OpenCloudOS-Kernel/drivers/usb/gadget/dummy_hcd.c

1794 lines
43 KiB
C

/*
* dummy_hcd.c -- Dummy/Loopback USB host and device emulator driver.
*
* Maintainer: Alan Stern <stern@rowland.harvard.edu>
*
* Copyright (C) 2003 David Brownell
* Copyright (C) 2003-2005 Alan Stern
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
* This exposes a device side "USB gadget" API, driven by requests to a
* Linux-USB host controller driver. USB traffic is simulated; there's
* no need for USB hardware. Use this with two other drivers:
*
* - Gadget driver, responding to requests (slave);
* - Host-side device driver, as already familiar in Linux.
*
* Having this all in one kernel can help some stages of development,
* bypassing some hardware (and driver) issues. UML could help too.
*/
#define DEBUG
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/ioport.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/smp_lock.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/timer.h>
#include <linux/list.h>
#include <linux/interrupt.h>
#include <linux/version.h>
#include <linux/usb.h>
#include <linux/usb_gadget.h>
#include <asm/byteorder.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/system.h>
#include <asm/unaligned.h>
#include "../core/hcd.h"
#define DRIVER_DESC "USB Host+Gadget Emulator"
#define DRIVER_VERSION "17 Dec 2004"
static const char driver_name [] = "dummy_hcd";
static const char driver_desc [] = "USB Host+Gadget Emulator";
static const char gadget_name [] = "dummy_udc";
MODULE_DESCRIPTION (DRIVER_DESC);
MODULE_AUTHOR ("David Brownell");
MODULE_LICENSE ("GPL");
/*-------------------------------------------------------------------------*/
/* gadget side driver data structres */
struct dummy_ep {
struct list_head queue;
unsigned long last_io; /* jiffies timestamp */
struct usb_gadget *gadget;
const struct usb_endpoint_descriptor *desc;
struct usb_ep ep;
unsigned halted : 1;
unsigned already_seen : 1;
unsigned setup_stage : 1;
};
struct dummy_request {
struct list_head queue; /* ep's requests */
struct usb_request req;
};
static inline struct dummy_ep *usb_ep_to_dummy_ep (struct usb_ep *_ep)
{
return container_of (_ep, struct dummy_ep, ep);
}
static inline struct dummy_request *usb_request_to_dummy_request
(struct usb_request *_req)
{
return container_of (_req, struct dummy_request, req);
}
/*-------------------------------------------------------------------------*/
/*
* Every device has ep0 for control requests, plus up to 30 more endpoints,
* in one of two types:
*
* - Configurable: direction (in/out), type (bulk, iso, etc), and endpoint
* number can be changed. Names like "ep-a" are used for this type.
*
* - Fixed Function: in other cases. some characteristics may be mutable;
* that'd be hardware-specific. Names like "ep12out-bulk" are used.
*
* Gadget drivers are responsible for not setting up conflicting endpoint
* configurations, illegal or unsupported packet lengths, and so on.
*/
static const char ep0name [] = "ep0";
static const char *const ep_name [] = {
ep0name, /* everyone has ep0 */
/* act like a net2280: high speed, six configurable endpoints */
"ep-a", "ep-b", "ep-c", "ep-d", "ep-e", "ep-f",
/* or like pxa250: fifteen fixed function endpoints */
"ep1in-bulk", "ep2out-bulk", "ep3in-iso", "ep4out-iso", "ep5in-int",
"ep6in-bulk", "ep7out-bulk", "ep8in-iso", "ep9out-iso", "ep10in-int",
"ep11in-bulk", "ep12out-bulk", "ep13in-iso", "ep14out-iso",
"ep15in-int",
/* or like sa1100: two fixed function endpoints */
"ep1out-bulk", "ep2in-bulk",
};
#define DUMMY_ENDPOINTS (sizeof(ep_name)/sizeof(char *))
#define FIFO_SIZE 64
struct urbp {
struct urb *urb;
struct list_head urbp_list;
};
struct dummy {
spinlock_t lock;
/*
* SLAVE/GADGET side support
*/
struct dummy_ep ep [DUMMY_ENDPOINTS];
int address;
struct usb_gadget gadget;
struct usb_gadget_driver *driver;
struct dummy_request fifo_req;
u8 fifo_buf [FIFO_SIZE];
u16 devstatus;
/*
* MASTER/HOST side support
*/
struct timer_list timer;
u32 port_status;
unsigned resuming:1;
unsigned long re_timeout;
struct usb_device *udev;
struct list_head urbp_list;
};
static inline struct dummy *hcd_to_dummy (struct usb_hcd *hcd)
{
return (struct dummy *) (hcd->hcd_priv);
}
static inline struct usb_hcd *dummy_to_hcd (struct dummy *dum)
{
return container_of((void *) dum, struct usb_hcd, hcd_priv);
}
static inline struct device *dummy_dev (struct dummy *dum)
{
return dummy_to_hcd(dum)->self.controller;
}
static inline struct dummy *ep_to_dummy (struct dummy_ep *ep)
{
return container_of (ep->gadget, struct dummy, gadget);
}
static inline struct dummy *gadget_to_dummy (struct usb_gadget *gadget)
{
return container_of (gadget, struct dummy, gadget);
}
static inline struct dummy *gadget_dev_to_dummy (struct device *dev)
{
return container_of (dev, struct dummy, gadget.dev);
}
static struct dummy *the_controller;
/*-------------------------------------------------------------------------*/
/*
* This "hardware" may look a bit odd in diagnostics since it's got both
* host and device sides; and it binds different drivers to each side.
*/
static struct platform_device the_pdev;
static struct device_driver dummy_driver = {
.name = (char *) driver_name,
.bus = &platform_bus_type,
};
/*-------------------------------------------------------------------------*/
/* SLAVE/GADGET SIDE DRIVER
*
* This only tracks gadget state. All the work is done when the host
* side tries some (emulated) i/o operation. Real device controller
* drivers would do real i/o using dma, fifos, irqs, timers, etc.
