out;
xfs_bmap_free_item_zone = kmem_cache_create("xfs_bmap_free_item",
sizeof(struct xfs_extent_free_item),
0, 0, NULL);
if (!xfs_bmap_free_item_zone)
goto out_destroy_log_ticket_zone;
xfs_btree_cur_zone = kmem_cache_create("xfs_btree_cur",
sizeof(struct xfs_btree_cur),
0, 0, NULL);
if (!xfs_btree_cur_zone)
goto out_destroy_bmap_free_item_zone;
xfs_da_state_zone = kmem_cache_create("xfs_da_state",
sizeof(struct xfs_da_state),
0, 0, NULL);
if (!xfs_da_state_zone)
goto out_destroy_btree_cur_zone;
xfs_ifork_zone = kmem_cache_create("xfs_ifork",
sizeof(struct xfs_ifork),
0, 0, NULL);
if (!xfs_ifork_zone)
goto out_destroy_da_state_zone;
xfs_trans_zone = kmem_cache_create("xf_trans",
sizeof(struct xfs_trans),
0, 0, NULL);
if (!xfs_trans_zone)
goto out_destroy_ifork_zone;
/*
* The size of the zone allocated buf log item is the maximum
* size possible under XFS. This wastes a little bit of memory,
* but it is much faster.
*/
xfs_buf_item_zone = kmem_cache_create("xfs_buf_item",
sizeof(struct xfs_buf_log_item),
0, 0, NULL);
if (!xfs_buf_item_zone)
goto out_destroy_trans_zone;
xfs_efd_zone = kmem_cache_create("xfs_efd_item",
(sizeof(struct xfs_efd_log_item) +
(XFS_EFD_MAX_FAST_EXTENTS - 1) *
sizeof(struct xfs_extent)),
0, 0, NULL);
if (!xfs_efd_zone)
goto out_destroy_buf_item_zone;
xfs_efi_zone = kmem_cache_create("xfs_efi_item",
(sizeof(struct xfs_efi_log_item) +
(XFS_EFI_MAX_FAST_EXTENTS - 1) *
sizeof(struct xfs_extent)),
0, 0, NULL);
if (!xfs_efi_zone)
goto out_destroy_efd_zone;
xfs_inode_zone = kmem_cache_create("xfs_inode",
sizeof(struct xfs_inode), 0,
(SLAB_HWCACHE_ALIGN |
SLAB_RECLAIM_ACCOUNT |
SLAB_MEM_SPREAD | SLAB_ACCOUNT),
xfs_fs_inode_init_once);
if (!xfs_inode_zone)
goto out_destroy_efi_zone;
xfs_ili_zone = kmem_cache_create("xfs_ili",
sizeof(struct xfs_inode_log_item), 0,
SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
NULL);
if (!xfs_ili_zone)
goto out_destroy_inode_zone;
xfs_icreate_zone = kmem_cache_create("xfs_icr",
sizeof(struct xfs_icreate_item),
0, 0, NULL);
if (!xfs_icreate_zone)
goto out_destroy_ili_zone;
xfs_rud_zone = kmem_cache_create("xfs_rud_item",
sizeof(struct xfs_rud_log_item),
0, 0, NULL);
if (!xfs_rud_zone)
goto out_destroy_icreate_zone;
xfs_rui_zone = kmem_cache_create("xfs_rui_item",
xfs_rui_log_item_sizeof(XFS_RUI_MAX_FAST_EXTENTS),
0, 0, NULL);
if (!xfs_rui_zone)
goto out_destroy_rud_zone;
xfs_cud_zone = kmem_cache_create("xfs_cud_item",
sizeof(struct xfs_cud_log_item),
0, 0, NULL);
if (!xfs_cud_zone)
goto out_destroy_rui_zone;
xfs_cui_zone = kmem_cache_create("xfs_cui_item",
