OpenCloudOS-Kernel/net/dsa/dsa2.c

1810 lines
40 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net/dsa/dsa2.c - Hardware switch handling, binding version 2
* Copyright (c) 2008-2009 Marvell Semiconductor
* Copyright (c) 2013 Florian Fainelli <florian@openwrt.org>
* Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
*/
#include <linux/device.h>
#include <linux/err.h>
#include <linux/list.h>
#include <linux/netdevice.h>
#include <linux/slab.h>
#include <linux/rtnetlink.h>
#include <linux/of.h>
#include <linux/of_net.h>
#include <net/devlink.h>
#include <net/sch_generic.h>
#include "dsa_priv.h"
static DEFINE_MUTEX(dsa2_mutex);
LIST_HEAD(dsa_tree_list);
/* Track the bridges with forwarding offload enabled */
static unsigned long dsa_fwd_offloading_bridges;
/**
* dsa_tree_notify - Execute code for all switches in a DSA switch tree.
* @dst: collection of struct dsa_switch devices to notify.
* @e: event, must be of type DSA_NOTIFIER_*
* @v: event-specific value.
*
* Given a struct dsa_switch_tree, this can be used to run a function once for
* each member DSA switch. The other alternative of traversing the tree is only
* through its ports list, which does not uniquely list the switches.
*/
int dsa_tree_notify(struct dsa_switch_tree *dst, unsigned long e, void *v)
{
struct raw_notifier_head *nh = &dst->nh;
int err;
err = raw_notifier_call_chain(nh, e, v);
return notifier_to_errno(err);
}
/**
* dsa_broadcast - Notify all DSA trees in the system.
* @e: event, must be of type DSA_NOTIFIER_*
* @v: event-specific value.
*
* Can be used to notify the switching fabric of events such as cross-chip
* bridging between disjoint trees (such as islands of tagger-compatible
* switches bridged by an incompatible middle switch).
*
* WARNING: this function is not reliable during probe time, because probing
* between trees is asynchronous and not all DSA trees might have probed.
*/
int dsa_broadcast(unsigned long e, void *v)
{
struct dsa_switch_tree *dst;
int err = 0;
list_for_each_entry(dst, &dsa_tree_list, list) {
err = dsa_tree_notify(dst, e, v);
if (err)
break;
}
return err;
}
/**
* dsa_lag_map() - Map LAG structure to a linear LAG array
* @dst: Tree in which to record the mapping.
* @lag: LAG structure that is to be mapped to the tree's array.
*
* dsa_lag_id/dsa_lag_by_id can then be used to translate between the
* two spaces. The size of the mapping space is determined by the
* driver by setting ds->num_lag_ids. It is perfectly legal to leave
* it unset if it is not needed, in which case these functions become
* no-ops.
*/
void dsa_lag_map(struct dsa_switch_tree *dst, struct dsa_lag *lag)
{
unsigned int id;
for (id = 1; id <= dst->lags_len; id++) {
if (!dsa_lag_by_id(dst, id)) {
dst->lags[id - 1] = lag;
lag->id = id;
return;
}
}
/* No IDs left, which is OK. Some drivers do not need it. The
* ones that do, e.g. mv88e6xxx, will discover that dsa_lag_id
* returns an error for this device when joining the LAG. The
* driver can then return -EOPNOTSUPP back to DSA, which will
* fall back to a software LAG.
*/
}
/**
* dsa_lag_unmap() - Remove a LAG ID mapping
* @dst: Tree in which the mapping is recorded.
* @lag: LAG structure that was mapped.
*
* As there may be multiple users of the mapping, it is only removed
* if there are no other references to it.
*/
void dsa_lag_unmap(struct dsa_switch_tree *dst, struct dsa_lag *lag)
{
unsigned int id;
dsa_lags_foreach_id(id, dst) {
if (dsa_lag_by_id(dst, id) == lag) {
dst->lags[id - 1] = NULL;
lag->id = 0;
break;
}
}
}
struct dsa_lag *dsa_tree_lag_find(struct dsa_switch_tree *dst,
const struct net_device *lag_dev)
{
struct dsa_port *dp;
list_for_each_entry(dp, &dst->ports, list)
if (dsa_port_lag_dev_get(dp) == lag_dev)
return dp->lag;
return NULL;
}
struct dsa_bridge *dsa_tree_bridge_find(struct dsa_switch_tree *dst,
const struct net_device *br)
{
struct dsa_port *dp;
list_for_each_entry(dp, &dst->ports, list)
if (dsa_port_bridge_dev_get(dp) == br)
return dp->bridge;
return NULL;
}
static int dsa_bridge_num_find(const struct net_device *bridge_dev)
{
struct dsa_switch_tree *dst;
list_for_each_entry(dst, &dsa_tree_list, list) {
struct dsa_bridge *bridge;
bridge = dsa_tree_bridge_find(dst, bridge_dev);
if (bridge)
return bridge->num;
}
return 0;
}
unsigned int dsa_bridge_num_get(const struct net_device *bridge_dev, int max)
{
unsigned int bridge_num = dsa_bridge_num_find(bridge_dev);
/* Switches without FDB isolation support don't get unique
* bridge numbering
*/
if (!max)
return 0;
if (!bridge_num) {
/* First port that requests FDB isolation or TX forwarding
* offload for this bridge
*/
bridge_num = find_next_zero_bit(&dsa_fwd_offloading_bridges,
DSA_MAX_NUM_OFFLOADING_BRIDGES,
1);
if (bridge_num >= max)
return 0;
set_bit(bridge_num, &dsa_fwd_offloading_bridges);
}
return bridge_num;
}
void dsa_bridge_num_put(const struct net_device *bridge_dev,
unsigned int bridge_num)
{
/* Since we refcount bridges, we know that when we call this function
* it is no longer in use, so we can just go ahead and remove it from
* the bit mask.