*/
#define is_enabled(dum) \
(dum->port_status & USB_PORT_STAT_ENABLE)
static int
dummy_enable (struct usb_ep *_ep, const struct usb_endpoint_descriptor *desc)
{
struct dummy *dum;
struct dummy_ep *ep;
unsigned max;
int retval;
ep = usb_ep_to_dummy_ep (_ep);
if (!_ep || !desc || ep->desc || _ep->name == ep0name
|| desc->bDescriptorType != USB_DT_ENDPOINT)
return -EINVAL;
dum = ep_to_dummy (ep);
if (!dum->driver || !is_enabled (dum))
return -ESHUTDOWN;
max = le16_to_cpu(desc->wMaxPacketSize) & 0x3ff;
/* drivers must not request bad settings, since lower levels
* (hardware or its drivers) may not check. some endpoints
* can't do iso, many have maxpacket limitations, etc.
*
* since this "hardware" driver is here to help debugging, we
* have some extra sanity checks. (there could be more though,
* especially for "ep9out" style fixed function ones.)
*/
retval = -EINVAL;
switch (desc->bmAttributes & 0x03) {
case USB_ENDPOINT_XFER_BULK:
if (strstr (ep->ep.name, "-iso")
|| strstr (ep->ep.name, "-int")) {
goto done;
}
switch (dum->gadget.speed) {
case USB_SPEED_HIGH:
if (max == 512)
break;
/* conserve return statements */
default:
switch (max) {
case 8: case 16: case 32: case 64:
/* we'll fake any legal size */
break;
default:
case USB_SPEED_LOW:
goto done;
}
}
break;
case USB_ENDPOINT_XFER_INT:
if (strstr (ep->ep.name, "-iso")) /* bulk is ok */
goto done;
/* real hardware might not handle all packet sizes */
switch (dum->gadget.speed) {
case USB_SPEED_HIGH:
if (max <= 1024)
break;
/* save a return statement */
case USB_SPEED_FULL:
if (max <= 64)
break;
/* save a return statement */
default:
if (max <= 8)
break;
goto done;
}
break;
case USB_ENDPOINT_XFER_ISOC:
if (strstr (ep->ep.name, "-bulk")
|| strstr (ep->ep.name, "-int"))
goto done;
/* real hardware might not handle all packet sizes */
switch (dum->gadget.speed) {
case USB_SPEED_HIGH:
if (max <= 1024)
break;
/* save a return statement */
case USB_SPEED_FULL:
if (max <= 1023)
break;
/* save a return statement */
default:
goto done;
}
break;
default:
/* few chips support control except on ep0 */
goto done;
}
_ep->maxpacket = max;
ep->desc = desc;
dev_dbg (dummy_dev(dum), "enabled %s (ep%d%s-%s) maxpacket %d\n",
_ep->name,
desc->bEndpointAddress & 0x0f,
(desc->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
({ char *val;
switch (desc->bmAttributes & 0x03) {
case USB_ENDPOINT_XFER_BULK: val = "bulk"; break;
case USB_ENDPOINT_XFER_ISOC: val = "iso"; break;
case USB_ENDPOINT_XFER_INT: val = "intr"; break;
default: val = "ctrl"; break;
}; val; }),
max);
/* at this point real hardware should be NAKing transfers
* to that endpoint, until a buffer is queued to it.
*/
retval = 0;
done:
return retval;
}
/* called with spinlock held */
static void nuke (struct dummy *dum, struct dummy_ep *ep)
{
while (!list_empty (&ep->queue)) {
struct dummy_request *req;
req = list_entry (ep->queue.next, struct dummy_request, queue);
list_del_init (&req->queue);
req->req.status = -ESHUTDOWN;
spin_unlock (&dum->lock);
req->req.complete (&ep->ep, &req->req);
spin_lock (&dum->lock);
}
}
static int dummy_disable (struct usb_ep *_ep)
{
struct dummy_ep *ep;
struct dummy *dum;
unsigned long flags;
int retval;
ep = usb_ep_to_dummy_ep (_ep);
if (!_ep || !ep->desc || _ep->name == ep0name)
return -EINVAL;
dum = ep_to_dummy (ep);
spin_lock_irqsave (&dum->lock, flags);
ep->desc = NULL;
retval = 0;
nuke (dum, ep);
spin_unlock_irqrestore (&dum->lock, flags);
dev_dbg (dummy_dev(dum), "disabled %s\n", _ep->name);
return retval;
}
static struct usb_request *
dummy_alloc_request (struct usb_ep *_ep, int mem_flags)
{
struct dummy_ep *ep;
struct dummy_request *req;
if (!_ep)
return NULL;
ep = usb_ep_to_dummy_ep (_ep);
req = kmalloc (sizeof *req, mem_flags);
if (!req)
return NULL;
memset (req, 0, sizeof *req);
INIT_LIST_HEAD (&req->queue);
return &req->req;
}
static void
dummy_free_request (struct usb_ep *_ep, struct usb_request *_req)
{
struct dummy_ep *ep;
struct dummy_request *req;
ep = usb_ep_to_dummy_ep (_ep);
if (!ep || !_req || (!ep->desc && _ep->name != ep0name))
return;
req = usb_request_to_dummy_request (_req);
WARN_ON (!list_empty (&req->queue));
kfree (req);
}
static void *
dummy_alloc_buffer (
struct usb_ep *_ep,
unsigned bytes,
dma_addr_t *dma,
int mem_flags
) {
char *retval;
struct dummy_ep *ep;
struct dummy *dum;
ep = usb_ep_to_dummy_ep (_ep);
dum = ep_to_dummy (ep);
if (!dum->driver)
return NULL;
retval = kmalloc (bytes, mem_flags);
*dma = (dma_addr_t) retval;
return retval;
}
static void
dummy_free_buffer (
struct usb_ep *_ep,
void *buf,
dma_addr_t dma,
unsigned bytes
) {
if (bytes)
kfree (buf);
}
static void
fifo_complete (struct usb_ep *ep, struct usb_request *req)
{
}
static int
dummy_queue (struct usb_ep *_ep, struct usb_request *_req, int mem_flags)
{
struct dummy_ep *ep;
struct dummy_request *req;
struct dummy *dum;
unsigned long flags;
req = usb_request_to_dummy_request (_req);
if (!_req || !list_empty (&req->queue) || !_req->complete)
return -EINVAL;
ep = usb_ep_to_dummy_ep (_ep);
if (!_ep || (!ep->desc && _ep->name != ep0name))
return -EINVAL;
dum = ep_to_dummy (ep);
if (!dum->driver || !is_enabled (dum))
return -ESHUTDOWN;
#if 0
dev_dbg (dummy_dev(dum), "ep %p queue req %p to %s, len %d buf %p\n",
ep, _req, _ep->name, _req->length, _req->buf);
#endif
_req->status = -EINPROGRESS;
_req->actual = 0;
spin_lock_irqsave (&dum->lock, flags);
/* implement an emulated single-request FIFO */
if (ep->desc && (ep->desc->bEndpointAddress & USB_DIR_IN) &&
list_empty (&dum->fifo_req.queue) &&
list_empty (&ep->queue) &&
_req->length <= FIFO_SIZE) {
req = &dum->fifo_req;
req->req = *_req;
req->req.buf = dum->fifo_buf;
memcpy (dum->fifo_buf, _req->buf, _req->length);
req->req.context = dum;
req->req.complete = fifo_complete;
spin_unlock (&dum->lock);
_req->actual = _req->length;
_req->status = 0;
_req->complete (_ep, _req);
spin_lock (&dum->lock);
}
list_add_tail (&req->queue, &ep->queue);
spin_unlock_irqrestore (&dum->lock, flags);
/* real hardware would likely enable transfers here, in case
* it'd been left NAKing.