xfs_cui_log_item_sizeof(XFS_CUI_MAX_FAST_EXTENTS),
0, 0, NULL);
if (!xfs_cui_zone)
goto out_destroy_cud_zone;
xfs_bud_zone = kmem_cache_create("xfs_bud_item",
sizeof(struct xfs_bud_log_item),
0, 0, NULL);
if (!xfs_bud_zone)
goto out_destroy_cui_zone;
xfs_bui_zone = kmem_cache_create("xfs_bui_item",
xfs_bui_log_item_sizeof(XFS_BUI_MAX_FAST_EXTENTS),
0, 0, NULL);
if (!xfs_bui_zone)
goto out_destroy_bud_zone;
return 0;
out_destroy_bud_zone:
kmem_cache_destroy(xfs_bud_zone);
out_destroy_cui_zone:
kmem_cache_destroy(xfs_cui_zone);
out_destroy_cud_zone:
kmem_cache_destroy(xfs_cud_zone);
out_destroy_rui_zone:
kmem_cache_destroy(xfs_rui_zone);
out_destroy_rud_zone:
kmem_cache_destroy(xfs_rud_zone);
out_destroy_icreate_zone:
kmem_cache_destroy(xfs_icreate_zone);
out_destroy_ili_zone:
kmem_cache_destroy(xfs_ili_zone);
out_destroy_inode_zone:
kmem_cache_destroy(xfs_inode_zone);
out_destroy_efi_zone:
kmem_cache_destroy(xfs_efi_zone);
out_destroy_efd_zone:
kmem_cache_destroy(xfs_efd_zone);
out_destroy_buf_item_zone:
kmem_cache_destroy(xfs_buf_item_zone);
out_destroy_trans_zone:
kmem_cache_destroy(xfs_trans_zone);
out_destroy_ifork_zone:
kmem_cache_destroy(xfs_ifork_zone);
out_destroy_da_state_zone:
kmem_cache_destroy(xfs_da_state_zone);
out_destroy_btree_cur_zone:
kmem_cache_destroy(xfs_btree_cur_zone);
out_destroy_bmap_free_item_zone:
kmem_cache_destroy(xfs_bmap_free_item_zone);
out_destroy_log_ticket_zone:
kmem_cache_destroy(xfs_log_ticket_zone);
out:
return -ENOMEM;
}
STATIC void
xfs_destroy_zones(void)
{
/*
* Make sure all delayed rcu free are flushed before we
* destroy caches.
*/
rcu_barrier();
kmem_cache_destroy(xfs_bui_zone);
kmem_cache_destroy(xfs_bud_zone);
kmem_cache_destroy(xfs_cui_zone);
kmem_cache_destroy(xfs_cud_zone);
kmem_cache_destroy(xfs_rui_zone);
kmem_cache_destroy(xfs_rud_zone);
kmem_cache_destroy(xfs_icreate_zone);
kmem_cache_destroy(xfs_ili_zone);
kmem_cache_destroy(xfs_inode_zone);
kmem_cache_destroy(xfs_efi_zone);
kmem_cache_destroy(xfs_efd_zone);
kmem_cache_destroy(xfs_buf_item_zone);
kmem_cache_destroy(xfs_trans_zone);
kmem_cache_destroy(xfs_ifork_zone);
kmem_cache_destroy(xfs_da_state_zone);
kmem_cache_destroy(xfs_btree_cur_zone);
kmem_cache_destroy(xfs_bmap_free_item_zone);
kmem_cache_destroy(xfs_log_ticket_zone);
}
STATIC int __init
xfs_init_workqueues(void)
{
/*
* The allocation workqueue can be used in memory reclaim situations
* (writepage path), and parallelism is only limited by the number of
* AGs in all the filesystems mounted. Hence use the default large
* max_active value for this workqueue.
