1859 lines
48 KiB
C
1859 lines
48 KiB
C
/*
|
|
* SGI UltraViolet TLB flush routines.
|
|
*
|
|
* (c) 2008-2011 Cliff Wickman <cpw@sgi.com>, SGI.
|
|
*
|
|
* This code is released under the GNU General Public License version 2 or
|
|
* later.
|
|
*/
|
|
#include <linux/seq_file.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/delay.h>
|
|
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/uv/uv.h>
|
|
#include <asm/uv/uv_mmrs.h>
|
|
#include <asm/uv/uv_hub.h>
|
|
#include <asm/uv/uv_bau.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/idle.h>
|
|
#include <asm/tsc.h>
|
|
#include <asm/irq_vectors.h>
|
|
#include <asm/timer.h>
|
|
|
|
/* timeouts in nanoseconds (indexed by UVH_AGING_PRESCALE_SEL urgency7 30:28) */
|
|
static int timeout_base_ns[] = {
|
|
20,
|
|
160,
|
|
1280,
|
|
10240,
|
|
81920,
|
|
655360,
|
|
5242880,
|
|
167772160
|
|
};
|
|
|
|
static int timeout_us;
|
|
static int nobau;
|
|
static int baudisabled;
|
|
static spinlock_t disable_lock;
|
|
static cycles_t congested_cycles;
|
|
|
|
/* tunables: */
|
|
static int max_concurr = MAX_BAU_CONCURRENT;
|
|
static int max_concurr_const = MAX_BAU_CONCURRENT;
|
|
static int plugged_delay = PLUGGED_DELAY;
|
|
static int plugsb4reset = PLUGSB4RESET;
|
|
static int timeoutsb4reset = TIMEOUTSB4RESET;
|
|
static int ipi_reset_limit = IPI_RESET_LIMIT;
|
|
static int complete_threshold = COMPLETE_THRESHOLD;
|
|
static int congested_respns_us = CONGESTED_RESPONSE_US;
|
|
static int congested_reps = CONGESTED_REPS;
|
|
static int congested_period = CONGESTED_PERIOD;
|
|
|
|
static struct tunables tunables[] = {
|
|
{&max_concurr, MAX_BAU_CONCURRENT}, /* must be [0] */
|
|
{&plugged_delay, PLUGGED_DELAY},
|
|
{&plugsb4reset, PLUGSB4RESET},
|
|
{&timeoutsb4reset, TIMEOUTSB4RESET},
|
|
{&ipi_reset_limit, IPI_RESET_LIMIT},
|
|
{&complete_threshold, COMPLETE_THRESHOLD},
|
|
{&congested_respns_us, CONGESTED_RESPONSE_US},
|
|
{&congested_reps, CONGESTED_REPS},
|
|
{&congested_period, CONGESTED_PERIOD}
|
|
};
|
|
|
|
static struct dentry *tunables_dir;
|
|
static struct dentry *tunables_file;
|
|
|
|
/* these correspond to the statistics printed by ptc_seq_show() */
|
|
static char *stat_description[] = {
|
|
"sent: number of shootdown messages sent",
|
|
"stime: time spent sending messages",
|
|
"numuvhubs: number of hubs targeted with shootdown",
|
|
"numuvhubs16: number times 16 or more hubs targeted",
|
|
"numuvhubs8: number times 8 or more hubs targeted",
|
|
"numuvhubs4: number times 4 or more hubs targeted",
|
|
"numuvhubs2: number times 2 or more hubs targeted",
|
|
"numuvhubs1: number times 1 hub targeted",
|
|
"numcpus: number of cpus targeted with shootdown",
|
|
"dto: number of destination timeouts",
|
|
"retries: destination timeout retries sent",
|
|
"rok: : destination timeouts successfully retried",
|
|
"resetp: ipi-style resource resets for plugs",
|
|
"resett: ipi-style resource resets for timeouts",
|
|
"giveup: fall-backs to ipi-style shootdowns",
|
|
"sto: number of source timeouts",
|
|
"bz: number of stay-busy's",
|
|
"throt: number times spun in throttle",
|
|
"swack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE",
|
|
"recv: shootdown messages received",
|
|
"rtime: time spent processing messages",
|
|
"all: shootdown all-tlb messages",
|
|
"one: shootdown one-tlb messages",
|
|
"mult: interrupts that found multiple messages",
|
|
"none: interrupts that found no messages",
|
|
"retry: number of retry messages processed",
|
|
"canc: number messages canceled by retries",
|
|
"nocan: number retries that found nothing to cancel",
|
|
"reset: number of ipi-style reset requests processed",
|
|
"rcan: number messages canceled by reset requests",
|
|
"disable: number times use of the BAU was disabled",
|
|
"enable: number times use of the BAU was re-enabled"
|
|
};
|
|
|
|
static int __init
|
|
setup_nobau(char *arg)
|
|
{
|
|
nobau = 1;
|
|
return 0;
|
|
}
|
|
early_param("nobau", setup_nobau);
|
|
|
|
/* base pnode in this partition */
|
|
static int uv_base_pnode __read_mostly;
|
|
/* position of pnode (which is nasid>>1): */
|
|
static int uv_nshift __read_mostly;
|
|
static unsigned long uv_mmask __read_mostly;
|
|
|
|
static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
|
|
static DEFINE_PER_CPU(struct bau_control, bau_control);
|
|
static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);
|
|
|
|
/*
|
|
* Determine the first node on a uvhub. 'Nodes' are used for kernel
|
|
* memory allocation.
|
|
*/
|
|
static int __init uvhub_to_first_node(int uvhub)
|
|
{
|
|
int node, b;
|
|
|
|
for_each_online_node(node) {
|
|
b = uv_node_to_blade_id(node);
|
|
if (uvhub == b)
|
|
return node;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Determine the apicid of the first cpu on a uvhub.
|
|
*/
|
|
static int __init uvhub_to_first_apicid(int uvhub)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_present_cpu(cpu)
|
|
if (uvhub == uv_cpu_to_blade_id(cpu))
|
|
return per_cpu(x86_cpu_to_apicid, cpu);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Free a software acknowledge hardware resource by clearing its Pending
|
|
* bit. This will return a reply to the sender.
|
|
* If the message has timed out, a reply has already been sent by the
|
|
* hardware but the resource has not been released. In that case our
|
|
* clear of the Timeout bit (as well) will free the resource. No reply will
|
|
* be sent (the hardware will only do one reply per message).
|
|
*/
|
|
static void reply_to_message(struct msg_desc *mdp, struct bau_control *bcp)
|
|
{
|
|
unsigned long dw;
|
|
struct bau_pq_entry *msg;
|
|
|
|
msg = mdp->msg;
|
|
if (!msg->canceled) {
|
|
dw = (msg->swack_vec << UV_SW_ACK_NPENDING) | msg->swack_vec;
|
|
write_mmr_sw_ack(dw);
|
|
}
|
|
msg->replied_to = 1;
|
|
msg->swack_vec = 0;
|
|
}
|
|
|
|
/*
|
|
* Process the receipt of a RETRY message
|
|
*/
|
|
static void bau_process_retry_msg(struct msg_desc *mdp,
|
|
struct bau_control *bcp)
|
|
{
|
|
int i;
|
|
int cancel_count = 0;
|
|
unsigned long msg_res;
|
|
unsigned long mmr = 0;
|
|
struct bau_pq_entry *msg = mdp->msg;
|
|
struct bau_pq_entry *msg2;
|
|
struct ptc_stats *stat = bcp->statp;
|
|
|
|
stat->d_retries++;
|
|
/*
|
|
* cancel any message from msg+1 to the retry itself
|
|
*/
|
|
for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) {
|
|
if (msg2 > mdp->queue_last)
|
|
msg2 = mdp->queue_first;
|
|
if (msg2 == msg)
|
|
break;
|
|
|
|
/* same conditions for cancellation as do_reset */
|
|
if ((msg2->replied_to == 0) && (msg2->canceled == 0) &&
|
|
(msg2->swack_vec) && ((msg2->swack_vec &
|
|
msg->swack_vec) == 0) &&
|
|
(msg2->sending_cpu == msg->sending_cpu) &&
|
|
(msg2->msg_type != MSG_NOOP)) {
|
|
mmr = read_mmr_sw_ack();
|
|
msg_res = msg2->swack_vec;
|
|
/*
|
|
* This is a message retry; clear the resources held
|
|
* by the previous message only if they timed out.
|
|
* If it has not timed out we have an unexpected
|
|
* situation to report.
|
|
*/
|
|
if (mmr & (msg_res << UV_SW_ACK_NPENDING)) {
|
|
unsigned long mr;
|
|
/*
|
|
* is the resource timed out?
|
|
* make everyone ignore the cancelled message.
|
|
*/
|
|
msg2->canceled = 1;
|
|
stat->d_canceled++;
|
|
cancel_count++;
|
|
mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
|
|
write_mmr_sw_ack(mr);
|
|
}
|
|
}
|
|
}
|
|
if (!cancel_count)
|
|
stat->d_nocanceled++;
|
|
}
|
|
|
|
/*
|
|
* Do all the things a cpu should do for a TLB shootdown message.