*/
return 0;
}
static int dummy_dequeue (struct usb_ep *_ep, struct usb_request *_req)
{
struct dummy_ep *ep;
struct dummy *dum;
int retval = -EINVAL;
unsigned long flags;
struct dummy_request *req = NULL;
if (!_ep || !_req)
return retval;
ep = usb_ep_to_dummy_ep (_ep);
dum = ep_to_dummy (ep);
if (!dum->driver)
return -ESHUTDOWN;
spin_lock_irqsave (&dum->lock, flags);
list_for_each_entry (req, &ep->queue, queue) {
if (&req->req == _req) {
list_del_init (&req->queue);
_req->status = -ECONNRESET;
retval = 0;
break;
}
}
spin_unlock_irqrestore (&dum->lock, flags);
if (retval == 0) {
dev_dbg (dummy_dev(dum),
"dequeued req %p from %s, len %d buf %p\n",
req, _ep->name, _req->length, _req->buf);
_req->complete (_ep, _req);
}
return retval;
}
static int
dummy_set_halt (struct usb_ep *_ep, int value)
{
struct dummy_ep *ep;
struct dummy *dum;
if (!_ep)
return -EINVAL;
ep = usb_ep_to_dummy_ep (_ep);
dum = ep_to_dummy (ep);
if (!dum->driver)
return -ESHUTDOWN;
if (!value)
ep->halted = 0;
else if (ep->desc && (ep->desc->bEndpointAddress & USB_DIR_IN) &&
!list_empty (&ep->queue))
return -EAGAIN;
else
ep->halted = 1;
/* FIXME clear emulated data toggle too */
return 0;
}
static const struct usb_ep_ops dummy_ep_ops = {
.enable = dummy_enable,
.disable = dummy_disable,
.alloc_request = dummy_alloc_request,
.free_request = dummy_free_request,
.alloc_buffer = dummy_alloc_buffer,
.free_buffer = dummy_free_buffer,
/* map, unmap, ... eventually hook the "generic" dma calls */
.queue = dummy_queue,
.dequeue = dummy_dequeue,
.set_halt = dummy_set_halt,
};
/*-------------------------------------------------------------------------*/
/* there are both host and device side versions of this call ... */
static int dummy_g_get_frame (struct usb_gadget *_gadget)
{
struct timeval tv;
do_gettimeofday (&tv);
return tv.tv_usec / 1000;
}
static int dummy_wakeup (struct usb_gadget *_gadget)
{
struct dummy *dum;
dum = gadget_to_dummy (_gadget);
if ((dum->devstatus & (1 << USB_DEVICE_REMOTE_WAKEUP)) == 0
|| !(dum->port_status & (1 << USB_PORT_FEAT_SUSPEND)))
return -EINVAL;
/* hub notices our request, issues downstream resume, etc */
dum->resuming = 1;
dum->port_status |= (1 << USB_PORT_FEAT_C_SUSPEND);
return 0;
}
static int dummy_set_selfpowered (struct usb_gadget *_gadget, int value)
{
struct dummy *dum;
dum = gadget_to_dummy (_gadget);
if (value)
dum->devstatus |= (1 << USB_DEVICE_SELF_POWERED);
else
dum->devstatus &= ~(1 << USB_DEVICE_SELF_POWERED);
return 0;
}
static const struct usb_gadget_ops dummy_ops = {
.get_frame = dummy_g_get_frame,
.wakeup = dummy_wakeup,
.set_selfpowered = dummy_set_selfpowered,
};
/*-------------------------------------------------------------------------*/
/* "function" sysfs attribute */
static ssize_t
show_function (struct device *dev, char *buf)
{
struct dummy *dum = gadget_dev_to_dummy (dev);
if (!dum->driver || !dum->driver->function)
return 0;
return scnprintf (buf, PAGE_SIZE, "%s\n", dum->driver->function);
}
DEVICE_ATTR (function, S_IRUGO, show_function, NULL);
/*-------------------------------------------------------------------------*/
/*
* Driver registration/unregistration.
*
* This is basically hardware-specific; there's usually only one real USB
* device (not host) controller since that's how USB devices are intended
* to work. So most implementations of these api calls will rely on the
* fact that only one driver will ever bind to the hardware. But curious
* hardware can be built with discrete components, so the gadget API doesn't
* require that assumption.
*
* For this emulator, it might be convenient to create a usb slave device
* for each driver that registers: just add to a big root hub.