*/
clear_bit(bridge_num, &dsa_fwd_offloading_bridges);
}
struct dsa_switch *dsa_switch_find(int tree_index, int sw_index)
{
struct dsa_switch_tree *dst;
struct dsa_port *dp;
list_for_each_entry(dst, &dsa_tree_list, list) {
if (dst->index != tree_index)
continue;
list_for_each_entry(dp, &dst->ports, list) {
if (dp->ds->index != sw_index)
continue;
return dp->ds;
}
}
return NULL;
}
EXPORT_SYMBOL_GPL(dsa_switch_find);
static struct dsa_switch_tree *dsa_tree_find(int index)
{
struct dsa_switch_tree *dst;
list_for_each_entry(dst, &dsa_tree_list, list)
if (dst->index == index)
return dst;
return NULL;
}
static struct dsa_switch_tree *dsa_tree_alloc(int index)
{
struct dsa_switch_tree *dst;
dst = kzalloc(sizeof(*dst), GFP_KERNEL);
if (!dst)
return NULL;
dst->index = index;
INIT_LIST_HEAD(&dst->rtable);
INIT_LIST_HEAD(&dst->ports);
INIT_LIST_HEAD(&dst->list);
list_add_tail(&dst->list, &dsa_tree_list);
kref_init(&dst->refcount);
return dst;
}
static void dsa_tree_free(struct dsa_switch_tree *dst)
{
if (dst->tag_ops)
dsa_tag_driver_put(dst->tag_ops);
list_del(&dst->list);
kfree(dst);
}
static struct dsa_switch_tree *dsa_tree_get(struct dsa_switch_tree *dst)
{
if (dst)
kref_get(&dst->refcount);
return dst;
}
static struct dsa_switch_tree *dsa_tree_touch(int index)
{
struct dsa_switch_tree *dst;
dst = dsa_tree_find(index);
if (dst)
return dsa_tree_get(dst);
else
return dsa_tree_alloc(index);
}
static void dsa_tree_release(struct kref *ref)
{
struct dsa_switch_tree *dst;
dst = container_of(ref, struct dsa_switch_tree, refcount);
dsa_tree_free(dst);
}
static void dsa_tree_put(struct dsa_switch_tree *dst)
{
if (dst)
kref_put(&dst->refcount, dsa_tree_release);
}
static struct dsa_port *dsa_tree_find_port_by_node(struct dsa_switch_tree *dst,
struct device_node *dn)
{
struct dsa_port *dp;
list_for_each_entry(dp, &dst->ports, list)
if (dp->dn == dn)
return dp;
return NULL;
}
static struct dsa_link *dsa_link_touch(struct dsa_port *dp,
struct dsa_port *link_dp)
{
struct dsa_switch *ds = dp->ds;
struct dsa_switch_tree *dst;
struct dsa_link *dl;
dst = ds->dst;
list_for_each_entry(dl, &dst->rtable, list)
if (dl->dp == dp && dl->link_dp == link_dp)
return dl;
dl = kzalloc(sizeof(*dl), GFP_KERNEL);
if (!dl)
return NULL;
dl->dp = dp;
dl->link_dp = link_dp;
INIT_LIST_HEAD(&dl->list);
list_add_tail(&dl->list, &dst->rtable);
return dl;
}
static bool dsa_port_setup_routing_table(struct dsa_port *dp)
{
struct dsa_switch *ds = dp->ds;
struct dsa_switch_tree *dst = ds->dst;
struct device_node *dn = dp->dn;
struct of_phandle_iterator it;
struct dsa_port *link_dp;
struct dsa_link *dl;
int err;
of_for_each_phandle(&it, err, dn, "link", NULL, 0) {
link_dp = dsa_tree_find_port_by_node(dst, it.node);
if (!link_dp) {
of_node_put(it.node);
return false;
}
dl = dsa_link_touch(dp, link_dp);
if (!dl) {
of_node_put(it.node);
return false;
}
}
return true;
}
static bool dsa_tree_setup_routing_table(struct dsa_switch_tree *dst)
{
bool complete = true;
struct dsa_port *dp;
list_for_each_entry(dp, &dst->ports, list) {
if (dsa_port_is_dsa(dp)) {
complete = dsa_port_setup_routing_table(dp);
if (!complete)
break;
}
}
return complete;
}
static struct dsa_port *dsa_tree_find_first_cpu(struct dsa_switch_tree *dst)
{
struct dsa_port *dp;
list_for_each_entry(dp, &dst->ports, list)
if (dsa_port_is_cpu(dp))
return dp;
return NULL;
}
/* Assign the default CPU port (the first one in the tree) to all ports of the
* fabric which don't already have one as part of their own switch.
*/
static int dsa_tree_setup_default_cpu(struct dsa_switch_tree *dst)
{
struct dsa_port *cpu_dp, *dp;
cpu_dp = dsa_tree_find_first_cpu(dst);
if (!cpu_dp) {
pr_err("DSA: tree %d has no CPU port\n", dst->index);
return -EINVAL;
}
list_for_each_entry(dp, &dst->ports, list) {
if (dp->cpu_dp)
continue;
if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
dp->cpu_dp = cpu_dp;
}
return 0;
}
/* Perform initial assignment of CPU ports to user ports and DSA links in the
* fabric, giving preference to CPU ports local to each switch. Default to
* using the first CPU port in the switch tree if the port does not have a CPU
* port local to this switch.