|
|
* Other cpu's may come here at the same time for this message.
|
|
*/
|
|
static void bau_process_message(struct msg_desc *mdp,
|
|
struct bau_control *bcp)
|
|
{
|
|
short socket_ack_count = 0;
|
|
short *sp;
|
|
struct atomic_short *asp;
|
|
struct ptc_stats *stat = bcp->statp;
|
|
struct bau_pq_entry *msg = mdp->msg;
|
|
struct bau_control *smaster = bcp->socket_master;
|
|
|
|
/*
|
|
* This must be a normal message, or retry of a normal message
|
|
*/
|
|
if (msg->address == TLB_FLUSH_ALL) {
|
|
local_flush_tlb();
|
|
stat->d_alltlb++;
|
|
} else {
|
|
__flush_tlb_one(msg->address);
|
|
stat->d_onetlb++;
|
|
}
|
|
stat->d_requestee++;
|
|
|
|
/*
|
|
* One cpu on each uvhub has the additional job on a RETRY
|
|
* of releasing the resource held by the message that is
|
|
* being retried. That message is identified by sending
|
|
* cpu number.
|
|
*/
|
|
if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master)
|
|
bau_process_retry_msg(mdp, bcp);
|
|
|
|
/*
|
|
* This is a swack message, so we have to reply to it.
|
|
* Count each responding cpu on the socket. This avoids
|
|
* pinging the count's cache line back and forth between
|
|
* the sockets.
|
|
*/
|
|
sp = &smaster->socket_acknowledge_count[mdp->msg_slot];
|
|
asp = (struct atomic_short *)sp;
|
|
socket_ack_count = atom_asr(1, asp);
|
|
if (socket_ack_count == bcp->cpus_in_socket) {
|
|
int msg_ack_count;
|
|
/*
|
|
* Both sockets dump their completed count total into
|
|
* the message's count.
|
|
*/
|
|
smaster->socket_acknowledge_count[mdp->msg_slot] = 0;
|
|
asp = (struct atomic_short *)&msg->acknowledge_count;
|
|
msg_ack_count = atom_asr(socket_ack_count, asp);
|
|
|
|
if (msg_ack_count == bcp->cpus_in_uvhub) {
|
|
/*
|
|
* All cpus in uvhub saw it; reply
|
|
*/
|
|
reply_to_message(mdp, bcp);
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Determine the first cpu on a uvhub.
|
|
*/
|
|
static int uvhub_to_first_cpu(int uvhub)
|
|
{
|
|
int cpu;
|
|
for_each_present_cpu(cpu)
|
|
if (uvhub == uv_cpu_to_blade_id(cpu))
|
|
return cpu;
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Last resort when we get a large number of destination timeouts is
|
|
* to clear resources held by a given cpu.
|
|
* Do this with IPI so that all messages in the BAU message queue
|
|
* can be identified by their nonzero swack_vec field.
|
|
*
|
|
* This is entered for a single cpu on the uvhub.
|
|
* The sender want's this uvhub to free a specific message's
|
|
* swack resources.
|
|
*/
|
|
static void do_reset(void *ptr)
|
|
{
|
|
int i;
|
|
struct bau_control *bcp = &per_cpu(bau_control, smp_processor_id());
|
|
struct reset_args *rap = (struct reset_args *)ptr;
|
|
struct bau_pq_entry *msg;
|
|
struct ptc_stats *stat = bcp->statp;
|
|
|
|
stat->d_resets++;
|
|
/*
|
|
* We're looking for the given sender, and
|
|
* will free its swack resource.
|
|
* If all cpu's finally responded after the timeout, its
|
|
* message 'replied_to' was set.
|
|
*/
|
|
for (msg = bcp->queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) {
|
|
unsigned long msg_res;
|
|
/* do_reset: same conditions for cancellation as
|
|
bau_process_retry_msg() */
|
|
if ((msg->replied_to == 0) &&
|
|
(msg->canceled == 0) &&
|
|
(msg->sending_cpu == rap->sender) &&
|
|
(msg->swack_vec) &&
|
|
(msg->msg_type != MSG_NOOP)) {
|
|
unsigned long mmr;
|
|
unsigned long mr;
|
|
/*
|
|
* make everyone else ignore this message
|
|
*/
|
|
msg->canceled = 1;
|
|
/*
|
|
* only reset the resource if it is still pending
|
|
*/
|
|
mmr = read_mmr_sw_ack();
|
|
msg_res = msg->swack_vec;
|
|
mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
|
|
if (mmr & msg_res) {
|
|
stat->d_rcanceled++;
|
|
write_mmr_sw_ack(mr);
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Use IPI to get all target uvhubs to release resources held by
|
|
* a given sending cpu number.
|
|
*/
|
|
static void reset_with_ipi(struct bau_targ_hubmask *distribution, int sender)
|
|
{
|
|
int uvhub;
|
|
int maskbits;
|
|
cpumask_t mask;
|
|
struct reset_args reset_args;
|
|
|
|
reset_args.sender = sender;
|
|
cpus_clear(mask);
|
|
/* find a single cpu for each uvhub in this distribution mask */
|
|
maskbits = sizeof(struct bau_targ_hubmask) * BITSPERBYTE;
|
|
for (uvhub = 0; uvhub < maskbits; uvhub++) {
|
|
int cpu;
|
|
if (!bau_uvhub_isset(uvhub, distribution))
|
|
continue;
|
|
/* find a cpu for this uvhub */
|
|
cpu = uvhub_to_first_cpu(uvhub);
|
|
cpu_set(cpu, mask);
|
|
}
|
|
|
|
/* IPI all cpus; preemption is already disabled */
|
|
smp_call_function_many(&mask, do_reset, (void *)&reset_args, 1);
|
|
return;
|
|
}
|
|
|
|
static inline unsigned long cycles_2_us(unsigned long long cyc)
|
|
{
|
|
unsigned long long ns;
|
|
unsigned long us;
|
|
int cpu = smp_processor_id();
|
|
|
|
ns = (cyc * per_cpu(cyc2ns, cpu)) >> CYC2NS_SCALE_FACTOR;
|
|
us = ns / 1000;
|
|
return us;
|
|
}
|
|
|
|
/*
|
|
* wait for all cpus on this hub to finish their sends and go quiet
|
|
* leaves uvhub_quiesce set so that no new broadcasts are started by
|
|
* bau_flush_send_and_wait()
|
|
*/
|
|
static inline void quiesce_local_uvhub(struct bau_control *hmaster)
|
|
{
|
|
atom_asr(1, (struct atomic_short *)&hmaster->uvhub_quiesce);
|
|
}
|
|
|
|
/*
|
|
* mark this quiet-requestor as done
|
|
*/
|
|
static inline void end_uvhub_quiesce(struct bau_control *hmaster)
|
|
{
|
|
atom_asr(-1, (struct atomic_short *)&hmaster->uvhub_quiesce);
|
|
}
|
|
|
|
static unsigned long uv1_read_status(unsigned long mmr_offset, int right_shift)
|
|
{
|
|
unsigned long descriptor_status;
|
|
|
|
descriptor_status = uv_read_local_mmr(mmr_offset);
|
|
descriptor_status >>= right_shift;
|
|
descriptor_status &= UV_ACT_STATUS_MASK;
|
|
return descriptor_status;
|
|
}
|
|
|
|
/*
|
|
* Wait for completion of a broadcast software ack message
|
|
* return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP
|
|
*/
|
|
static int uv1_wait_completion(struct bau_desc *bau_desc,
|
|
unsigned long mmr_offset, int right_shift,
|
|
struct bau_control *bcp, long try)
|
|
{
|
|
unsigned long descriptor_status;
|
|
cycles_t ttm;
|
|
struct ptc_stats *stat = bcp->statp;
|
|
|
|
descriptor_status = uv1_read_status(mmr_offset, right_shift);
|
|
/* spin on the status MMR, waiting for it to go idle */
|
|
while ((descriptor_status != DS_IDLE)) {
|
|
/*
|
|
* Our software ack messages may be blocked because
|
|
* there are no swack resources available. As long
|
|
* as none of them has timed out hardware will NACK
|
|
* our message and its state will stay IDLE.
|
|
*/
|
|
if (descriptor_status == DS_SOURCE_TIMEOUT) {
|
|
stat->s_stimeout++;
|
|
return FLUSH_GIVEUP;
|
|
} else if (descriptor_status == DS_DESTINATION_TIMEOUT) {
|
|
stat->s_dtimeout++;
|
|
ttm = get_cycles();
|
|
|
|
/*
|
|
* Our retries may be blocked by all destination
|
|
* swack resources being consumed, and a timeout
|
|
* pending. In that case hardware returns the
|
|
* ERROR that looks like a destination timeout.
