OpenCloudOS-Kernel/drivers/phy/qualcomm/phy-qcom-ufs-qmp-20nm.c

233 lines
6.0 KiB
C

/*
* Copyright (c) 2013-2015, Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include "phy-qcom-ufs-qmp-20nm.h"
#define UFS_PHY_NAME "ufs_phy_qmp_20nm"
static
int ufs_qcom_phy_qmp_20nm_phy_calibrate(struct ufs_qcom_phy *ufs_qcom_phy,
bool is_rate_B)
{
struct ufs_qcom_phy_calibration *tbl_A, *tbl_B;
int tbl_size_A, tbl_size_B;
u8 major = ufs_qcom_phy->host_ctrl_rev_major;
u16 minor = ufs_qcom_phy->host_ctrl_rev_minor;
u16 step = ufs_qcom_phy->host_ctrl_rev_step;
int err;
if ((major == 0x1) && (minor == 0x002) && (step == 0x0000)) {
tbl_size_A = ARRAY_SIZE(phy_cal_table_rate_A_1_2_0);
tbl_A = phy_cal_table_rate_A_1_2_0;
} else if ((major == 0x1) && (minor == 0x003) && (step == 0x0000)) {
tbl_size_A = ARRAY_SIZE(phy_cal_table_rate_A_1_3_0);
tbl_A = phy_cal_table_rate_A_1_3_0;
} else {
dev_err(ufs_qcom_phy->dev, "%s: Unknown UFS-PHY version, no calibration values\n",
__func__);
err = -ENODEV;
goto out;
}
tbl_size_B = ARRAY_SIZE(phy_cal_table_rate_B);
tbl_B = phy_cal_table_rate_B;
err = ufs_qcom_phy_calibrate(ufs_qcom_phy, tbl_A, tbl_size_A,
tbl_B, tbl_size_B, is_rate_B);
if (err)
dev_err(ufs_qcom_phy->dev, "%s: ufs_qcom_phy_calibrate() failed %d\n",
__func__, err);
out:
return err;
}
static
void ufs_qcom_phy_qmp_20nm_advertise_quirks(struct ufs_qcom_phy *phy_common)
{
phy_common->quirks =
UFS_QCOM_PHY_QUIRK_HIBERN8_EXIT_AFTER_PHY_PWR_COLLAPSE;
}
static int ufs_qcom_phy_qmp_20nm_init(struct phy *generic_phy)
{
return 0;
}
static int ufs_qcom_phy_qmp_20nm_exit(struct phy *generic_phy)
{
return 0;
}
static
void ufs_qcom_phy_qmp_20nm_power_control(struct ufs_qcom_phy *phy, bool val)
{
bool hibern8_exit_after_pwr_collapse = phy->quirks &
UFS_QCOM_PHY_QUIRK_HIBERN8_EXIT_AFTER_PHY_PWR_COLLAPSE;
if (val) {
writel_relaxed(0x1, phy->mmio + UFS_PHY_POWER_DOWN_CONTROL);
/*
* Before any transactions involving PHY, ensure PHY knows
* that it's analog rail is powered ON.
*/
mb();
if (hibern8_exit_after_pwr_collapse) {
/*
* Give atleast 1us delay after restoring PHY analog
* power.
*/
usleep_range(1, 2);
writel_relaxed(0x0A, phy->mmio +
QSERDES_COM_SYSCLK_EN_SEL_TXBAND);
writel_relaxed(0x08, phy->mmio +
QSERDES_COM_SYSCLK_EN_SEL_TXBAND);
/*
* Make sure workaround is deactivated before proceeding
* with normal PHY operations.
*/
mb();
}
} else {
if (hibern8_exit_after_pwr_collapse) {
writel_relaxed(0x0A, phy->mmio +
QSERDES_COM_SYSCLK_EN_SEL_TXBAND);
writel_relaxed(0x02, phy->mmio +
QSERDES_COM_SYSCLK_EN_SEL_TXBAND);
/*
* Make sure that above workaround is activated before
* PHY analog power collapse.