*/
static int dsa_tree_setup_cpu_ports(struct dsa_switch_tree *dst)
{
struct dsa_port *cpu_dp, *dp;
list_for_each_entry(cpu_dp, &dst->ports, list) {
if (!dsa_port_is_cpu(cpu_dp))
continue;
/* Prefer a local CPU port */
dsa_switch_for_each_port(dp, cpu_dp->ds) {
/* Prefer the first local CPU port found */
if (dp->cpu_dp)
continue;
if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
dp->cpu_dp = cpu_dp;
}
}
return dsa_tree_setup_default_cpu(dst);
}
static void dsa_tree_teardown_cpu_ports(struct dsa_switch_tree *dst)
{
struct dsa_port *dp;
list_for_each_entry(dp, &dst->ports, list)
if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
dp->cpu_dp = NULL;
}
static int dsa_port_setup(struct dsa_port *dp)
{
struct devlink_port *dlp = &dp->devlink_port;
bool dsa_port_link_registered = false;
struct dsa_switch *ds = dp->ds;
bool dsa_port_enabled = false;
int err = 0;
if (dp->setup)
return 0;
if (ds->ops->port_setup) {
err = ds->ops->port_setup(ds, dp->index);
if (err)
return err;
}
switch (dp->type) {
case DSA_PORT_TYPE_UNUSED:
dsa_port_disable(dp);
break;
case DSA_PORT_TYPE_CPU:
err = dsa_port_link_register_of(dp);
if (err)
break;
dsa_port_link_registered = true;
err = dsa_port_enable(dp, NULL);
if (err)
break;
dsa_port_enabled = true;
break;
case DSA_PORT_TYPE_DSA:
err = dsa_port_link_register_of(dp);
if (err)
break;
dsa_port_link_registered = true;
err = dsa_port_enable(dp, NULL);
if (err)
break;
dsa_port_enabled = true;
break;
case DSA_PORT_TYPE_USER:
of_get_mac_address(dp->dn, dp->mac);
err = dsa_slave_create(dp);
if (err)
break;
devlink_port_type_eth_set(dlp, dp->slave);
break;
}
if (err && dsa_port_enabled)
dsa_port_disable(dp);
if (err && dsa_port_link_registered)
dsa_port_link_unregister_of(dp);
if (err) {
if (ds->ops->port_teardown)
ds->ops->port_teardown(ds, dp->index);
return err;
}
dp->setup = true;
return 0;
}
static int dsa_port_devlink_setup(struct dsa_port *dp)
{
struct devlink_port *dlp = &dp->devlink_port;
struct dsa_switch_tree *dst = dp->ds->dst;
struct devlink_port_attrs attrs = {};
struct devlink *dl = dp->ds->devlink;
const unsigned char *id;
unsigned char len;
int err;
id = (const unsigned char *)&dst->index;
len = sizeof(dst->index);
attrs.phys.port_number = dp->index;
memcpy(attrs.switch_id.id, id, len);
attrs.switch_id.id_len = len;
memset(dlp, 0, sizeof(*dlp));
switch (dp->type) {
case DSA_PORT_TYPE_UNUSED:
attrs.flavour = DEVLINK_PORT_FLAVOUR_UNUSED;
break;
case DSA_PORT_TYPE_CPU:
attrs.flavour = DEVLINK_PORT_FLAVOUR_CPU;
break;
case DSA_PORT_TYPE_DSA:
attrs.flavour = DEVLINK_PORT_FLAVOUR_DSA;
break;
case DSA_PORT_TYPE_USER:
attrs.flavour = DEVLINK_PORT_FLAVOUR_PHYSICAL;
break;
}
devlink_port_attrs_set(dlp, &attrs);
err = devlink_port_register(dl, dlp, dp->index);
if (!err)
dp->devlink_port_setup = true;
return err;
}
static void dsa_port_teardown(struct dsa_port *dp)
{
struct devlink_port *dlp = &dp->devlink_port;
struct dsa_switch *ds = dp->ds;
if (!dp->setup)
return;
if (ds->ops->port_teardown)
ds->ops->port_teardown(ds, dp->index);
devlink_port_type_clear(dlp);
switch (dp->type) {
case DSA_PORT_TYPE_UNUSED:
break;
case DSA_PORT_TYPE_CPU:
dsa_port_disable(dp);
dsa_port_link_unregister_of(dp);
break;
case DSA_PORT_TYPE_DSA:
dsa_port_disable(dp);
dsa_port_link_unregister_of(dp);
break;
case DSA_PORT_TYPE_USER:
if (dp->slave) {
dsa_slave_destroy(dp->slave);
dp->slave = NULL;
}
break;
}
dp->setup = false;
}
static void dsa_port_devlink_teardown(struct dsa_port *dp)
{
struct devlink_port *dlp = &dp->devlink_port;
if (dp->devlink_port_setup)
devlink_port_unregister(dlp);
dp->devlink_port_setup = false;
}
/* Destroy the current devlink port, and create a new one which has the UNUSED
* flavour. At this point, any call to ds->ops->port_setup has been already
* balanced out by a call to ds->ops->port_teardown, so we know that any
* devlink port regions the driver had are now unregistered. We then call its
* ds->ops->port_setup again, in order for the driver to re-create them on the
* new devlink port.
*/
static int dsa_port_reinit_as_unused(struct dsa_port *dp)
{
struct dsa_switch *ds = dp->ds;
int err;
dsa_port_devlink_teardown(dp);
dp->type = DSA_PORT_TYPE_UNUSED;
err = dsa_port_devlink_setup(dp);
if (err)
return err;
if (ds->ops->port_setup) {
/* On error, leave the devlink port registered,
* dsa_switch_teardown will clean it up later.