|
|
*/
|
|
if (cycles_2_us(ttm - bcp->send_message) < timeout_us) {
|
|
bcp->conseccompletes = 0;
|
|
return FLUSH_RETRY_PLUGGED;
|
|
}
|
|
|
|
bcp->conseccompletes = 0;
|
|
return FLUSH_RETRY_TIMEOUT;
|
|
} else {
|
|
/*
|
|
* descriptor_status is still BUSY
|
|
*/
|
|
cpu_relax();
|
|
}
|
|
descriptor_status = uv1_read_status(mmr_offset, right_shift);
|
|
}
|
|
bcp->conseccompletes++;
|
|
return FLUSH_COMPLETE;
|
|
}
|
|
|
|
/*
|
|
* UV2 has an extra bit of status in the ACTIVATION_STATUS_2 register.
|
|
*/
|
|
static unsigned long uv2_read_status(unsigned long offset, int rshft, int cpu)
|
|
{
|
|
unsigned long descriptor_status;
|
|
unsigned long descriptor_status2;
|
|
|
|
descriptor_status = ((read_lmmr(offset) >> rshft) & UV_ACT_STATUS_MASK);
|
|
descriptor_status2 = (read_mmr_uv2_status() >> cpu) & 0x1UL;
|
|
descriptor_status = (descriptor_status << 1) | descriptor_status2;
|
|
return descriptor_status;
|
|
}
|
|
|
|
static int uv2_wait_completion(struct bau_desc *bau_desc,
|
|
unsigned long mmr_offset, int right_shift,
|
|
struct bau_control *bcp, long try)
|
|
{
|
|
unsigned long descriptor_stat;
|
|
cycles_t ttm;
|
|
int cpu = bcp->uvhub_cpu;
|
|
struct ptc_stats *stat = bcp->statp;
|
|
|
|
descriptor_stat = uv2_read_status(mmr_offset, right_shift, cpu);
|
|
|
|
/* spin on the status MMR, waiting for it to go idle */
|
|
while (descriptor_stat != UV2H_DESC_IDLE) {
|
|
/*
|
|
* Our software ack messages may be blocked because
|
|
* there are no swack resources available. As long
|
|
* as none of them has timed out hardware will NACK
|
|
* our message and its state will stay IDLE.
|
|
*/
|
|
if ((descriptor_stat == UV2H_DESC_SOURCE_TIMEOUT) ||
|
|
(descriptor_stat == UV2H_DESC_DEST_STRONG_NACK) ||
|
|
(descriptor_stat == UV2H_DESC_DEST_PUT_ERR)) {
|
|
stat->s_stimeout++;
|
|
return FLUSH_GIVEUP;
|
|
} else if (descriptor_stat == UV2H_DESC_DEST_TIMEOUT) {
|
|
stat->s_dtimeout++;
|
|
ttm = get_cycles();
|
|
/*
|
|
* Our retries may be blocked by all destination
|
|
* swack resources being consumed, and a timeout
|
|
* pending. In that case hardware returns the
|
|
* ERROR that looks like a destination timeout.
|
|
*/
|
|
if (cycles_2_us(ttm - bcp->send_message) < timeout_us) {
|
|
bcp->conseccompletes = 0;
|
|
return FLUSH_RETRY_PLUGGED;
|
|
}
|
|
bcp->conseccompletes = 0;
|
|
return FLUSH_RETRY_TIMEOUT;
|
|
} else {
|
|
/*
|
|
* descriptor_stat is still BUSY
|
|
*/
|
|
cpu_relax();
|
|
}
|
|
descriptor_stat = uv2_read_status(mmr_offset, right_shift, cpu);
|
|
}
|
|
bcp->conseccompletes++;
|
|
return FLUSH_COMPLETE;
|
|
}
|
|
|
|
/*
|
|
* There are 2 status registers; each and array[32] of 2 bits. Set up for
|
|
* which register to read and position in that register based on cpu in
|
|
* current hub.
|
|
*/
|
|
static int wait_completion(struct bau_desc *bau_desc,
|
|
struct bau_control *bcp, long try)
|
|
{
|
|
int right_shift;
|
|
unsigned long mmr_offset;
|
|
int cpu = bcp->uvhub_cpu;
|
|
|
|
if (cpu < UV_CPUS_PER_AS) {
|
|
mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
|
|
right_shift = cpu * UV_ACT_STATUS_SIZE;
|
|
} else {
|
|
mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
|
|
right_shift = ((cpu - UV_CPUS_PER_AS) * UV_ACT_STATUS_SIZE);
|
|
}
|
|
|
|
if (is_uv1_hub())
|
|
return uv1_wait_completion(bau_desc, mmr_offset, right_shift,
|
|
bcp, try);
|
|
else
|
|
return uv2_wait_completion(bau_desc, mmr_offset, right_shift,
|
|
bcp, try);
|
|
}
|
|
|
|
static inline cycles_t sec_2_cycles(unsigned long sec)
|
|
{
|
|
unsigned long ns;
|
|
cycles_t cyc;
|
|
|
|
ns = sec * 1000000000;
|
|
cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
|
|
return cyc;
|
|
}
|
|
|
|
/*
|
|
* Our retries are blocked by all destination sw ack resources being
|
|
* in use, and a timeout is pending. In that case hardware immediately
|
|
* returns the ERROR that looks like a destination timeout.
|
|
*/
|
|
static void destination_plugged(struct bau_desc *bau_desc,
|
|
struct bau_control *bcp,
|
|
struct bau_control *hmaster, struct ptc_stats *stat)
|
|
{
|
|
udelay(bcp->plugged_delay);
|
|
bcp->plugged_tries++;
|
|
|
|
if (bcp->plugged_tries >= bcp->plugsb4reset) {
|
|
bcp->plugged_tries = 0;
|
|
|
|
quiesce_local_uvhub(hmaster);
|
|
|
|
spin_lock(&hmaster->queue_lock);
|
|
reset_with_ipi(&bau_desc->distribution, bcp->cpu);
|
|
spin_unlock(&hmaster->queue_lock);
|
|
|
|
end_uvhub_quiesce(hmaster);
|
|
|
|
bcp->ipi_attempts++;
|
|
stat->s_resets_plug++;
|
|
}
|
|
}
|
|
|
|
static void destination_timeout(struct bau_desc *bau_desc,
|
|
struct bau_control *bcp, struct bau_control *hmaster,
|
|
struct ptc_stats *stat)
|
|
{
|
|
hmaster->max_concurr = 1;
|
|
bcp->timeout_tries++;
|
|
if (bcp->timeout_tries >= bcp->timeoutsb4reset) {
|
|
bcp->timeout_tries = 0;
|
|
|
|
quiesce_local_uvhub(hmaster);
|
|
|
|
spin_lock(&hmaster->queue_lock);
|
|
reset_with_ipi(&bau_desc->distribution, bcp->cpu);
|
|
spin_unlock(&hmaster->queue_lock);
|
|
|
|
end_uvhub_quiesce(hmaster);
|
|
|
|
bcp->ipi_attempts++;
|
|
stat->s_resets_timeout++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Completions are taking a very long time due to a congested numalink
|
|
* network.
|
|
*/
|
|
static void disable_for_congestion(struct bau_control *bcp,
|
|
struct ptc_stats *stat)
|
|
{
|
|
/* let only one cpu do this disabling */
|
|
spin_lock(&disable_lock);
|
|
|
|
if (!baudisabled && bcp->period_requests &&
|
|
((bcp->period_time / bcp->period_requests) > congested_cycles)) {
|
|
int tcpu;
|
|
struct bau_control *tbcp;
|
|
/* it becomes this cpu's job to turn on the use of the
|
|
BAU again */
|
|
baudisabled = 1;
|
|
bcp->set_bau_off = 1;
|
|
bcp->set_bau_on_time = get_cycles();
|
|
bcp->set_bau_on_time += sec_2_cycles(bcp->cong_period);
|
|
stat->s_bau_disabled++;
|
|
for_each_present_cpu(tcpu) {
|
|
tbcp = &per_cpu(bau_control, tcpu);
|
|
tbcp->baudisabled = 1;
|
|
}
|
|
}
|
|
|
|
spin_unlock(&disable_lock);
|
|
}
|
|
|
|
static void count_max_concurr(int stat, struct bau_control *bcp,
|
|
struct bau_control *hmaster)
|
|
{
|
|
bcp->plugged_tries = 0;
|
|
bcp->timeout_tries = 0;
|
|
if (stat != FLUSH_COMPLETE)
|
|
return;
|
|
if (bcp->conseccompletes <= bcp->complete_threshold)
|
|
return;
|
|
if (hmaster->max_concurr >= hmaster->max_concurr_const)
|
|
return;
|
|
hmaster->max_concurr++;
|
|
}
|
|
|
|
static void record_send_stats(cycles_t time1, cycles_t time2,
|
|
struct bau_control *bcp, struct ptc_stats *stat,
|
|
int completion_status, int try)
|
|
{
|
|
cycles_t elapsed;
|
|
|
|
if (time2 > time1) {
|
|
elapsed = time2 - time1;
|
|
stat->s_time += elapsed;
|
|
|
|
if ((completion_status == FLUSH_COMPLETE) && (try == 1)) {
|
|
bcp->period_requests++;
|
|
bcp->period_time += elapsed;
|
|
if ((elapsed > congested_cycles) &&
|
|
(bcp->period_requests > bcp->cong_reps))
|
|
disable_for_congestion(bcp, stat);
|
|
}
|
|
} else
|
|
stat->s_requestor--;
|
|
|
|
if (completion_status == FLUSH_COMPLETE && try > 1)
|
|
stat->s_retriesok++;
|
|
else if (completion_status == FLUSH_GIVEUP)
|
|
stat->s_giveup++;
|
|
}
|
|
|
|
/*
|
|
* Because of a uv1 hardware bug only a limited number of concurrent
|
|
* requests can be made.