*/
static void
dummy_udc_release (struct device *dev)
{
}
static void
dummy_pdev_release (struct device *dev)
{
}
static int
dummy_register_udc (struct dummy *dum)
{
int rc;
strcpy (dum->gadget.dev.bus_id, "udc");
dum->gadget.dev.parent = dummy_dev(dum);
dum->gadget.dev.release = dummy_udc_release;
rc = device_register (&dum->gadget.dev);
if (rc == 0)
device_create_file (&dum->gadget.dev, &dev_attr_function);
return rc;
}
static void
dummy_unregister_udc (struct dummy *dum)
{
device_remove_file (&dum->gadget.dev, &dev_attr_function);
device_unregister (&dum->gadget.dev);
}
int
usb_gadget_register_driver (struct usb_gadget_driver *driver)
{
struct dummy *dum = the_controller;
int retval, i;
if (!dum)
return -EINVAL;
if (dum->driver)
return -EBUSY;
if (!driver->bind || !driver->unbind || !driver->setup
|| driver->speed == USB_SPEED_UNKNOWN)
return -EINVAL;
/*
* SLAVE side init ... the layer above hardware, which
* can't enumerate without help from the driver we're binding.
*/
dum->gadget.name = gadget_name;
dum->gadget.ops = &dummy_ops;
dum->gadget.is_dualspeed = 1;
dum->devstatus = 0;
dum->resuming = 0;
INIT_LIST_HEAD (&dum->gadget.ep_list);
for (i = 0; i < DUMMY_ENDPOINTS; i++) {
struct dummy_ep *ep = &dum->ep [i];
if (!ep_name [i])
break;
ep->ep.name = ep_name [i];
ep->ep.ops = &dummy_ep_ops;
list_add_tail (&ep->ep.ep_list, &dum->gadget.ep_list);
ep->halted = ep->already_seen = ep->setup_stage = 0;
ep->ep.maxpacket = ~0;
ep->last_io = jiffies;
ep->gadget = &dum->gadget;
ep->desc = NULL;
INIT_LIST_HEAD (&ep->queue);
}
dum->gadget.ep0 = &dum->ep [0].ep;
dum->ep [0].ep.maxpacket = 64;
list_del_init (&dum->ep [0].ep.ep_list);
INIT_LIST_HEAD(&dum->fifo_req.queue);
dum->driver = driver;
dum->gadget.dev.driver = &driver->driver;
dev_dbg (dummy_dev(dum), "binding gadget driver '%s'\n",
driver->driver.name);
if ((retval = driver->bind (&dum->gadget)) != 0) {
dum->driver = NULL;
dum->gadget.dev.driver = NULL;
return retval;
}
// FIXME: Check these calls for errors and re-order
driver->driver.bus = dum->gadget.dev.parent->bus;
driver_register (&driver->driver);
device_bind_driver (&dum->gadget.dev);
/* khubd will enumerate this in a while */
dum->port_status |= USB_PORT_STAT_CONNECTION
| (1 << USB_PORT_FEAT_C_CONNECTION);
return 0;
}
EXPORT_SYMBOL (usb_gadget_register_driver);
/* caller must hold lock */
static void
stop_activity (struct dummy *dum, struct usb_gadget_driver *driver)
{
struct dummy_ep *ep;
/* prevent any more requests */
dum->address = 0;
/* The timer is left running so that outstanding URBs can fail */
/* nuke any pending requests first, so driver i/o is quiesced */
list_for_each_entry (ep, &dum->gadget.ep_list, ep.ep_list)
nuke (dum, ep);
/* driver now does any non-usb quiescing necessary */
if (driver) {
spin_unlock (&dum->lock);
driver->disconnect (&dum->gadget);
spin_lock (&dum->lock);
}
}
int
usb_gadget_unregister_driver (struct usb_gadget_driver *driver)
{
struct dummy *dum = the_controller;
unsigned long flags;
if (!dum)
return -ENODEV;
if (!driver || driver != dum->driver)
return -EINVAL;
dev_dbg (dummy_dev(dum), "unregister gadget driver '%s'\n",
driver->driver.name);
spin_lock_irqsave (&dum->lock, flags);
stop_activity (dum, driver);
dum->port_status &= ~(USB_PORT_STAT_CONNECTION | USB_PORT_STAT_ENABLE |
USB_PORT_STAT_LOW_SPEED | USB_PORT_STAT_HIGH_SPEED);
dum->port_status |= (1 << USB_PORT_FEAT_C_CONNECTION);
spin_unlock_irqrestore (&dum->lock, flags);
driver->unbind (&dum->gadget);
dum->driver = NULL;
device_release_driver (&dum->gadget.dev);
driver_unregister (&driver->driver);
return 0;
}
EXPORT_SYMBOL (usb_gadget_unregister_driver);
#undef is_enabled
int net2280_set_fifo_mode (struct usb_gadget *gadget, int mode)
{
return -ENOSYS;
}
EXPORT_SYMBOL (net2280_set_fifo_mode);
/*-------------------------------------------------------------------------*/
/* MASTER/HOST SIDE DRIVER
*
* this uses the hcd framework to hook up to host side drivers.
* its root hub will only have one device, otherwise it acts like
* a normal host controller.
*
* when urbs are queued, they're just stuck on a list that we
* scan in a timer callback. that callback connects writes from
* the host with reads from the device, and so on, based on the
* usb 2.0 rules.