*/
err = ds->ops->port_setup(ds, dp->index);
if (err)
return err;
}
return 0;
}
static int dsa_devlink_info_get(struct devlink *dl,
struct devlink_info_req *req,
struct netlink_ext_ack *extack)
{
struct dsa_switch *ds = dsa_devlink_to_ds(dl);
if (ds->ops->devlink_info_get)
return ds->ops->devlink_info_get(ds, req, extack);
return -EOPNOTSUPP;
}
static int dsa_devlink_sb_pool_get(struct devlink *dl,
unsigned int sb_index, u16 pool_index,
struct devlink_sb_pool_info *pool_info)
{
struct dsa_switch *ds = dsa_devlink_to_ds(dl);
if (!ds->ops->devlink_sb_pool_get)
return -EOPNOTSUPP;
return ds->ops->devlink_sb_pool_get(ds, sb_index, pool_index,
pool_info);
}
static int dsa_devlink_sb_pool_set(struct devlink *dl, unsigned int sb_index,
u16 pool_index, u32 size,
enum devlink_sb_threshold_type threshold_type,
struct netlink_ext_ack *extack)
{
struct dsa_switch *ds = dsa_devlink_to_ds(dl);
if (!ds->ops->devlink_sb_pool_set)
return -EOPNOTSUPP;
return ds->ops->devlink_sb_pool_set(ds, sb_index, pool_index, size,
threshold_type, extack);
}
static int dsa_devlink_sb_port_pool_get(struct devlink_port *dlp,
unsigned int sb_index, u16 pool_index,
u32 *p_threshold)
{
struct dsa_switch *ds = dsa_devlink_port_to_ds(dlp);
int port = dsa_devlink_port_to_port(dlp);
if (!ds->ops->devlink_sb_port_pool_get)
return -EOPNOTSUPP;
return ds->ops->devlink_sb_port_pool_get(ds, port, sb_index,
pool_index, p_threshold);
}
static int dsa_devlink_sb_port_pool_set(struct devlink_port *dlp,
unsigned int sb_index, u16 pool_index,
u32 threshold,
struct netlink_ext_ack *extack)
{
struct dsa_switch *ds = dsa_devlink_port_to_ds(dlp);
int port = dsa_devlink_port_to_port(dlp);
if (!ds->ops->devlink_sb_port_pool_set)
return -EOPNOTSUPP;
return ds->ops->devlink_sb_port_pool_set(ds, port, sb_index,
pool_index, threshold, extack);
}
static int
dsa_devlink_sb_tc_pool_bind_get(struct devlink_port *dlp,
unsigned int sb_index, u16 tc_index,
enum devlink_sb_pool_type pool_type,
u16 *p_pool_index, u32 *p_threshold)
{
struct dsa_switch *ds = dsa_devlink_port_to_ds(dlp);
int port = dsa_devlink_port_to_port(dlp);
if (!ds->ops->devlink_sb_tc_pool_bind_get)
return -EOPNOTSUPP;
return ds->ops->devlink_sb_tc_pool_bind_get(ds, port, sb_index,
tc_index, pool_type,
p_pool_index, p_threshold);
}
static int
dsa_devlink_sb_tc_pool_bind_set(struct devlink_port *dlp,
unsigned int sb_index, u16 tc_index,
enum devlink_sb_pool_type pool_type,
u16 pool_index, u32 threshold,
struct netlink_ext_ack *extack)
{
struct dsa_switch *ds = dsa_devlink_port_to_ds(dlp);
int port = dsa_devlink_port_to_port(dlp);
if (!ds->ops->devlink_sb_tc_pool_bind_set)
return -EOPNOTSUPP;
return ds->ops->devlink_sb_tc_pool_bind_set(ds, port, sb_index,
tc_index, pool_type,
pool_index, threshold,
extack);
}
static int dsa_devlink_sb_occ_snapshot(struct devlink *dl,
unsigned int sb_index)
{
struct dsa_switch *ds = dsa_devlink_to_ds(dl);
if (!ds->ops->devlink_sb_occ_snapshot)
return -EOPNOTSUPP;
return ds->ops->devlink_sb_occ_snapshot(ds, sb_index);
}
static int dsa_devlink_sb_occ_max_clear(struct devlink *dl,
unsigned int sb_index)
{
struct dsa_switch *ds = dsa_devlink_to_ds(dl);
if (!ds->ops->devlink_sb_occ_max_clear)
return -EOPNOTSUPP;
return ds->ops->devlink_sb_occ_max_clear(ds, sb_index);
}
static int dsa_devlink_sb_occ_port_pool_get(struct devlink_port *dlp,
unsigned int sb_index,
u16 pool_index, u32 *p_cur,
u32 *p_max)
{
struct dsa_switch *ds = dsa_devlink_port_to_ds(dlp);
int port = dsa_devlink_port_to_port(dlp);
if (!ds->ops->devlink_sb_occ_port_pool_get)
return -EOPNOTSUPP;
return ds->ops->devlink_sb_occ_port_pool_get(ds, port, sb_index,
pool_index, p_cur, p_max);
}
static int
dsa_devlink_sb_occ_tc_port_bind_get(struct devlink_port *dlp,
unsigned int sb_index, u16 tc_index,
enum devlink_sb_pool_type pool_type,
u32 *p_cur, u32 *p_max)
{
struct dsa_switch *ds = dsa_devlink_port_to_ds(dlp);
int port = dsa_devlink_port_to_port(dlp);
if (!ds->ops->devlink_sb_occ_tc_port_bind_get)
return -EOPNOTSUPP;
return ds->ops->devlink_sb_occ_tc_port_bind_get(ds, port,
sb_index, tc_index,
pool_type, p_cur,
p_max);
}
static const struct devlink_ops dsa_devlink_ops = {
.info_get = dsa_devlink_info_get,
.sb_pool_get = dsa_devlink_sb_pool_get,
.sb_pool_set = dsa_devlink_sb_pool_set,
.sb_port_pool_get = dsa_devlink_sb_port_pool_get,
.sb_port_pool_set = dsa_devlink_sb_port_pool_set,
.sb_tc_pool_bind_get = dsa_devlink_sb_tc_pool_bind_get,
.sb_tc_pool_bind_set = dsa_devlink_sb_tc_pool_bind_set,
.sb_occ_snapshot = dsa_devlink_sb_occ_snapshot,
.sb_occ_max_clear = dsa_devlink_sb_occ_max_clear,
.sb_occ_port_pool_get = dsa_devlink_sb_occ_port_pool_get,
.sb_occ_tc_port_bind_get = dsa_devlink_sb_occ_tc_port_bind_get,
};
static int dsa_switch_setup_tag_protocol(struct dsa_switch *ds)
{
const struct dsa_device_ops *tag_ops = ds->dst->tag_ops;
struct dsa_switch_tree *dst = ds->dst;
struct dsa_port *cpu_dp;
int err;
if (tag_ops->proto == dst->default_proto)
goto connect;
dsa_switch_for_each_cpu_port(cpu_dp, ds) {
rtnl_lock();
err = ds->ops->change_tag_protocol(ds, cpu_dp->index,
tag_ops->proto);
rtnl_unlock();
if (err) {
dev_err(ds->dev, "Unable to use tag protocol \"%s\": %pe\n",
tag_ops->name, ERR_PTR(err));
return err;
}
}
connect:
if (tag_ops->connect) {
err = tag_ops->connect(ds);
if (err)
return err;
}
if (ds->ops->connect_tag_protocol) {
err = ds->ops->connect_tag_protocol(ds, tag_ops->proto);
if (err) {
dev_err(ds->dev,
"Unable to connect to tag protocol \"%s\": %pe\n",
tag_ops->name, ERR_PTR(err));
goto disconnect;
}
}
return 0;
disconnect:
if (tag_ops->disconnect)
tag_ops->disconnect(ds);
return err;
}
static int dsa_switch_setup(struct dsa_switch *ds)
{
struct dsa_devlink_priv *dl_priv;
struct dsa_port *dp;
int err;
if (ds->setup)
return 0;
/* Initialize ds->phys_mii_mask before registering the slave MDIO bus
* driver and before ops->setup() has run, since the switch drivers and
* the slave MDIO bus driver rely on these values for probing PHY
* devices or not
*/
ds->phys_mii_mask |= dsa_user_ports(ds);
/* Add the switch to devlink before calling setup, so that setup can
* add dpipe tables
*/
ds->devlink =
devlink_alloc(&dsa_devlink_ops, sizeof(*dl_priv), ds->dev);
if (!ds->devlink)
return -ENOMEM;
dl_priv = devlink_priv(ds->devlink);
dl_priv->ds = ds;
/* Setup devlink port instances now, so that the switch
* setup() can register regions etc, against the ports
*/
dsa_switch_for_each_port(dp, ds) {
err = dsa_port_devlink_setup(dp);
if (err)
goto unregister_devlink_ports;
}
err = dsa_switch_register_notifier(ds);
if (err)
goto unregister_devlink_ports;
ds->configure_vlan_while_not_filtering = true;
err = ds->ops->setup(ds);
if (err < 0)
goto unregister_notifier;
err = dsa_switch_setup_tag_protocol(ds);
if (err)
goto teardown;
if (!ds->slave_mii_bus && ds->ops->phy_read) {
ds->slave_mii_bus = mdiobus_alloc();
if (!ds->slave_mii_bus) {
err = -ENOMEM;
goto teardown;
}
dsa_slave_mii_bus_init(ds);
err = mdiobus_register(ds->slave_mii_bus);
if (err < 0)
goto free_slave_mii_bus;
}
ds->setup = true;
devlink_register(ds->devlink);
return 0;
free_slave_mii_bus:
if (ds->slave_mii_bus && ds->ops->phy_read)
mdiobus_free(ds->slave_mii_bus);
teardown:
if (ds->ops->teardown)
ds->ops->teardown(ds);
unregister_notifier:
dsa_switch_unregister_notifier(ds);
unregister_devlink_ports:
dsa_switch_for_each_port(dp, ds)
dsa_port_devlink_teardown(dp);
devlink_free(ds->devlink);
ds->devlink = NULL;
return err;
}
static void dsa_switch_teardown(struct dsa_switch *ds)
{
struct dsa_port *dp;
if (!ds->setup)
return;
if (ds->devlink)
devlink_unregister(ds->devlink);
if (ds->slave_mii_bus && ds->ops->phy_read) {
mdiobus_unregister(ds->slave_mii_bus);
mdiobus_free(ds->slave_mii_bus);
ds->slave_mii_bus = NULL;
}
if (ds->ops->teardown)
ds->ops->teardown(ds);
dsa_switch_unregister_notifier(ds);
if (ds->devlink) {
dsa_switch_for_each_port(dp, ds)
dsa_port_devlink_teardown(dp);
devlink_free(ds->devlink);
ds->devlink = NULL;
}
ds->setup = false;
}
/* First tear down the non-shared, then the shared ports. This ensures that
* all work items scheduled by our switchdev handlers for user ports have
* completed before we destroy the refcounting kept on the shared ports.
*/
static void dsa_tree_teardown_ports(struct dsa_switch_tree *dst)
{
struct dsa_port *dp;
list_for_each_entry(dp, &dst->ports, list)
if (dsa_port_is_user(dp) || dsa_port_is_unused(dp))
dsa_port_teardown(dp);
dsa_flush_workqueue();
list_for_each_entry(dp, &dst->ports, list)
if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp))
dsa_port_teardown(dp);
}
static void dsa_tree_teardown_switches(struct dsa_switch_tree *dst)
{
struct dsa_port *dp;
list_for_each_entry(dp, &dst->ports, list)
dsa_switch_teardown(dp->ds);
}
/* Bring shared ports up first, then non-shared ports */
static int dsa_tree_setup_ports(struct dsa_switch_tree *dst)
{
struct dsa_port *dp;
int err = 0;
list_for_each_entry(dp, &dst->ports, list) {
if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp)) {
err = dsa_port_setup(dp);
if (err)
goto teardown;
}
}
list_for_each_entry(dp, &dst->ports, list) {
if (dsa_port_is_user(dp) || dsa_port_is_unused(dp)) {
err = dsa_port_setup(dp);
if (err) {
err = dsa_port_reinit_as_unused(dp);
if (err)
goto teardown;
}
}
}
return 0;
teardown:
dsa_tree_teardown_ports(dst);
return err;
}
static int dsa_tree_setup_switches(struct dsa_switch_tree *dst)
{
struct dsa_port *dp;
int err = 0;
list_for_each_entry(dp, &dst->ports, list) {
err = dsa_switch_setup(dp->ds);
if (err) {
dsa_tree_teardown_switches(dst);
break;
}
}
return err;
}
static int dsa_tree_setup_master(struct dsa_switch_tree *dst)
{
struct dsa_port *dp;
int err = 0;
rtnl_lock();
list_for_each_entry(dp, &dst->ports, list) {
if (dsa_port_is_cpu(dp)) {
struct net_device *master = dp->master;
bool admin_up = (master->flags & IFF_UP) &&
!qdisc_tx_is_noop(master);
err = dsa_master_setup(master, dp);
if (err)
break;
/* Replay master state event */
dsa_tree_master_admin_state_change(dst, master, admin_up);
dsa_tree_master_oper_state_change(dst, master,
netif_oper_up(master));
}
}
rtnl_unlock();
return err;
}
static void dsa_tree_teardown_master(struct dsa_switch_tree *dst)
{
struct dsa_port *dp;
rtnl_lock();
list_for_each_entry(dp, &dst->ports, list) {
if (dsa_port_is_cpu(dp)) {
struct net_device *master = dp->master;
/* Synthesizing an "admin down" state is sufficient for
* the switches to get a notification if the master is
* currently up and running.