|
|
*/
|
|
static void uv1_throttle(struct bau_control *hmaster, struct ptc_stats *stat)
|
|
{
|
|
spinlock_t *lock = &hmaster->uvhub_lock;
|
|
atomic_t *v;
|
|
|
|
v = &hmaster->active_descriptor_count;
|
|
if (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr)) {
|
|
stat->s_throttles++;
|
|
do {
|
|
cpu_relax();
|
|
} while (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle the completion status of a message send.
|
|
*/
|
|
static void handle_cmplt(int completion_status, struct bau_desc *bau_desc,
|
|
struct bau_control *bcp, struct bau_control *hmaster,
|
|
struct ptc_stats *stat)
|
|
{
|
|
if (completion_status == FLUSH_RETRY_PLUGGED)
|
|
destination_plugged(bau_desc, bcp, hmaster, stat);
|
|
else if (completion_status == FLUSH_RETRY_TIMEOUT)
|
|
destination_timeout(bau_desc, bcp, hmaster, stat);
|
|
}
|
|
|
|
/*
|
|
* Send a broadcast and wait for it to complete.
|
|
*
|
|
* The flush_mask contains the cpus the broadcast is to be sent to including
|
|
* cpus that are on the local uvhub.
|
|
*
|
|
* Returns 0 if all flushing represented in the mask was done.
|
|
* Returns 1 if it gives up entirely and the original cpu mask is to be
|
|
* returned to the kernel.
|
|
*/
|
|
int uv_flush_send_and_wait(struct bau_desc *bau_desc,
|
|
struct cpumask *flush_mask, struct bau_control *bcp)
|
|
{
|
|
int seq_number = 0;
|
|
int completion_stat = 0;
|
|
long try = 0;
|
|
unsigned long index;
|
|
cycles_t time1;
|
|
cycles_t time2;
|
|
struct ptc_stats *stat = bcp->statp;
|
|
struct bau_control *hmaster = bcp->uvhub_master;
|
|
|
|
if (is_uv1_hub())
|
|
uv1_throttle(hmaster, stat);
|
|
|
|
while (hmaster->uvhub_quiesce)
|
|
cpu_relax();
|
|
|
|
time1 = get_cycles();
|
|
do {
|
|
if (try == 0) {
|
|
bau_desc->header.msg_type = MSG_REGULAR;
|
|
seq_number = bcp->message_number++;
|
|
} else {
|
|
bau_desc->header.msg_type = MSG_RETRY;
|
|
stat->s_retry_messages++;
|
|
}
|
|
|
|
bau_desc->header.sequence = seq_number;
|
|
index = (1UL << AS_PUSH_SHIFT) | bcp->uvhub_cpu;
|
|
bcp->send_message = get_cycles();
|
|
|
|
write_mmr_activation(index);
|
|
|
|
try++;
|
|
completion_stat = wait_completion(bau_desc, bcp, try);
|
|
|
|
handle_cmplt(completion_stat, bau_desc, bcp, hmaster, stat);
|
|
|
|
if (bcp->ipi_attempts >= bcp->ipi_reset_limit) {
|
|
bcp->ipi_attempts = 0;
|
|
completion_stat = FLUSH_GIVEUP;
|
|
break;
|
|
}
|
|
cpu_relax();
|
|
} while ((completion_stat == FLUSH_RETRY_PLUGGED) ||
|
|
(completion_stat == FLUSH_RETRY_TIMEOUT));
|
|
|
|
time2 = get_cycles();
|
|
|
|
count_max_concurr(completion_stat, bcp, hmaster);
|
|
|
|
while (hmaster->uvhub_quiesce)
|
|
cpu_relax();
|
|
|
|
atomic_dec(&hmaster->active_descriptor_count);
|
|
|
|
record_send_stats(time1, time2, bcp, stat, completion_stat, try);
|
|
|
|
if (completion_stat == FLUSH_GIVEUP)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The BAU is disabled. When the disabled time period has expired, the cpu
|
|
* that disabled it must re-enable it.
|
|
* Return 0 if it is re-enabled for all cpus.
|
|
*/
|
|
static int check_enable(struct bau_control *bcp, struct ptc_stats *stat)
|
|
{
|
|
int tcpu;
|
|
struct bau_control *tbcp;
|
|
|
|
if (bcp->set_bau_off) {
|
|
if (get_cycles() >= bcp->set_bau_on_time) {
|
|
stat->s_bau_reenabled++;
|
|
baudisabled = 0;
|
|
for_each_present_cpu(tcpu) {
|
|
tbcp = &per_cpu(bau_control, tcpu);
|
|
tbcp->baudisabled = 0;
|
|
tbcp->period_requests = 0;
|
|
tbcp->period_time = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static void record_send_statistics(struct ptc_stats *stat, int locals, int hubs,
|
|
int remotes, struct bau_desc *bau_desc)
|
|
{
|
|
stat->s_requestor++;
|
|
stat->s_ntargcpu += remotes + locals;
|
|
stat->s_ntargremotes += remotes;
|
|
stat->s_ntarglocals += locals;
|
|
|
|
/* uvhub statistics */
|
|
hubs = bau_uvhub_weight(&bau_desc->distribution);
|
|
if (locals) {
|
|
stat->s_ntarglocaluvhub++;
|
|
stat->s_ntargremoteuvhub += (hubs - 1);
|
|
} else
|
|
stat->s_ntargremoteuvhub += hubs;
|
|
|
|
stat->s_ntarguvhub += hubs;
|
|
|
|
if (hubs >= 16)
|
|
stat->s_ntarguvhub16++;
|
|
else if (hubs >= 8)
|
|
stat->s_ntarguvhub8++;
|
|
else if (hubs >= 4)
|
|
stat->s_ntarguvhub4++;
|
|
else if (hubs >= 2)
|
|
stat->s_ntarguvhub2++;
|
|
else
|
|
stat->s_ntarguvhub1++;
|
|
}
|
|
|
|
/*
|
|
* Translate a cpu mask to the uvhub distribution mask in the BAU
|
|
* activation descriptor.
|
|
*/
|
|
static int set_distrib_bits(struct cpumask *flush_mask, struct bau_control *bcp,
|
|
struct bau_desc *bau_desc, int *localsp, int *remotesp)
|
|
{
|
|
int cpu;
|
|
int pnode;
|
|
int cnt = 0;
|
|
struct hub_and_pnode *hpp;
|
|
|
|
for_each_cpu(cpu, flush_mask) {
|
|
/*
|
|
* The distribution vector is a bit map of pnodes, relative
|
|
* to the partition base pnode (and the partition base nasid
|
|
* in the header).
|
|
* Translate cpu to pnode and hub using a local memory array.
|
|
*/
|
|
hpp = &bcp->socket_master->thp[cpu];
|
|
pnode = hpp->pnode - bcp->partition_base_pnode;
|
|
bau_uvhub_set(pnode, &bau_desc->distribution);
|
|
cnt++;
|
|
if (hpp->uvhub == bcp->uvhub)
|
|
(*localsp)++;
|
|
else
|
|
(*remotesp)++;
|
|
}
|
|
if (!cnt)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* globally purge translation cache of a virtual address or all TLB's
|
|
* @cpumask: mask of all cpu's in which the address is to be removed
|
|
* @mm: mm_struct containing virtual address range
|
|
* @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
|
|
* @cpu: the current cpu
|
|
*
|
|
* This is the entry point for initiating any UV global TLB shootdown.
|
|
*
|
|
* Purges the translation caches of all specified processors of the given
|
|
* virtual address, or purges all TLB's on specified processors.
|
|
*
|
|
* The caller has derived the cpumask from the mm_struct. This function
|
|
* is called only if there are bits set in the mask. (e.g. flush_tlb_page())
|
|
*
|
|
* The cpumask is converted into a uvhubmask of the uvhubs containing
|
|
* those cpus.
|
|
*
|
|
* Note that this function should be called with preemption disabled.
|
|
*
|
|
* Returns NULL if all remote flushing was done.
|
|
* Returns pointer to cpumask if some remote flushing remains to be
|
|
* done. The returned pointer is valid till preemption is re-enabled.