*/
static int dummy_urb_enqueue (
struct usb_hcd *hcd,
struct usb_host_endpoint *ep,
struct urb *urb,
int mem_flags
) {
struct dummy *dum;
struct urbp *urbp;
unsigned long flags;
if (!urb->transfer_buffer && urb->transfer_buffer_length)
return -EINVAL;
urbp = kmalloc (sizeof *urbp, mem_flags);
if (!urbp)
return -ENOMEM;
urbp->urb = urb;
dum = hcd_to_dummy (hcd);
spin_lock_irqsave (&dum->lock, flags);
if (!dum->udev) {
dum->udev = urb->dev;
usb_get_dev (dum->udev);
} else if (unlikely (dum->udev != urb->dev))
dev_err (dummy_dev(dum), "usb_device address has changed!\n");
list_add_tail (&urbp->urbp_list, &dum->urbp_list);
urb->hcpriv = urbp;
if (usb_pipetype (urb->pipe) == PIPE_CONTROL)
urb->error_count = 1; /* mark as a new urb */
/* kick the scheduler, it'll do the rest */
if (!timer_pending (&dum->timer))
mod_timer (&dum->timer, jiffies + 1);
spin_unlock_irqrestore (&dum->lock, flags);
return 0;
}
static int dummy_urb_dequeue (struct usb_hcd *hcd, struct urb *urb)
{
/* giveback happens automatically in timer callback */
return 0;
}
static void maybe_set_status (struct urb *urb, int status)
{
spin_lock (&urb->lock);
if (urb->status == -EINPROGRESS)
urb->status = status;
spin_unlock (&urb->lock);
}
/* transfer up to a frame's worth; caller must own lock */
static int
transfer (struct dummy *dum, struct urb *urb, struct dummy_ep *ep, int limit)
{
struct dummy_request *req;
top:
/* if there's no request queued, the device is NAKing; return */
list_for_each_entry (req, &ep->queue, queue) {
unsigned host_len, dev_len, len;
int is_short, to_host;
int rescan = 0;
/* 1..N packets of ep->ep.maxpacket each ... the last one
* may be short (including zero length).
*
* writer can send a zlp explicitly (length 0) or implicitly
* (length mod maxpacket zero, and 'zero' flag); they always
* terminate reads.
*/
host_len = urb->transfer_buffer_length - urb->actual_length;
dev_len = req->req.length - req->req.actual;
len = min (host_len, dev_len);
/* FIXME update emulated data toggle too */
to_host = usb_pipein (urb->pipe);
if (unlikely (len == 0))
is_short = 1;
else {
char *ubuf, *rbuf;
/* not enough bandwidth left? */
if (limit < ep->ep.maxpacket && limit < len)
break;
len = min (len, (unsigned) limit);
if (len == 0)
break;
/* use an extra pass for the final short packet */
if (len > ep->ep.maxpacket) {
rescan = 1;
len -= (len % ep->ep.maxpacket);
}
is_short = (len % ep->ep.maxpacket) != 0;
/* else transfer packet(s) */
ubuf = urb->transfer_buffer + urb->actual_length;
rbuf = req->req.buf + req->req.actual;
if (to_host)
memcpy (ubuf, rbuf, len);
else
memcpy (rbuf, ubuf, len);
ep->last_io = jiffies;
limit -= len;
urb->actual_length += len;
req->req.actual += len;
}
/* short packets terminate, maybe with overflow/underflow.
* it's only really an error to write too much.
*
* partially filling a buffer optionally blocks queue advances
* (so completion handlers can clean up the queue) but we don't
* need to emulate such data-in-flight. so we only show part
* of the URB_SHORT_NOT_OK effect: completion status.
*/
if (is_short) {
if (host_len == dev_len) {
req->req.status = 0;
maybe_set_status (urb, 0);
} else if (to_host) {
req->req.status = 0;
if (dev_len > host_len)
maybe_set_status (urb, -EOVERFLOW);
else
maybe_set_status (urb,
(urb->transfer_flags
& URB_SHORT_NOT_OK)
? -EREMOTEIO : 0);
} else if (!to_host) {
maybe_set_status (urb, 0);
if (host_len > dev_len)
req->req.status = -EOVERFLOW;
else
req->req.status = 0;
}
/* many requests terminate without a short packet */
} else {
if (req->req.length == req->req.actual
&& !req->req.zero)
req->req.status = 0;
if (urb->transfer_buffer_length == urb->actual_length
&& !(urb->transfer_flags
& URB_ZERO_PACKET)) {
maybe_set_status (urb, 0);
}
}
/* device side completion --> continuable */
if (req->req.status != -EINPROGRESS) {
list_del_init (&req->queue);
spin_unlock (&dum->lock);
req->req.complete (&ep->ep, &req->req);
spin_lock (&dum->lock);
/* requests might have been unlinked... */
rescan = 1;
}
/* host side completion --> terminate */
if (urb->status != -EINPROGRESS)
break;
/* rescan to continue with any other queued i/o */
if (rescan)
goto top;
}
return limit;
}
static int periodic_bytes (struct dummy *dum, struct dummy_ep *ep)
{
int limit = ep->ep.maxpacket;
if (dum->gadget.speed == USB_SPEED_HIGH) {
int tmp;
/* high bandwidth mode */
tmp = le16_to_cpu(ep->desc->wMaxPacketSize);
tmp = le16_to_cpu (tmp);
tmp = (tmp >> 11) & 0x03;
tmp *= 8 /* applies to entire frame */;
limit += limit * tmp;
}
return limit;
}
#define is_active(dum) ((dum->port_status & \
(USB_PORT_STAT_CONNECTION | USB_PORT_STAT_ENABLE | \
USB_PORT_STAT_SUSPEND)) \
== (USB_PORT_STAT_CONNECTION | USB_PORT_STAT_ENABLE))
static struct dummy_ep *find_endpoint (struct dummy *dum, u8 address)
{
int i;
if (!is_active (dum))
return NULL;
if ((address & ~USB_DIR_IN) == 0)
return &dum->ep [0];
for (i = 1; i < DUMMY_ENDPOINTS; i++) {
struct dummy_ep *ep = &dum->ep [i];
if (!ep->desc)
continue;
if (ep->desc->bEndpointAddress == address)
return ep;
}
return NULL;
}
#undef is_active
#define Dev_Request (USB_TYPE_STANDARD | USB_RECIP_DEVICE)
#define Dev_InRequest (Dev_Request | USB_DIR_IN)
#define Intf_Request (USB_TYPE_STANDARD | USB_RECIP_INTERFACE)
#define Intf_InRequest (Intf_Request | USB_DIR_IN)
#define Ep_Request (USB_TYPE_STANDARD | USB_RECIP_ENDPOINT)
#define Ep_InRequest (Ep_Request | USB_DIR_IN)
/* drive both sides of the transfers; looks like irq handlers to
* both drivers except the callbacks aren't in_irq().