*/
dsa_tree_master_admin_state_change(dst, master, false);
dsa_master_teardown(master);
}
}
rtnl_unlock();
}
static int dsa_tree_setup_lags(struct dsa_switch_tree *dst)
{
unsigned int len = 0;
struct dsa_port *dp;
list_for_each_entry(dp, &dst->ports, list) {
if (dp->ds->num_lag_ids > len)
len = dp->ds->num_lag_ids;
}
if (!len)
return 0;
dst->lags = kcalloc(len, sizeof(*dst->lags), GFP_KERNEL);
if (!dst->lags)
return -ENOMEM;
dst->lags_len = len;
return 0;
}
static void dsa_tree_teardown_lags(struct dsa_switch_tree *dst)
{
kfree(dst->lags);
}
static int dsa_tree_setup(struct dsa_switch_tree *dst)
{
bool complete;
int err;
if (dst->setup) {
pr_err("DSA: tree %d already setup! Disjoint trees?\n",
dst->index);
return -EEXIST;
}
complete = dsa_tree_setup_routing_table(dst);
if (!complete)
return 0;
err = dsa_tree_setup_cpu_ports(dst);
if (err)
return err;
err = dsa_tree_setup_switches(dst);
if (err)
goto teardown_cpu_ports;
err = dsa_tree_setup_ports(dst);
if (err)
goto teardown_switches;
err = dsa_tree_setup_master(dst);
if (err)
goto teardown_ports;
err = dsa_tree_setup_lags(dst);
if (err)
goto teardown_master;
dst->setup = true;
pr_info("DSA: tree %d setup\n", dst->index);
return 0;
teardown_master:
dsa_tree_teardown_master(dst);
teardown_ports:
dsa_tree_teardown_ports(dst);
teardown_switches:
dsa_tree_teardown_switches(dst);
teardown_cpu_ports:
dsa_tree_teardown_cpu_ports(dst);
return err;
}
static void dsa_tree_teardown(struct dsa_switch_tree *dst)
{
struct dsa_link *dl, *next;
if (!dst->setup)
return;
dsa_tree_teardown_lags(dst);
dsa_tree_teardown_master(dst);
dsa_tree_teardown_ports(dst);
dsa_tree_teardown_switches(dst);
dsa_tree_teardown_cpu_ports(dst);
list_for_each_entry_safe(dl, next, &dst->rtable, list) {
list_del(&dl->list);
kfree(dl);
}
pr_info("DSA: tree %d torn down\n", dst->index);
dst->setup = false;
}
static int dsa_tree_bind_tag_proto(struct dsa_switch_tree *dst,
const struct dsa_device_ops *tag_ops)
{
const struct dsa_device_ops *old_tag_ops = dst->tag_ops;
struct dsa_notifier_tag_proto_info info;
int err;
dst->tag_ops = tag_ops;
/* Notify the switches from this tree about the connection
* to the new tagger
*/
info.tag_ops = tag_ops;
err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_CONNECT, &info);
if (err && err != -EOPNOTSUPP)
goto out_disconnect;
/* Notify the old tagger about the disconnection from this tree */
info.tag_ops = old_tag_ops;
dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info);
return 0;
out_disconnect:
info.tag_ops = tag_ops;
dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info);
dst->tag_ops = old_tag_ops;
return err;
}
/* Since the dsa/tagging sysfs device attribute is per master, the assumption
* is that all DSA switches within a tree share the same tagger, otherwise
* they would have formed disjoint trees (different "dsa,member" values).
*/
int dsa_tree_change_tag_proto(struct dsa_switch_tree *dst,
struct net_device *master,
const struct dsa_device_ops *tag_ops,
const struct dsa_device_ops *old_tag_ops)
{
struct dsa_notifier_tag_proto_info info;
struct dsa_port *dp;
int err = -EBUSY;
if (!rtnl_trylock())
return restart_syscall();
/* At the moment we don't allow changing the tag protocol under
* traffic. The rtnl_mutex also happens to serialize concurrent
* attempts to change the tagging protocol. If we ever lift the IFF_UP
* restriction, there needs to be another mutex which serializes this.
*/
if (master->flags & IFF_UP)
goto out_unlock;
list_for_each_entry(dp, &dst->ports, list) {
if (!dsa_port_is_user(dp))
continue;
if (dp->slave->flags & IFF_UP)
goto out_unlock;
}
/* Notify the tag protocol change */
info.tag_ops = tag_ops;
err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info);
if (err)
goto out_unwind_tagger;
err = dsa_tree_bind_tag_proto(dst, tag_ops);
if (err)
goto out_unwind_tagger;
rtnl_unlock();
return 0;
out_unwind_tagger:
info.tag_ops = old_tag_ops;
dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info);
out_unlock:
rtnl_unlock();
return err;
}
static void dsa_tree_master_state_change(struct dsa_switch_tree *dst,
struct net_device *master)
{
struct dsa_notifier_master_state_info info;
struct dsa_port *cpu_dp = master->dsa_ptr;
info.master = master;
info.operational = dsa_port_master_is_operational(cpu_dp);
dsa_tree_notify(dst, DSA_NOTIFIER_MASTER_STATE_CHANGE, &info);
}
void dsa_tree_master_admin_state_change(struct dsa_switch_tree *dst,
struct net_device *master,
bool up)
{
struct dsa_port *cpu_dp = master->dsa_ptr;
bool notify = false;
if ((dsa_port_master_is_operational(cpu_dp)) !=
(up && cpu_dp->master_oper_up))
notify = true;
cpu_dp->master_admin_up = up;
if (notify)
dsa_tree_master_state_change(dst, master);
}
void dsa_tree_master_oper_state_change(struct dsa_switch_tree *dst,
struct net_device *master,
bool up)
{
struct dsa_port *cpu_dp = master->dsa_ptr;
bool notify = false;
if ((dsa_port_master_is_operational(cpu_dp)) !=
(cpu_dp->master_admin_up && up))
notify = true;
cpu_dp->master_oper_up = up;
if (notify)
dsa_tree_master_state_change(dst, master);
}
static struct dsa_port *dsa_port_touch(struct dsa_switch *ds, int index)
{
struct dsa_switch_tree *dst = ds->dst;
struct dsa_port *dp;
dsa_switch_for_each_port(dp, ds)
if (dp->index == index)
return dp;
dp = kzalloc(sizeof(*dp), GFP_KERNEL);
if (!dp)
return NULL;
dp->ds = ds;
dp->index = index;
mutex_init(&dp->addr_lists_lock);
mutex_init(&dp->vlans_lock);
INIT_LIST_HEAD(&dp->fdbs);
INIT_LIST_HEAD(&dp->mdbs);
INIT_LIST_HEAD(&dp->vlans);
INIT_LIST_HEAD(&dp->list);
list_add_tail(&dp->list, &dst->ports);
return dp;
}
static int dsa_port_parse_user(struct dsa_port *dp, const char *name)
{
if (!name)
name = "eth%d";
dp->type = DSA_PORT_TYPE_USER;
dp->name = name;
return 0;
}
static int dsa_port_parse_dsa(struct dsa_port *dp)
{
dp->type = DSA_PORT_TYPE_DSA;
return 0;
}
static enum dsa_tag_protocol dsa_get_tag_protocol(struct dsa_port *dp,
struct net_device *master)
{
enum dsa_tag_protocol tag_protocol = DSA_TAG_PROTO_NONE;
struct dsa_switch *mds, *ds = dp->ds;
unsigned int mdp_upstream;
struct dsa_port *mdp;
/* It is possible to stack DSA switches onto one another when that
* happens the switch driver may want to know if its tagging protocol
* is going to work in such a configuration.