|
|
*/
|
|
const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
|
|
struct mm_struct *mm, unsigned long va,
|
|
unsigned int cpu)
|
|
{
|
|
int locals = 0;
|
|
int remotes = 0;
|
|
int hubs = 0;
|
|
struct bau_desc *bau_desc;
|
|
struct cpumask *flush_mask;
|
|
struct ptc_stats *stat;
|
|
struct bau_control *bcp;
|
|
|
|
/* kernel was booted 'nobau' */
|
|
if (nobau)
|
|
return cpumask;
|
|
|
|
bcp = &per_cpu(bau_control, cpu);
|
|
stat = bcp->statp;
|
|
|
|
/* bau was disabled due to slow response */
|
|
if (bcp->baudisabled) {
|
|
if (check_enable(bcp, stat))
|
|
return cpumask;
|
|
}
|
|
|
|
/*
|
|
* Each sending cpu has a per-cpu mask which it fills from the caller's
|
|
* cpu mask. All cpus are converted to uvhubs and copied to the
|
|
* activation descriptor.
|
|
*/
|
|
flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu);
|
|
/* don't actually do a shootdown of the local cpu */
|
|
cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
|
|
|
|
if (cpu_isset(cpu, *cpumask))
|
|
stat->s_ntargself++;
|
|
|
|
bau_desc = bcp->descriptor_base;
|
|
bau_desc += ITEMS_PER_DESC * bcp->uvhub_cpu;
|
|
bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
|
|
if (set_distrib_bits(flush_mask, bcp, bau_desc, &locals, &remotes))
|
|
return NULL;
|
|
|
|
record_send_statistics(stat, locals, hubs, remotes, bau_desc);
|
|
|
|
bau_desc->payload.address = va;
|
|
bau_desc->payload.sending_cpu = cpu;
|
|
/*
|
|
* uv_flush_send_and_wait returns 0 if all cpu's were messaged,
|
|
* or 1 if it gave up and the original cpumask should be returned.
|
|
*/
|
|
if (!uv_flush_send_and_wait(bau_desc, flush_mask, bcp))
|
|
return NULL;
|
|
else
|
|
return cpumask;
|
|
}
|
|
|
|
/*
|
|
* The BAU message interrupt comes here. (registered by set_intr_gate)
|
|
* See entry_64.S
|
|
*
|
|
* We received a broadcast assist message.
|
|
*
|
|
* Interrupts are disabled; this interrupt could represent
|
|
* the receipt of several messages.
|
|
*
|
|
* All cores/threads on this hub get this interrupt.
|
|
* The last one to see it does the software ack.
|
|
* (the resource will not be freed until noninterruptable cpus see this
|
|
* interrupt; hardware may timeout the s/w ack and reply ERROR)
|
|
*/
|
|
void uv_bau_message_interrupt(struct pt_regs *regs)
|
|
{
|
|
int count = 0;
|
|
cycles_t time_start;
|
|
struct bau_pq_entry *msg;
|
|
struct bau_control *bcp;
|
|
struct ptc_stats *stat;
|
|
struct msg_desc msgdesc;
|
|
|
|
time_start = get_cycles();
|
|
|
|
bcp = &per_cpu(bau_control, smp_processor_id());
|
|
stat = bcp->statp;
|
|
|
|
msgdesc.queue_first = bcp->queue_first;
|
|
msgdesc.queue_last = bcp->queue_last;
|
|
|
|
msg = bcp->bau_msg_head;
|
|
while (msg->swack_vec) {
|
|
count++;
|
|
|
|
msgdesc.msg_slot = msg - msgdesc.queue_first;
|
|
msgdesc.swack_slot = ffs(msg->swack_vec) - 1;
|
|
msgdesc.msg = msg;
|
|
bau_process_message(&msgdesc, bcp);
|
|
|
|
msg++;
|
|
if (msg > msgdesc.queue_last)
|
|
msg = msgdesc.queue_first;
|
|
bcp->bau_msg_head = msg;
|
|
}
|
|
stat->d_time += (get_cycles() - time_start);
|
|
if (!count)
|
|
stat->d_nomsg++;
|
|
else if (count > 1)
|
|
stat->d_multmsg++;
|
|
|
|
ack_APIC_irq();
|
|
}
|
|
|
|
/*
|
|
* Each target uvhub (i.e. a uvhub that has cpu's) needs to have
|
|
* shootdown message timeouts enabled. The timeout does not cause
|
|
* an interrupt, but causes an error message to be returned to
|
|
* the sender.
|
|
*/
|
|
static void __init enable_timeouts(void)
|
|
{
|
|
int uvhub;
|
|
int nuvhubs;
|
|
int pnode;
|
|
unsigned long mmr_image;
|
|
|
|
nuvhubs = uv_num_possible_blades();
|
|
|
|
for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
|
|
if (!uv_blade_nr_possible_cpus(uvhub))
|
|
continue;
|
|
|
|
pnode = uv_blade_to_pnode(uvhub);
|
|
mmr_image = read_mmr_misc_control(pnode);
|
|
/*
|
|
* Set the timeout period and then lock it in, in three
|
|
* steps; captures and locks in the period.
|
|
*
|
|
* To program the period, the SOFT_ACK_MODE must be off.
|
|
*/
|
|
mmr_image &= ~(1L << SOFTACK_MSHIFT);
|
|
write_mmr_misc_control(pnode, mmr_image);
|
|
/*
|
|
* Set the 4-bit period.
|
|
*/
|
|
mmr_image &= ~((unsigned long)0xf << SOFTACK_PSHIFT);
|
|
mmr_image |= (SOFTACK_TIMEOUT_PERIOD << SOFTACK_PSHIFT);
|
|
write_mmr_misc_control(pnode, mmr_image);
|
|
/*
|
|
* UV1:
|
|
* Subsequent reversals of the timebase bit (3) cause an
|
|
* immediate timeout of one or all INTD resources as
|
|
* indicated in bits 2:0 (7 causes all of them to timeout).
|
|
*/
|
|
mmr_image |= (1L << SOFTACK_MSHIFT);
|
|
if (is_uv2_hub()) {
|
|
mmr_image |= (1L << UV2_LEG_SHFT);
|
|
mmr_image |= (1L << UV2_EXT_SHFT);
|
|
}
|
|
write_mmr_misc_control(pnode, mmr_image);
|
|
}
|
|
}
|
|
|
|
static void *ptc_seq_start(struct seq_file *file, loff_t *offset)
|
|
{
|
|
if (*offset < num_possible_cpus())
|
|
return offset;
|
|
return NULL;
|
|
}
|
|
|
|
static void *ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
|
|
{
|
|
(*offset)++;
|
|
if (*offset < num_possible_cpus())
|
|
return offset;
|
|
return NULL;
|
|
}
|
|
|
|
static void ptc_seq_stop(struct seq_file *file, void *data)
|
|
{
|
|
}
|
|
|
|
static inline unsigned long long usec_2_cycles(unsigned long microsec)
|
|
{
|
|
unsigned long ns;
|
|
unsigned long long cyc;
|
|
|
|
ns = microsec * 1000;
|
|
cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
|
|
return cyc;
|
|
}
|
|
|
|
/*
|
|
* Display the statistics thru /proc/sgi_uv/ptc_statistics
|
|
* 'data' points to the cpu number
|
|
* Note: see the descriptions in stat_description[].