*/
static void dummy_timer (unsigned long _dum)
{
struct dummy *dum = (struct dummy *) _dum;
struct urbp *urbp, *tmp;
unsigned long flags;
int limit, total;
int i;
/* simplistic model for one frame's bandwidth */
switch (dum->gadget.speed) {
case USB_SPEED_LOW:
total = 8/*bytes*/ * 12/*packets*/;
break;
case USB_SPEED_FULL:
total = 64/*bytes*/ * 19/*packets*/;
break;
case USB_SPEED_HIGH:
total = 512/*bytes*/ * 13/*packets*/ * 8/*uframes*/;
break;
default:
dev_err (dummy_dev(dum), "bogus device speed\n");
return;
}
/* FIXME if HZ != 1000 this will probably misbehave ... */
/* look at each urb queued by the host side driver */
spin_lock_irqsave (&dum->lock, flags);
if (!dum->udev) {
dev_err (dummy_dev(dum),
"timer fired with no URBs pending?\n");
spin_unlock_irqrestore (&dum->lock, flags);
return;
}
for (i = 0; i < DUMMY_ENDPOINTS; i++) {
if (!ep_name [i])
break;
dum->ep [i].already_seen = 0;
}
restart:
list_for_each_entry_safe (urbp, tmp, &dum->urbp_list, urbp_list) {
struct urb *urb;
struct dummy_request *req;
u8 address;
struct dummy_ep *ep = NULL;
int type;
urb = urbp->urb;
if (urb->status != -EINPROGRESS) {
/* likely it was just unlinked */
goto return_urb;
}
type = usb_pipetype (urb->pipe);
/* used up this frame's non-periodic bandwidth?
* FIXME there's infinite bandwidth for control and
* periodic transfers ... unrealistic.
*/
if (total <= 0 && type == PIPE_BULK)
continue;
/* find the gadget's ep for this request (if configured) */
address = usb_pipeendpoint (urb->pipe);
if (usb_pipein (urb->pipe))
address |= USB_DIR_IN;
ep = find_endpoint(dum, address);
if (!ep) {
/* set_configuration() disagreement */
dev_dbg (dummy_dev(dum),
"no ep configured for urb %p\n",
urb);
maybe_set_status (urb, -EPROTO);
goto return_urb;
}
if (ep->already_seen)
continue;
ep->already_seen = 1;
if (ep == &dum->ep [0] && urb->error_count) {
ep->setup_stage = 1; /* a new urb */
urb->error_count = 0;
}
if (ep->halted && !ep->setup_stage) {
/* NOTE: must not be iso! */
dev_dbg (dummy_dev(dum), "ep %s halted, urb %p\n",
ep->ep.name, urb);
maybe_set_status (urb, -EPIPE);
goto return_urb;
}
/* FIXME make sure both ends agree on maxpacket */
/* handle control requests */
if (ep == &dum->ep [0] && ep->setup_stage) {
struct usb_ctrlrequest setup;
int value = 1;
struct dummy_ep *ep2;
setup = *(struct usb_ctrlrequest*) urb->setup_packet;
le16_to_cpus (&setup.wIndex);
le16_to_cpus (&setup.wValue);
le16_to_cpus (&setup.wLength);
if (setup.wLength != urb->transfer_buffer_length) {
maybe_set_status (urb, -EOVERFLOW);
goto return_urb;
}
/* paranoia, in case of stale queued data */
list_for_each_entry (req, &ep->queue, queue) {
list_del_init (&req->queue);
req->req.status = -EOVERFLOW;
dev_dbg (dummy_dev(dum), "stale req = %p\n",
req);
spin_unlock (&dum->lock);
req->req.complete (&ep->ep, &req->req);
spin_lock (&dum->lock);
ep->already_seen = 0;
goto restart;
}
/* gadget driver never sees set_address or operations
* on standard feature flags. some hardware doesn't
* even expose them.
*/
ep->last_io = jiffies;
ep->setup_stage = 0;
ep->halted = 0;
switch (setup.bRequest) {
case USB_REQ_SET_ADDRESS:
if (setup.bRequestType != Dev_Request)
break;
dum->address = setup.wValue;
maybe_set_status (urb, 0);
dev_dbg (dummy_dev(dum), "set_address = %d\n",
setup.wValue);
value = 0;
break;
case USB_REQ_SET_FEATURE:
if (setup.bRequestType == Dev_Request) {
value = 0;
switch (setup.wValue) {
case USB_DEVICE_REMOTE_WAKEUP:
break;
default:
value = -EOPNOTSUPP;
}
if (value == 0) {
dum->devstatus |=
(1 << setup.wValue);
maybe_set_status (urb, 0);
}
} else if (setup.bRequestType == Ep_Request) {
// endpoint halt
ep2 = find_endpoint (dum,
setup.wIndex);
if (!ep2) {
value = -EOPNOTSUPP;
break;
}
ep2->halted = 1;
value = 0;
maybe_set_status (urb, 0);
}
break;
case USB_REQ_CLEAR_FEATURE:
if (setup.bRequestType == Dev_Request) {
switch (setup.wValue) {
case USB_DEVICE_REMOTE_WAKEUP:
dum->devstatus &= ~(1 <<
USB_DEVICE_REMOTE_WAKEUP);
value = 0;
maybe_set_status (urb, 0);
break;
default:
value = -EOPNOTSUPP;
break;
}
} else if (setup.bRequestType == Ep_Request) {
// endpoint halt
ep2 = find_endpoint (dum,
setup.wIndex);
if (!ep2) {
value = -EOPNOTSUPP;
break;
}
ep2->halted = 0;
value = 0;
maybe_set_status (urb, 0);
}
break;
case USB_REQ_GET_STATUS:
if (setup.bRequestType == Dev_InRequest
|| setup.bRequestType
== Intf_InRequest
|| setup.bRequestType
== Ep_InRequest
) {
char *buf;
// device: remote wakeup, selfpowered
// interface: nothing
// endpoint: halt
buf = (char *)urb->transfer_buffer;
if (urb->transfer_buffer_length > 0) {
if (setup.bRequestType ==
Ep_InRequest) {
ep2 = find_endpoint (dum, setup.wIndex);
if (!ep2) {
value = -EOPNOTSUPP;
break;
}
buf [0] = ep2->halted;
} else if (setup.bRequestType ==
Dev_InRequest) {
buf [0] = (u8)
dum->devstatus;
} else
buf [0] = 0;
}
if (urb->transfer_buffer_length > 1)
buf [1] = 0;
urb->actual_length = min (2,
urb->transfer_buffer_length);
value = 0;
maybe_set_status (urb, 0);
}
break;
}
/* gadget driver handles all other requests. block
* until setup() returns; no reentrancy issues etc.