*/
if (dsa_slave_dev_check(master)) {
mdp = dsa_slave_to_port(master);
mds = mdp->ds;
mdp_upstream = dsa_upstream_port(mds, mdp->index);
tag_protocol = mds->ops->get_tag_protocol(mds, mdp_upstream,
DSA_TAG_PROTO_NONE);
}
/* If the master device is not itself a DSA slave in a disjoint DSA
* tree, then return immediately.
*/
return ds->ops->get_tag_protocol(ds, dp->index, tag_protocol);
}
static int dsa_port_parse_cpu(struct dsa_port *dp, struct net_device *master,
const char *user_protocol)
{
struct dsa_switch *ds = dp->ds;
struct dsa_switch_tree *dst = ds->dst;
const struct dsa_device_ops *tag_ops;
enum dsa_tag_protocol default_proto;
/* Find out which protocol the switch would prefer. */
default_proto = dsa_get_tag_protocol(dp, master);
if (dst->default_proto) {
if (dst->default_proto != default_proto) {
dev_err(ds->dev,
"A DSA switch tree can have only one tagging protocol\n");
return -EINVAL;
}
} else {
dst->default_proto = default_proto;
}
/* See if the user wants to override that preference. */
if (user_protocol) {
if (!ds->ops->change_tag_protocol) {
dev_err(ds->dev, "Tag protocol cannot be modified\n");
return -EINVAL;
}
tag_ops = dsa_find_tagger_by_name(user_protocol);
} else {
tag_ops = dsa_tag_driver_get(default_proto);
}
if (IS_ERR(tag_ops)) {
if (PTR_ERR(tag_ops) == -ENOPROTOOPT)
return -EPROBE_DEFER;
dev_warn(ds->dev, "No tagger for this switch\n");
return PTR_ERR(tag_ops);
}
if (dst->tag_ops) {
if (dst->tag_ops != tag_ops) {
dev_err(ds->dev,
"A DSA switch tree can have only one tagging protocol\n");
dsa_tag_driver_put(tag_ops);
return -EINVAL;
}
/* In the case of multiple CPU ports per switch, the tagging
* protocol is still reference-counted only per switch tree.
*/
dsa_tag_driver_put(tag_ops);
} else {
dst->tag_ops = tag_ops;
}
dp->master = master;
dp->type = DSA_PORT_TYPE_CPU;
dsa_port_set_tag_protocol(dp, dst->tag_ops);
dp->dst = dst;
/* At this point, the tree may be configured to use a different
* tagger than the one chosen by the switch driver during
* .setup, in the case when a user selects a custom protocol
* through the DT.
*
* This is resolved by syncing the driver with the tree in
* dsa_switch_setup_tag_protocol once .setup has run and the
* driver is ready to accept calls to .change_tag_protocol. If
* the driver does not support the custom protocol at that
* point, the tree is wholly rejected, thereby ensuring that the
* tree and driver are always in agreement on the protocol to
* use.
*/
return 0;
}
static int dsa_port_parse_of(struct dsa_port *dp, struct device_node *dn)
{
struct device_node *ethernet = of_parse_phandle(dn, "ethernet", 0);
const char *name = of_get_property(dn, "label", NULL);
bool link = of_property_read_bool(dn, "link");
dp->dn = dn;
if (ethernet) {
struct net_device *master;
const char *user_protocol;
master = of_find_net_device_by_node(ethernet);
of_node_put(ethernet);
if (!master)
return -EPROBE_DEFER;
user_protocol = of_get_property(dn, "dsa-tag-protocol", NULL);
return dsa_port_parse_cpu(dp, master, user_protocol);
}
if (link)
return dsa_port_parse_dsa(dp);
return dsa_port_parse_user(dp, name);
}
static int dsa_switch_parse_ports_of(struct dsa_switch *ds,
struct device_node *dn)
{
struct device_node *ports, *port;
struct dsa_port *dp;
int err = 0;
u32 reg;
ports = of_get_child_by_name(dn, "ports");
if (!ports) {
/* The second possibility is "ethernet-ports" */
ports = of_get_child_by_name(dn, "ethernet-ports");
if (!ports) {
dev_err(ds->dev, "no ports child node found\n");
return -EINVAL;
}
}
for_each_available_child_of_node(ports, port) {
err = of_property_read_u32(port, "reg", &reg);
if (err) {
of_node_put(port);
goto out_put_node;
}
if (reg >= ds->num_ports) {
dev_err(ds->dev, "port %pOF index %u exceeds num_ports (%u)\n",
port, reg, ds->num_ports);
of_node_put(port);
err = -EINVAL;
goto out_put_node;
}
dp = dsa_to_port(ds, reg);
err = dsa_port_parse_of(dp, port);
if (err) {
of_node_put(port);
goto out_put_node;
}
}
out_put_node:
of_node_put(ports);
return err;
}
static int dsa_switch_parse_member_of(struct dsa_switch *ds,
struct device_node *dn)
{
u32 m[2] = { 0, 0 };
int sz;
/* Don't error out if this optional property isn't found */
sz = of_property_read_variable_u32_array(dn, "dsa,member", m, 2, 2);
if (sz < 0 && sz != -EINVAL)
return sz;
ds->index = m[1];
ds->dst = dsa_tree_touch(m[0]);