*/
mb();
}
writel_relaxed(0x0, phy->mmio + UFS_PHY_POWER_DOWN_CONTROL);
/*
* ensure that PHY knows its PHY analog rail is going
* to be powered down
*/
mb();
}
}
static
void ufs_qcom_phy_qmp_20nm_set_tx_lane_enable(struct ufs_qcom_phy *phy, u32 val)
{
writel_relaxed(val & UFS_PHY_TX_LANE_ENABLE_MASK,
phy->mmio + UFS_PHY_TX_LANE_ENABLE);
mb();
}
static inline void ufs_qcom_phy_qmp_20nm_start_serdes(struct ufs_qcom_phy *phy)
{
u32 tmp;
tmp = readl_relaxed(phy->mmio + UFS_PHY_PHY_START);
tmp &= ~MASK_SERDES_START;
tmp |= (1 << OFFSET_SERDES_START);
writel_relaxed(tmp, phy->mmio + UFS_PHY_PHY_START);
mb();
}
static int ufs_qcom_phy_qmp_20nm_is_pcs_ready(struct ufs_qcom_phy *phy_common)
{
int err = 0;
u32 val;
err = readl_poll_timeout(phy_common->mmio + UFS_PHY_PCS_READY_STATUS,
val, (val & MASK_PCS_READY), 10, 1000000);
if (err)
dev_err(phy_common->dev, "%s: poll for pcs failed err = %d\n",
__func__, err);
return err;
}
static const struct phy_ops ufs_qcom_phy_qmp_20nm_phy_ops = {
.init = ufs_qcom_phy_qmp_20nm_init,
.exit = ufs_qcom_phy_qmp_20nm_exit,
.power_on = ufs_qcom_phy_power_on,
.power_off = ufs_qcom_phy_power_off,
.owner = THIS_MODULE,
};
static struct ufs_qcom_phy_specific_ops phy_20nm_ops = {
.calibrate_phy = ufs_qcom_phy_qmp_20nm_phy_calibrate,
.start_serdes = ufs_qcom_phy_qmp_20nm_start_serdes,
.is_physical_coding_sublayer_ready = ufs_qcom_phy_qmp_20nm_is_pcs_ready,
.set_tx_lane_enable = ufs_qcom_phy_qmp_20nm_set_tx_lane_enable,
.power_control = ufs_qcom_phy_qmp_20nm_power_control,
};
static int ufs_qcom_phy_qmp_20nm_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct phy *generic_phy;
struct ufs_qcom_phy_qmp_20nm *phy;
struct ufs_qcom_phy *phy_common;
int err = 0;
phy = devm_kzalloc(dev, sizeof(*phy), GFP_KERNEL);
if (!phy) {
err = -ENOMEM;
goto out;
}
phy_common = &phy->common_cfg;
generic_phy = ufs_qcom_phy_generic_probe(pdev, phy_common,
&ufs_qcom_phy_qmp_20nm_phy_ops, &phy_20nm_ops);
if (!generic_phy) {
err = -EIO;
goto out;
}
err = ufs_qcom_phy_init_clks(phy_common);
if (err)
goto out;
err = ufs_qcom_phy_init_vregulators(phy_common);
if (err)
goto out;
ufs_qcom_phy_qmp_20nm_advertise_quirks(phy_common);
phy_set_drvdata(generic_phy, phy);
strlcpy(phy_common->name, UFS_PHY_NAME, sizeof(phy_common->name));
out:
return err;
}
static const struct of_device_id ufs_qcom_phy_qmp_20nm_of_match[] = {
{.compatible = "qcom,ufs-phy-qmp-20nm"},
{},
};
MODULE_DEVICE_TABLE(of, ufs_qcom_phy_qmp_20nm_of_match);
static struct platform_driver ufs_qcom_phy_qmp_20nm_driver = {
.probe = ufs_qcom_phy_qmp_20nm_probe,
.driver = {
.of_match_table = ufs_qcom_phy_qmp_20nm_of_match,
.name = "ufs_qcom_phy_qmp_20nm",
},
};
module_platform_driver(ufs_qcom_phy_qmp_20nm_driver);
MODULE_DESCRIPTION("Universal Flash Storage (UFS) QCOM PHY QMP 20nm");
MODULE_LICENSE("GPL v2");