*/
xfs_alloc_wq = alloc_workqueue("xfsalloc",
WQ_MEM_RECLAIM|WQ_FREEZABLE, 0);
if (!xfs_alloc_wq)
return -ENOMEM;
xfs_discard_wq = alloc_workqueue("xfsdiscard", WQ_UNBOUND, 0);
if (!xfs_discard_wq)
goto out_free_alloc_wq;
return 0;
out_free_alloc_wq:
destroy_workqueue(xfs_alloc_wq);
return -ENOMEM;
}
STATIC void
xfs_destroy_workqueues(void)
{
destroy_workqueue(xfs_discard_wq);
destroy_workqueue(xfs_alloc_wq);
}
STATIC int __init
init_xfs_fs(void)
{
int error;
xfs_check_ondisk_structs();
printk(KERN_INFO XFS_VERSION_STRING " with "
XFS_BUILD_OPTIONS " enabled\n");
xfs_dir_startup();
error = xfs_init_zones();
if (error)
goto out;
error = xfs_init_workqueues();
if (error)
goto out_destroy_zones;
error = xfs_mru_cache_init();
if (error)
goto out_destroy_wq;
error = xfs_buf_init();
if (error)
goto out_mru_cache_uninit;
error = xfs_init_procfs();
if (error)
goto out_buf_terminate;
error = xfs_sysctl_register();
if (error)
goto out_cleanup_procfs;
xfs_kset = kset_create_and_add("xfs", NULL, fs_kobj);
if (!xfs_kset) {
error = -ENOMEM;
goto out_sysctl_unregister;
}
xfsstats.xs_kobj.kobject.kset = xfs_kset;
xfsstats.xs_stats = alloc_percpu(struct xfsstats);
if (!xfsstats.xs_stats) {
error = -ENOMEM;
goto out_kset_unregister;
}
error = xfs_sysfs_init(&xfsstats.xs_kobj, &xfs_stats_ktype, NULL,
"stats");
if (error)
goto out_free_stats;
#ifdef DEBUG
xfs_dbg_kobj.kobject.kset = xfs_kset;
error = xfs_sysfs_init(&xfs_dbg_kobj, &xfs_dbg_ktype, NULL, "debug");
if (error)
goto out_remove_stats_kobj;
#endif
error = xfs_qm_init();
if (error)
goto out_remove_dbg_kobj;
error = register_filesystem(&xfs_fs_type);
if (error)
goto out_qm_exit;
return 0;
out_qm_exit:
xfs_qm_exit();
out_remove_dbg_kobj:
#ifdef DEBUG
xfs_sysfs_del(&xfs_dbg_kobj);
out_remove_stats_kobj:
#endif
xfs_sysfs_del(&xfsstats.xs_kobj);
out_free_stats:
free_percpu(xfsstats.xs_stats);
out_kset_unregister:
kset_unregister(xfs_kset);
out_sysctl_unregister:
xfs_sysctl_unregister();
out_cleanup_procfs:
xfs_cleanup_procfs();
out_buf_terminate:
xfs_buf_terminate();
out_mru_cache_uninit:
xfs_mru_cache_uninit();
out_destroy_wq:
xfs_destroy_workqueues();
out_destroy_zones:
xfs_destroy_zones();
out:
return error;
}
STATIC void __exit
exit_xfs_fs(void)
{
xfs_qm_exit();
unregister_filesystem(&xfs_fs_type);
#ifdef DEBUG
xfs_sysfs_del(&xfs_dbg_kobj);
#endif
xfs_sysfs_del(&xfsstats.xs_kobj);
free_percpu(xfsstats.xs_stats);
kset_unregister(xfs_kset);
xfs_sysctl_unregister();
xfs_cleanup_procfs();
xfs_buf_terminate();
xfs_mru_cache_uninit();
xfs_destroy_workqueues();
xfs_destroy_zones();
xfs_uuid_table_free();
}
module_init(init_xfs_fs);
module_exit(exit_xfs_fs);
MODULE_AUTHOR("Silicon Graphics, Inc.");
MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
MODULE_LICENSE("GPL");