if (!ds->dst)
return -ENOMEM;
if (dsa_switch_find(ds->dst->index, ds->index)) {
dev_err(ds->dev,
"A DSA switch with index %d already exists in tree %d\n",
ds->index, ds->dst->index);
return -EEXIST;
}
if (ds->dst->last_switch < ds->index)
ds->dst->last_switch = ds->index;
return 0;
}
static int dsa_switch_touch_ports(struct dsa_switch *ds)
{
struct dsa_port *dp;
int port;
for (port = 0; port < ds->num_ports; port++) {
dp = dsa_port_touch(ds, port);
if (!dp)
return -ENOMEM;
}
return 0;
}
static int dsa_switch_parse_of(struct dsa_switch *ds, struct device_node *dn)
{
int err;
err = dsa_switch_parse_member_of(ds, dn);
if (err)
return err;
err = dsa_switch_touch_ports(ds);
if (err)
return err;
return dsa_switch_parse_ports_of(ds, dn);
}
static int dsa_port_parse(struct dsa_port *dp, const char *name,
struct device *dev)
{
if (!strcmp(name, "cpu")) {
struct net_device *master;
master = dsa_dev_to_net_device(dev);
if (!master)
return -EPROBE_DEFER;
dev_put(master);
return dsa_port_parse_cpu(dp, master, NULL);
}
if (!strcmp(name, "dsa"))
return dsa_port_parse_dsa(dp);
return dsa_port_parse_user(dp, name);
}
static int dsa_switch_parse_ports(struct dsa_switch *ds,
struct dsa_chip_data *cd)
{
bool valid_name_found = false;
struct dsa_port *dp;
struct device *dev;
const char *name;
unsigned int i;
int err;
for (i = 0; i < DSA_MAX_PORTS; i++) {
name = cd->port_names[i];
dev = cd->netdev[i];
dp = dsa_to_port(ds, i);
if (!name)
continue;
err = dsa_port_parse(dp, name, dev);
if (err)
return err;
valid_name_found = true;
}
if (!valid_name_found && i == DSA_MAX_PORTS)
return -EINVAL;
return 0;
}
static int dsa_switch_parse(struct dsa_switch *ds, struct dsa_chip_data *cd)
{
int err;
ds->cd = cd;
/* We don't support interconnected switches nor multiple trees via
* platform data, so this is the unique switch of the tree.
*/
ds->index = 0;
ds->dst = dsa_tree_touch(0);
if (!ds->dst)
return -ENOMEM;
err = dsa_switch_touch_ports(ds);
if (err)
return err;
return dsa_switch_parse_ports(ds, cd);
}
static void dsa_switch_release_ports(struct dsa_switch *ds)
{
struct dsa_port *dp, *next;
dsa_switch_for_each_port_safe(dp, next, ds) {
WARN_ON(!list_empty(&dp->fdbs));
WARN_ON(!list_empty(&dp->mdbs));
WARN_ON(!list_empty(&dp->vlans));
list_del(&dp->list);
kfree(dp);
}
}
static int dsa_switch_probe(struct dsa_switch *ds)
{
struct dsa_switch_tree *dst;
struct dsa_chip_data *pdata;
struct device_node *np;
int err;
if (!ds->dev)
return -ENODEV;
pdata = ds->dev->platform_data;
np = ds->dev->of_node;
if (!ds->num_ports)
return -EINVAL;
if (np) {
err = dsa_switch_parse_of(ds, np);
if (err)
dsa_switch_release_ports(ds);
} else if (pdata) {
err = dsa_switch_parse(ds, pdata);
if (err)
dsa_switch_release_ports(ds);
} else {
err = -ENODEV;
}
if (err)
return err;
dst = ds->dst;
dsa_tree_get(dst);
err = dsa_tree_setup(dst);
if (err) {
dsa_switch_release_ports(ds);
dsa_tree_put(dst);
}
return err;
}
int dsa_register_switch(struct dsa_switch *ds)
{
int err;
mutex_lock(&dsa2_mutex);
err = dsa_switch_probe(ds);
dsa_tree_put(ds->dst);
mutex_unlock(&dsa2_mutex);
return err;
}
EXPORT_SYMBOL_GPL(dsa_register_switch);
static void dsa_switch_remove(struct dsa_switch *ds)
{
struct dsa_switch_tree *dst = ds->dst;
dsa_tree_teardown(dst);
dsa_switch_release_ports(ds);
dsa_tree_put(dst);
}
void dsa_unregister_switch(struct dsa_switch *ds)
{
mutex_lock(&dsa2_mutex);
dsa_switch_remove(ds);
mutex_unlock(&dsa2_mutex);
}
EXPORT_SYMBOL_GPL(dsa_unregister_switch);
/* If the DSA master chooses to unregister its net_device on .shutdown, DSA is
* blocking that operation from completion, due to the dev_hold taken inside
* netdev_upper_dev_link. Unlink the DSA slave interfaces from being uppers of
* the DSA master, so that the system can reboot successfully.
*/
void dsa_switch_shutdown(struct dsa_switch *ds)
{
struct net_device *master, *slave_dev;
struct dsa_port *dp;
mutex_lock(&dsa2_mutex);
if (!ds->setup)
goto out;
rtnl_lock();
dsa_switch_for_each_user_port(dp, ds) {
master = dp->cpu_dp->master;
slave_dev = dp->slave;
netdev_upper_dev_unlink(master, slave_dev);
}
/* Disconnect from further netdevice notifiers on the master,
* since netdev_uses_dsa() will now return false.
*/
dsa_switch_for_each_cpu_port(dp, ds)
dp->master->dsa_ptr = NULL;
rtnl_unlock();
out:
mutex_unlock(&dsa2_mutex);
}
EXPORT_SYMBOL_GPL(dsa_switch_shutdown);