|
|
*/
|
|
static int ptc_seq_show(struct seq_file *file, void *data)
|
|
{
|
|
struct ptc_stats *stat;
|
|
int cpu;
|
|
|
|
cpu = *(loff_t *)data;
|
|
if (!cpu) {
|
|
seq_printf(file,
|
|
"# cpu sent stime self locals remotes ncpus localhub ");
|
|
seq_printf(file,
|
|
"remotehub numuvhubs numuvhubs16 numuvhubs8 ");
|
|
seq_printf(file,
|
|
"numuvhubs4 numuvhubs2 numuvhubs1 dto retries rok ");
|
|
seq_printf(file,
|
|
"resetp resett giveup sto bz throt swack recv rtime ");
|
|
seq_printf(file,
|
|
"all one mult none retry canc nocan reset rcan ");
|
|
seq_printf(file,
|
|
"disable enable\n");
|
|
}
|
|
if (cpu < num_possible_cpus() && cpu_online(cpu)) {
|
|
stat = &per_cpu(ptcstats, cpu);
|
|
/* source side statistics */
|
|
seq_printf(file,
|
|
"cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
|
|
cpu, stat->s_requestor, cycles_2_us(stat->s_time),
|
|
stat->s_ntargself, stat->s_ntarglocals,
|
|
stat->s_ntargremotes, stat->s_ntargcpu,
|
|
stat->s_ntarglocaluvhub, stat->s_ntargremoteuvhub,
|
|
stat->s_ntarguvhub, stat->s_ntarguvhub16);
|
|
seq_printf(file, "%ld %ld %ld %ld %ld ",
|
|
stat->s_ntarguvhub8, stat->s_ntarguvhub4,
|
|
stat->s_ntarguvhub2, stat->s_ntarguvhub1,
|
|
stat->s_dtimeout);
|
|
seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ",
|
|
stat->s_retry_messages, stat->s_retriesok,
|
|
stat->s_resets_plug, stat->s_resets_timeout,
|
|
stat->s_giveup, stat->s_stimeout,
|
|
stat->s_busy, stat->s_throttles);
|
|
|
|
/* destination side statistics */
|
|
seq_printf(file,
|
|
"%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
|
|
read_gmmr_sw_ack(uv_cpu_to_pnode(cpu)),
|
|
stat->d_requestee, cycles_2_us(stat->d_time),
|
|
stat->d_alltlb, stat->d_onetlb, stat->d_multmsg,
|
|
stat->d_nomsg, stat->d_retries, stat->d_canceled,
|
|
stat->d_nocanceled, stat->d_resets,
|
|
stat->d_rcanceled);
|
|
seq_printf(file, "%ld %ld\n",
|
|
stat->s_bau_disabled, stat->s_bau_reenabled);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Display the tunables thru debugfs
|
|
*/
|
|
static ssize_t tunables_read(struct file *file, char __user *userbuf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
char *buf;
|
|
int ret;
|
|
|
|
buf = kasprintf(GFP_KERNEL, "%s %s %s\n%d %d %d %d %d %d %d %d %d\n",
|
|
"max_concur plugged_delay plugsb4reset",
|
|
"timeoutsb4reset ipi_reset_limit complete_threshold",
|
|
"congested_response_us congested_reps congested_period",
|
|
max_concurr, plugged_delay, plugsb4reset,
|
|
timeoutsb4reset, ipi_reset_limit, complete_threshold,
|
|
congested_respns_us, congested_reps, congested_period);
|
|
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
|
|
ret = simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf));
|
|
kfree(buf);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* handle a write to /proc/sgi_uv/ptc_statistics
|
|
* -1: reset the statistics
|
|
* 0: display meaning of the statistics
|
|
*/
|
|
static ssize_t ptc_proc_write(struct file *file, const char __user *user,
|
|
size_t count, loff_t *data)
|
|
{
|
|
int cpu;
|
|
int i;
|
|
int elements;
|
|
long input_arg;
|
|
char optstr[64];
|
|
struct ptc_stats *stat;
|
|
|
|
if (count == 0 || count > sizeof(optstr))
|
|
return -EINVAL;
|
|
if (copy_from_user(optstr, user, count))
|
|
return -EFAULT;
|
|
optstr[count - 1] = '\0';
|
|
|
|
if (strict_strtol(optstr, 10, &input_arg) < 0) {
|
|
printk(KERN_DEBUG "%s is invalid\n", optstr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (input_arg == 0) {
|
|
elements = sizeof(stat_description)/sizeof(*stat_description);
|
|
printk(KERN_DEBUG "# cpu: cpu number\n");
|
|
printk(KERN_DEBUG "Sender statistics:\n");
|
|
for (i = 0; i < elements; i++)
|
|
printk(KERN_DEBUG "%s\n", stat_description[i]);
|
|
} else if (input_arg == -1) {
|
|
for_each_present_cpu(cpu) {
|
|
stat = &per_cpu(ptcstats, cpu);
|
|
memset(stat, 0, sizeof(struct ptc_stats));
|
|
}
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static int local_atoi(const char *name)
|
|
{
|
|
int val = 0;
|
|
|
|
for (;; name++) {
|
|
switch (*name) {
|
|
case '0' ... '9':
|
|
val = 10*val+(*name-'0');
|
|
break;
|
|
default:
|
|
return val;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Parse the values written to /sys/kernel/debug/sgi_uv/bau_tunables.
|
|
* Zero values reset them to defaults.
|
|
*/
|
|
static int parse_tunables_write(struct bau_control *bcp, char *instr,
|
|
int count)
|
|
{
|
|
char *p;
|
|
char *q;
|
|
int cnt = 0;
|
|
int val;
|
|
int e = sizeof(tunables) / sizeof(*tunables);
|
|
|
|
p = instr + strspn(instr, WHITESPACE);
|
|
q = p;
|
|
for (; *p; p = q + strspn(q, WHITESPACE)) {
|
|
q = p + strcspn(p, WHITESPACE);
|
|
cnt++;
|
|
if (q == p)
|
|
break;
|
|
}
|
|
if (cnt != e) {
|
|
printk(KERN_INFO "bau tunable error: should be %d values\n", e);
|
|
return -EINVAL;
|
|
}
|
|
|
|
p = instr + strspn(instr, WHITESPACE);
|
|
q = p;
|
|
for (cnt = 0; *p; p = q + strspn(q, WHITESPACE), cnt++) {
|
|
q = p + strcspn(p, WHITESPACE);
|
|
val = local_atoi(p);
|
|
switch (cnt) {
|
|
case 0:
|
|
if (val == 0) {
|
|
max_concurr = MAX_BAU_CONCURRENT;
|
|
max_concurr_const = MAX_BAU_CONCURRENT;
|
|
continue;
|
|
}
|
|
if (val < 1 || val > bcp->cpus_in_uvhub) {
|
|
printk(KERN_DEBUG
|
|
"Error: BAU max concurrent %d is invalid\n",
|
|
val);
|
|
return -EINVAL;
|
|
}
|
|
max_concurr = val;
|
|
max_concurr_const = val;
|
|
continue;
|
|
default:
|
|
if (val == 0)
|
|
*tunables[cnt].tunp = tunables[cnt].deflt;
|
|
else
|
|
*tunables[cnt].tunp = val;
|
|
continue;
|
|
}
|
|
if (q == p)
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Handle a write to debugfs. (/sys/kernel/debug/sgi_uv/bau_tunables)
|
|
*/
|
|
static ssize_t tunables_write(struct file *file, const char __user *user,
|
|
size_t count, loff_t *data)
|
|
{
|
|
int cpu;
|
|
int ret;
|
|
char instr[100];
|
|
struct bau_control *bcp;
|
|
|
|
if (count == 0 || count > sizeof(instr)-1)
|
|
return -EINVAL;
|
|
if (copy_from_user(instr, user, count))
|
|
return -EFAULT;
|
|
|
|
instr[count] = '\0';
|
|
|
|
cpu = get_cpu();
|
|
bcp = &per_cpu(bau_control, cpu);
|
|
ret = parse_tunables_write(bcp, instr, count);
|
|
put_cpu();
|
|
if (ret)
|
|
return ret;
|
|
|
|
for_each_present_cpu(cpu) {
|
|
bcp = &per_cpu(bau_control, cpu);
|
|
bcp->max_concurr = max_concurr;
|
|
bcp->max_concurr_const = max_concurr;
|
|
bcp->plugged_delay = plugged_delay;
|
|
bcp->plugsb4reset = plugsb4reset;
|
|
bcp->timeoutsb4reset = timeoutsb4reset;
|
|
bcp->ipi_reset_limit = ipi_reset_limit;
|
|
bcp->complete_threshold = complete_threshold;
|
|
bcp->cong_response_us = congested_respns_us;
|
|
bcp->cong_reps = congested_reps;
|
|
bcp->cong_period = congested_period;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static const struct seq_operations uv_ptc_seq_ops = {
|
|
.start = ptc_seq_start,
|
|
.next = ptc_seq_next,
|
|
.stop = ptc_seq_stop,
|
|
.show = ptc_seq_show
|
|
};
|
|
|
|
static int ptc_proc_open(struct inode *inode, struct file *file)
|
|
{
|
|
return seq_open(file, &uv_ptc_seq_ops);
|
|
}
|
|
|
|
static int tunables_open(struct inode *inode, struct file *file)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static const struct file_operations proc_uv_ptc_operations = {
|
|
.open = ptc_proc_open,
|
|
.read = seq_read,
|
|
.write = ptc_proc_write,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release,
|
|
};
|
|
|
|
static const struct file_operations tunables_fops = {
|
|
.open = tunables_open,
|
|
.read = tunables_read,
|
|
.write = tunables_write,
|
|
.llseek = default_llseek,
|
|
};
|
|
|
|
static int __init uv_ptc_init(void)
|
|
{
|
|
struct proc_dir_entry *proc_uv_ptc;
|
|
|
|
if (!is_uv_system())
|
|
return 0;
|
|
|
|
proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL,
|
|
&proc_uv_ptc_operations);
|
|
if (!proc_uv_ptc) {
|
|
printk(KERN_ERR "unable to create %s proc entry\n",
|
|
UV_PTC_BASENAME);
|
|
return -EINVAL;
|
|
}
|
|
|
|
tunables_dir = debugfs_create_dir(UV_BAU_TUNABLES_DIR, NULL);
|
|
if (!tunables_dir) {
|
|
printk(KERN_ERR "unable to create debugfs directory %s\n",
|
|
UV_BAU_TUNABLES_DIR);
|
|
return -EINVAL;
|
|
}
|
|
tunables_file = debugfs_create_file(UV_BAU_TUNABLES_FILE, 0600,
|
|
tunables_dir, NULL, &tunables_fops);
|
|
if (!tunables_file) {
|
|
printk(KERN_ERR "unable to create debugfs file %s\n",
|
|
UV_BAU_TUNABLES_FILE);
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initialize the sending side's sending buffers.