*/
if (value > 0) {
spin_unlock (&dum->lock);
value = dum->driver->setup (&dum->gadget,
&setup);
spin_lock (&dum->lock);
if (value >= 0) {
/* no delays (max 64KB data stage) */
limit = 64*1024;
goto treat_control_like_bulk;
}
/* error, see below */
}
if (value < 0) {
if (value != -EOPNOTSUPP)
dev_dbg (dummy_dev(dum),
"setup --> %d\n",
value);
maybe_set_status (urb, -EPIPE);
urb->actual_length = 0;
}
goto return_urb;
}
/* non-control requests */
limit = total;
switch (usb_pipetype (urb->pipe)) {
case PIPE_ISOCHRONOUS:
/* FIXME is it urb->interval since the last xfer?
* use urb->iso_frame_desc[i].
* complete whether or not ep has requests queued.
* report random errors, to debug drivers.
*/
limit = max (limit, periodic_bytes (dum, ep));
maybe_set_status (urb, -ENOSYS);
break;
case PIPE_INTERRUPT:
/* FIXME is it urb->interval since the last xfer?
* this almost certainly polls too fast.
*/
limit = max (limit, periodic_bytes (dum, ep));
/* FALLTHROUGH */
// case PIPE_BULK: case PIPE_CONTROL:
default:
treat_control_like_bulk:
ep->last_io = jiffies;
total = transfer (dum, urb, ep, limit);
break;
}
/* incomplete transfer? */
if (urb->status == -EINPROGRESS)
continue;
return_urb:
urb->hcpriv = NULL;
list_del (&urbp->urbp_list);
kfree (urbp);
if (ep)
ep->already_seen = ep->setup_stage = 0;
spin_unlock (&dum->lock);
usb_hcd_giveback_urb (dummy_to_hcd(dum), urb, NULL);
spin_lock (&dum->lock);
goto restart;
}
/* want a 1 msec delay here */
if (!list_empty (&dum->urbp_list))
mod_timer (&dum->timer, jiffies + msecs_to_jiffies(1));
else {
usb_put_dev (dum->udev);
dum->udev = NULL;
}
spin_unlock_irqrestore (&dum->lock, flags);
}
/*-------------------------------------------------------------------------*/
#define PORT_C_MASK \
((1 << USB_PORT_FEAT_C_CONNECTION) \
| (1 << USB_PORT_FEAT_C_ENABLE) \
| (1 << USB_PORT_FEAT_C_SUSPEND) \
| (1 << USB_PORT_FEAT_C_OVER_CURRENT) \
| (1 << USB_PORT_FEAT_C_RESET))
static int dummy_hub_status (struct usb_hcd *hcd, char *buf)
{
struct dummy *dum;
unsigned long flags;
int retval;
dum = hcd_to_dummy (hcd);
spin_lock_irqsave (&dum->lock, flags);
if (!(dum->port_status & PORT_C_MASK))
retval = 0;
else {
*buf = (1 << 1);
dev_dbg (dummy_dev(dum), "port status 0x%08x has changes\n",
dum->port_status);
retval = 1;
}
spin_unlock_irqrestore (&dum->lock, flags);
return retval;
}
static inline void
hub_descriptor (struct usb_hub_descriptor *desc)
{
memset (desc, 0, sizeof *desc);
desc->bDescriptorType = 0x29;
desc->bDescLength = 9;
desc->wHubCharacteristics = __constant_cpu_to_le16 (0x0001);
desc->bNbrPorts = 1;
desc->bitmap [0] = 0xff;
desc->bitmap [1] = 0xff;
}
static int dummy_hub_control (
struct usb_hcd *hcd,
u16 typeReq,
u16 wValue,
u16 wIndex,
char *buf,
u16 wLength
) {
struct dummy *dum;
int retval = 0;
unsigned long flags;
dum = hcd_to_dummy (hcd);
spin_lock_irqsave (&dum->lock, flags);
switch (typeReq) {
case ClearHubFeature:
break;
case ClearPortFeature:
switch (wValue) {
case USB_PORT_FEAT_SUSPEND:
if (dum->port_status & (1 << USB_PORT_FEAT_SUSPEND)) {
/* 20msec resume signaling */
dum->resuming = 1;
dum->re_timeout = jiffies +
msecs_to_jiffies(20);
}
break;
case USB_PORT_FEAT_POWER:
dum->port_status = 0;
dum->resuming = 0;
stop_activity(dum, dum->driver);
break;
default:
dum->port_status &= ~(1 << wValue);
}
break;
case GetHubDescriptor:
hub_descriptor ((struct usb_hub_descriptor *) buf);
break;
case GetHubStatus:
*(u32 *) buf = __constant_cpu_to_le32 (0);
break;
case GetPortStatus:
if (wIndex != 1)
retval = -EPIPE;
/* whoever resets or resumes must GetPortStatus to
* complete it!!