|
|
*/
|
|
static void activation_descriptor_init(int node, int pnode, int base_pnode)
|
|
{
|
|
int i;
|
|
int cpu;
|
|
unsigned long pa;
|
|
unsigned long m;
|
|
unsigned long n;
|
|
size_t dsize;
|
|
struct bau_desc *bau_desc;
|
|
struct bau_desc *bd2;
|
|
struct bau_control *bcp;
|
|
|
|
/*
|
|
* each bau_desc is 64 bytes; there are 8 (ITEMS_PER_DESC)
|
|
* per cpu; and one per cpu on the uvhub (ADP_SZ)
|
|
*/
|
|
dsize = sizeof(struct bau_desc) * ADP_SZ * ITEMS_PER_DESC;
|
|
bau_desc = kmalloc_node(dsize, GFP_KERNEL, node);
|
|
BUG_ON(!bau_desc);
|
|
|
|
pa = uv_gpa(bau_desc); /* need the real nasid*/
|
|
n = pa >> uv_nshift;
|
|
m = pa & uv_mmask;
|
|
|
|
/* the 14-bit pnode */
|
|
write_mmr_descriptor_base(pnode, (n << UV_DESC_PSHIFT | m));
|
|
/*
|
|
* Initializing all 8 (ITEMS_PER_DESC) descriptors for each
|
|
* cpu even though we only use the first one; one descriptor can
|
|
* describe a broadcast to 256 uv hubs.
|
|
*/
|
|
for (i = 0, bd2 = bau_desc; i < (ADP_SZ * ITEMS_PER_DESC); i++, bd2++) {
|
|
memset(bd2, 0, sizeof(struct bau_desc));
|
|
bd2->header.swack_flag = 1;
|
|
/*
|
|
* The base_dest_nasid set in the message header is the nasid
|
|
* of the first uvhub in the partition. The bit map will
|
|
* indicate destination pnode numbers relative to that base.
|
|
* They may not be consecutive if nasid striding is being used.
|
|
*/
|
|
bd2->header.base_dest_nasid = UV_PNODE_TO_NASID(base_pnode);
|
|
bd2->header.dest_subnodeid = UV_LB_SUBNODEID;
|
|
bd2->header.command = UV_NET_ENDPOINT_INTD;
|
|
bd2->header.int_both = 1;
|
|
/*
|
|
* all others need to be set to zero:
|
|
* fairness chaining multilevel count replied_to
|
|
*/
|
|
}
|
|
for_each_present_cpu(cpu) {
|
|
if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu)))
|
|
continue;
|
|
bcp = &per_cpu(bau_control, cpu);
|
|
bcp->descriptor_base = bau_desc;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* initialize the destination side's receiving buffers
|
|
* entered for each uvhub in the partition
|
|
* - node is first node (kernel memory notion) on the uvhub
|
|
* - pnode is the uvhub's physical identifier
|
|
*/
|
|
static void pq_init(int node, int pnode)
|
|
{
|
|
int cpu;
|
|
size_t plsize;
|
|
char *cp;
|
|
void *vp;
|
|
unsigned long pn;
|
|
unsigned long first;
|
|
unsigned long pn_first;
|
|
unsigned long last;
|
|
struct bau_pq_entry *pqp;
|
|
struct bau_control *bcp;
|
|
|
|
plsize = (DEST_Q_SIZE + 1) * sizeof(struct bau_pq_entry);
|
|
vp = kmalloc_node(plsize, GFP_KERNEL, node);
|
|
pqp = (struct bau_pq_entry *)vp;
|
|
BUG_ON(!pqp);
|
|
|
|
cp = (char *)pqp + 31;
|
|
pqp = (struct bau_pq_entry *)(((unsigned long)cp >> 5) << 5);
|
|
|
|
for_each_present_cpu(cpu) {
|
|
if (pnode != uv_cpu_to_pnode(cpu))
|
|
continue;
|
|
/* for every cpu on this pnode: */
|
|
bcp = &per_cpu(bau_control, cpu);
|
|
bcp->queue_first = pqp;
|
|
bcp->bau_msg_head = pqp;
|
|
bcp->queue_last = pqp + (DEST_Q_SIZE - 1);
|
|
}
|
|
/*
|
|
* need the pnode of where the memory was really allocated
|
|
*/
|
|
pn = uv_gpa(pqp) >> uv_nshift;
|
|
first = uv_physnodeaddr(pqp);
|
|
pn_first = ((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) | first;
|
|
last = uv_physnodeaddr(pqp + (DEST_Q_SIZE - 1));
|
|
write_mmr_payload_first(pnode, pn_first);
|
|
write_mmr_payload_tail(pnode, first);
|
|
write_mmr_payload_last(pnode, last);
|
|
|
|
/* in effect, all msg_type's are set to MSG_NOOP */
|
|
memset(pqp, 0, sizeof(struct bau_pq_entry) * DEST_Q_SIZE);
|
|
}
|
|
|
|
/*
|
|
* Initialization of each UV hub's structures
|
|
*/
|
|
static void __init init_uvhub(int uvhub, int vector, int base_pnode)
|
|
{
|
|
int node;
|
|
int pnode;
|
|
unsigned long apicid;
|
|
|
|
node = uvhub_to_first_node(uvhub);
|
|
pnode = uv_blade_to_pnode(uvhub);
|
|
|
|
activation_descriptor_init(node, pnode, base_pnode);
|
|
|
|
pq_init(node, pnode);
|
|
/*
|
|
* The below initialization can't be in firmware because the
|
|
* messaging IRQ will be determined by the OS.
|
|
*/
|
|
apicid = uvhub_to_first_apicid(uvhub) | uv_apicid_hibits;
|
|
write_mmr_data_config(pnode, ((apicid << 32) | vector));
|
|
}
|
|
|
|
/*
|
|
* We will set BAU_MISC_CONTROL with a timeout period.
|
|
* But the BIOS has set UVH_AGING_PRESCALE_SEL and UVH_TRANSACTION_TIMEOUT.
|
|
* So the destination timeout period has to be calculated from them.
|
|
*/
|
|
static int calculate_destination_timeout(void)
|
|
{
|
|
unsigned long mmr_image;
|
|
int mult1;
|
|
int mult2;
|
|
int index;
|
|
int base;
|
|
int ret;
|
|
unsigned long ts_ns;
|
|
|
|
if (is_uv1_hub()) {
|
|
mult1 = SOFTACK_TIMEOUT_PERIOD & BAU_MISC_CONTROL_MULT_MASK;
|
|
mmr_image = uv_read_local_mmr(UVH_AGING_PRESCALE_SEL);
|
|
index = (mmr_image >> BAU_URGENCY_7_SHIFT) & BAU_URGENCY_7_MASK;
|
|
mmr_image = uv_read_local_mmr(UVH_TRANSACTION_TIMEOUT);
|
|
mult2 = (mmr_image >> BAU_TRANS_SHIFT) & BAU_TRANS_MASK;
|
|
base = timeout_base_ns[index];
|
|
ts_ns = base * mult1 * mult2;
|
|
ret = ts_ns / 1000;
|
|
} else {
|
|
/* 4 bits 0/1 for 10/80us, 3 bits of multiplier */
|
|
mmr_image = uv_read_local_mmr(UVH_AGING_PRESCALE_SEL);
|
|
mmr_image = (mmr_image & UV_SA_MASK) >> UV_SA_SHFT;
|
|
if (mmr_image & (1L << UV2_ACK_UNITS_SHFT))
|
|
mult1 = 80;
|
|
else
|
|
mult1 = 10;
|
|
base = mmr_image & UV2_ACK_MASK;
|
|
ret = mult1 * base;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void __init init_per_cpu_tunables(void)
|
|
{
|
|
int cpu;
|
|
struct bau_control *bcp;
|
|
|
|
for_each_present_cpu(cpu) {
|
|
bcp = &per_cpu(bau_control, cpu);
|
|
bcp->baudisabled = 0;
|
|
bcp->statp = &per_cpu(ptcstats, cpu);
|
|
/* time interval to catch a hardware stay-busy bug */
|
|
bcp->timeout_interval = usec_2_cycles(2*timeout_us);
|
|
bcp->max_concurr = max_concurr;
|
|
bcp->max_concurr_const = max_concurr;
|
|
bcp->plugged_delay = plugged_delay;
|
|
bcp->plugsb4reset = plugsb4reset;
|
|
bcp->timeoutsb4reset = timeoutsb4reset;
|
|
bcp->ipi_reset_limit = ipi_reset_limit;
|
|
bcp->complete_threshold = complete_threshold;
|
|
bcp->cong_response_us = congested_respns_us;
|
|
bcp->cong_reps = congested_reps;
|
|
bcp->cong_period = congested_period;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Scan all cpus to collect blade and socket summaries.
|
|
*/
|
|
static int __init get_cpu_topology(int base_pnode,
|
|
struct uvhub_desc *uvhub_descs,
|
|
unsigned char *uvhub_mask)
|
|
{
|
|
int cpu;
|
|
int pnode;
|
|
int uvhub;
|
|
int socket;
|
|
struct bau_control *bcp;
|
|
struct uvhub_desc *bdp;
|
|
struct socket_desc *sdp;
|
|
|
|
for_each_present_cpu(cpu) {
|
|
bcp = &per_cpu(bau_control, cpu);
|
|
|
|
memset(bcp, 0, sizeof(struct bau_control));
|
|
|
|
pnode = uv_cpu_hub_info(cpu)->pnode;
|
|
if ((pnode - base_pnode) >= UV_DISTRIBUTION_SIZE) {
|
|
printk(KERN_EMERG
|
|
"cpu %d pnode %d-%d beyond %d; BAU disabled\n",
|
|
cpu, pnode, base_pnode, UV_DISTRIBUTION_SIZE);
|
|
return 1;
|
|
}
|
|
|
|
bcp->osnode = cpu_to_node(cpu);
|
|
bcp->partition_base_pnode = base_pnode;
|
|
|
|
uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
|
|
*(uvhub_mask + (uvhub/8)) |= (1 << (uvhub%8));
|
|
bdp = &uvhub_descs[uvhub];
|
|
|
|
bdp->num_cpus++;
|
|
bdp->uvhub = uvhub;
|
|
bdp->pnode = pnode;
|
|
|
|
/* kludge: 'assuming' one node per socket, and assuming that
|
|
disabling a socket just leaves a gap in node numbers */
|
|
socket = bcp->osnode & 1;
|
|
bdp->socket_mask |= (1 << socket);
|
|
sdp = &bdp->socket[socket];
|
|
sdp->cpu_number[sdp->num_cpus] = cpu;
|
|
sdp->num_cpus++;
|
|
if (sdp->num_cpus > MAX_CPUS_PER_SOCKET) {
|
|
printk(KERN_EMERG "%d cpus per socket invalid\n",
|
|
sdp->num_cpus);
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Each socket is to get a local array of pnodes/hubs.
|
|
*/
|
|
static void make_per_cpu_thp(struct bau_control *smaster)
|
|
{
|
|
int cpu;
|
|
size_t hpsz = sizeof(struct hub_and_pnode) * num_possible_cpus();
|
|
|
|
smaster->thp = kmalloc_node(hpsz, GFP_KERNEL, smaster->osnode);
|
|
memset(smaster->thp, 0, hpsz);
|
|
for_each_present_cpu(cpu) {
|
|
smaster->thp[cpu].pnode = uv_cpu_hub_info(cpu)->pnode;
|
|
smaster->thp[cpu].uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize all the per_cpu information for the cpu's on a given socket,
|
|
* given what has been gathered into the socket_desc struct.
|
|
* And reports the chosen hub and socket masters back to the caller.
|
|
*/
|
|
static int scan_sock(struct socket_desc *sdp, struct uvhub_desc *bdp,
|
|
struct bau_control **smasterp,
|
|
struct bau_control **hmasterp)
|
|
{
|
|
int i;
|
|
int cpu;
|
|
struct bau_control *bcp;
|
|
|
|
for (i = 0; i < sdp->num_cpus; i++) {
|
|
cpu = sdp->cpu_number[i];
|
|
bcp = &per_cpu(bau_control, cpu);
|
|
bcp->cpu = cpu;
|
|
if (i == 0) {
|
|
*smasterp = bcp;
|
|
if (!(*hmasterp))
|
|
*hmasterp = bcp;
|
|
}
|
|
bcp->cpus_in_uvhub = bdp->num_cpus;
|
|
bcp->cpus_in_socket = sdp->num_cpus;
|
|
bcp->socket_master = *smasterp;
|
|
bcp->uvhub = bdp->uvhub;
|
|
bcp->uvhub_master = *hmasterp;
|
|
bcp->uvhub_cpu = uv_cpu_hub_info(cpu)->blade_processor_id;
|
|
if (bcp->uvhub_cpu >= MAX_CPUS_PER_UVHUB) {
|
|
printk(KERN_EMERG "%d cpus per uvhub invalid\n",
|
|
bcp->uvhub_cpu);
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Summarize the blade and socket topology into the per_cpu structures.
|
|
*/
|
|
static int __init summarize_uvhub_sockets(int nuvhubs,
|
|
struct uvhub_desc *uvhub_descs,
|
|
unsigned char *uvhub_mask)
|
|
{
|
|
int socket;
|
|
int uvhub;
|
|
unsigned short socket_mask;
|
|
|
|
for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
|
|
struct uvhub_desc *bdp;
|
|
struct bau_control *smaster = NULL;
|
|
struct bau_control *hmaster = NULL;
|
|
|
|
if (!(*(uvhub_mask + (uvhub/8)) & (1 << (uvhub%8))))
|
|
continue;
|
|
|
|
bdp = &uvhub_descs[uvhub];
|
|
socket_mask = bdp->socket_mask;
|
|
socket = 0;
|
|
while (socket_mask) {
|
|
struct socket_desc *sdp;
|
|
if ((socket_mask & 1)) {
|
|
sdp = &bdp->socket[socket];
|
|
if (scan_sock(sdp, bdp, &smaster, &hmaster))
|
|
return 1;
|
|
make_per_cpu_thp(smaster);
|
|
}
|
|
socket++;
|
|
socket_mask = (socket_mask >> 1);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* initialize the bau_control structure for each cpu
|
|
*/
|
|
static int __init init_per_cpu(int nuvhubs, int base_part_pnode)
|
|
{
|
|
unsigned char *uvhub_mask;
|
|
void *vp;
|
|
struct uvhub_desc *uvhub_descs;
|
|
|
|
timeout_us = calculate_destination_timeout();
|
|
|
|
vp = kmalloc(nuvhubs * sizeof(struct uvhub_desc), GFP_KERNEL);
|
|
uvhub_descs = (struct uvhub_desc *)vp;
|
|
memset(uvhub_descs, 0, nuvhubs * sizeof(struct uvhub_desc));
|
|
uvhub_mask = kzalloc((nuvhubs+7)/8, GFP_KERNEL);
|
|
|
|
if (get_cpu_topology(base_part_pnode, uvhub_descs, uvhub_mask))
|
|
return 1;
|
|
|
|
if (summarize_uvhub_sockets(nuvhubs, uvhub_descs, uvhub_mask))
|
|
return 1;
|
|
|
|
kfree(uvhub_descs);
|
|
kfree(uvhub_mask);
|
|
init_per_cpu_tunables();
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initialization of BAU-related structures
|
|
*/
|
|
static int __init uv_bau_init(void)
|
|
{
|
|
int uvhub;
|
|
int pnode;
|
|
int nuvhubs;
|
|
int cur_cpu;
|
|
int cpus;
|
|
int vector;
|
|
cpumask_var_t *mask;
|
|
|
|
if (!is_uv_system())
|
|
return 0;
|
|
|
|
if (nobau)
|
|
return 0;
|
|
|
|
for_each_possible_cpu(cur_cpu) {
|
|
mask = &per_cpu(uv_flush_tlb_mask, cur_cpu);
|
|
zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cur_cpu));
|
|
}
|
|
|
|
uv_nshift = uv_hub_info->m_val;
|
|
uv_mmask = (1UL << uv_hub_info->m_val) - 1;
|
|
nuvhubs = uv_num_possible_blades();
|
|
spin_lock_init(&disable_lock);
|
|
congested_cycles = usec_2_cycles(congested_respns_us);
|
|
|
|
uv_base_pnode = 0x7fffffff;
|
|
for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
|
|
cpus = uv_blade_nr_possible_cpus(uvhub);
|
|
if (cpus && (uv_blade_to_pnode(uvhub) < uv_base_pnode))
|
|
uv_base_pnode = uv_blade_to_pnode(uvhub);
|
|
}
|
|
|
|
if (init_per_cpu(nuvhubs, uv_base_pnode)) {
|
|
nobau = 1;
|
|
return 0;
|
|
}
|
|
|
|
vector = UV_BAU_MESSAGE;
|
|
for_each_possible_blade(uvhub)
|
|
if (uv_blade_nr_possible_cpus(uvhub))
|
|
init_uvhub(uvhub, vector, uv_base_pnode);
|
|
|
|
enable_timeouts();
|
|
alloc_intr_gate(vector, uv_bau_message_intr1);
|
|
|
|
for_each_possible_blade(uvhub) {
|
|
if (uv_blade_nr_possible_cpus(uvhub)) {
|
|
unsigned long val;
|
|
unsigned long mmr;
|
|
pnode = uv_blade_to_pnode(uvhub);
|
|
/* INIT the bau */
|
|
val = 1L << 63;
|
|
write_gmmr_activation(pnode, val);
|
|
mmr = 1; /* should be 1 to broadcast to both sockets */
|
|
write_mmr_data_broadcast(pnode, mmr);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
core_initcall(uv_bau_init);
|
|
fs_initcall(uv_ptc_init);
|