*/
if (dum->resuming && time_after (jiffies, dum->re_timeout)) {
dum->port_status |= (1 << USB_PORT_FEAT_C_SUSPEND);
dum->port_status &= ~(1 << USB_PORT_FEAT_SUSPEND);
dum->resuming = 0;
dum->re_timeout = 0;
if (dum->driver && dum->driver->resume) {
spin_unlock (&dum->lock);
dum->driver->resume (&dum->gadget);
spin_lock (&dum->lock);
}
}
if ((dum->port_status & (1 << USB_PORT_FEAT_RESET)) != 0
&& time_after (jiffies, dum->re_timeout)) {
dum->port_status |= (1 << USB_PORT_FEAT_C_RESET);
dum->port_status &= ~(1 << USB_PORT_FEAT_RESET);
dum->re_timeout = 0;
if (dum->driver) {
dum->port_status |= USB_PORT_STAT_ENABLE;
/* give it the best speed we agree on */
dum->gadget.speed = dum->driver->speed;
dum->gadget.ep0->maxpacket = 64;
switch (dum->gadget.speed) {
case USB_SPEED_HIGH:
dum->port_status |=
USB_PORT_STAT_HIGH_SPEED;
break;
case USB_SPEED_LOW:
dum->gadget.ep0->maxpacket = 8;
dum->port_status |=
USB_PORT_STAT_LOW_SPEED;
break;
default:
dum->gadget.speed = USB_SPEED_FULL;
break;
}
}
}
((u16 *) buf)[0] = cpu_to_le16 (dum->port_status);
((u16 *) buf)[1] = cpu_to_le16 (dum->port_status >> 16);
break;
case SetHubFeature:
retval = -EPIPE;
break;
case SetPortFeature:
switch (wValue) {
case USB_PORT_FEAT_SUSPEND:
if ((dum->port_status & (1 << USB_PORT_FEAT_SUSPEND))
== 0) {
dum->port_status |=
(1 << USB_PORT_FEAT_SUSPEND);
if (dum->driver && dum->driver->suspend) {
spin_unlock (&dum->lock);
dum->driver->suspend (&dum->gadget);
spin_lock (&dum->lock);
}
}
break;
case USB_PORT_FEAT_RESET:
/* if it's already running, disconnect first */
if (dum->port_status & USB_PORT_STAT_ENABLE) {
dum->port_status &= ~(USB_PORT_STAT_ENABLE
| USB_PORT_STAT_LOW_SPEED
| USB_PORT_STAT_HIGH_SPEED);
if (dum->driver) {
dev_dbg (dummy_dev(dum),
"disconnect\n");
stop_activity (dum, dum->driver);
}
/* FIXME test that code path! */
}
/* 50msec reset signaling */
dum->re_timeout = jiffies + msecs_to_jiffies(50);
/* FALLTHROUGH */
default:
dum->port_status |= (1 << wValue);
}
break;
default:
dev_dbg (dummy_dev(dum),
"hub control req%04x v%04x i%04x l%d\n",
typeReq, wValue, wIndex, wLength);
/* "protocol stall" on error */
retval = -EPIPE;
}
spin_unlock_irqrestore (&dum->lock, flags);
return retval;
}
/*-------------------------------------------------------------------------*/
static inline ssize_t
show_urb (char *buf, size_t size, struct urb *urb)
{
int ep = usb_pipeendpoint (urb->pipe);
return snprintf (buf, size,
"urb/%p %s ep%d%s%s len %d/%d\n",
urb,
({ char *s;
switch (urb->dev->speed) {
case USB_SPEED_LOW: s = "ls"; break;
case USB_SPEED_FULL: s = "fs"; break;
case USB_SPEED_HIGH: s = "hs"; break;
default: s = "?"; break;
}; s; }),
ep, ep ? (usb_pipein (urb->pipe) ? "in" : "out") : "",
({ char *s; \
switch (usb_pipetype (urb->pipe)) { \
case PIPE_CONTROL: s = ""; break; \
case PIPE_BULK: s = "-bulk"; break; \
case PIPE_INTERRUPT: s = "-int"; break; \
default: s = "-iso"; break; \
}; s;}),
urb->actual_length, urb->transfer_buffer_length);
}
static ssize_t
show_urbs (struct device *dev, char *buf)
{
struct usb_hcd *hcd = dev_get_drvdata (dev);
struct dummy *dum = hcd_to_dummy (hcd);
struct urbp *urbp;
size_t size = 0;
unsigned long flags;
spin_lock_irqsave (&dum->lock, flags);
list_for_each_entry (urbp, &dum->urbp_list, urbp_list) {
size_t temp;
temp = show_urb (buf, PAGE_SIZE - size, urbp->urb);
buf += temp;
size += temp;
}
spin_unlock_irqrestore (&dum->lock, flags);
return size;
}
static DEVICE_ATTR (urbs, S_IRUGO, show_urbs, NULL);
static int dummy_start (struct usb_hcd *hcd)
{
struct dummy *dum;
struct usb_device *root;
int retval;
dum = hcd_to_dummy (hcd);
/*
* MASTER side init ... we emulate a root hub that'll only ever
* talk to one device (the slave side). Also appears in sysfs,
* just like more familiar pci-based HCDs.
*/
spin_lock_init (&dum->lock);
init_timer (&dum->timer);
dum->timer.function = dummy_timer;
dum->timer.data = (unsigned long) dum;
INIT_LIST_HEAD (&dum->urbp_list);
root = usb_alloc_dev (NULL, &hcd->self, 0);
if (!root)
return -ENOMEM;
/* root hub enters addressed state... */
hcd->state = HC_STATE_RUNNING;
root->speed = USB_SPEED_HIGH;
/* ...then configured, so khubd sees us. */
if ((retval = usb_hcd_register_root_hub (root, hcd)) != 0) {
goto err1;
}
/* only show a low-power port: just 8mA */
hub_set_power_budget (root, 8);
if ((retval = dummy_register_udc (dum)) != 0)
goto err2;
/* FIXME 'urbs' should be a per-device thing, maybe in usbcore */
device_create_file (dummy_dev(dum), &dev_attr_urbs);
return 0;
err2:
usb_disconnect (&hcd->self.root_hub);
err1:
usb_put_dev (root);
hcd->state = HC_STATE_QUIESCING;
return retval;
}
static void dummy_stop (struct usb_hcd *hcd)
{
struct dummy *dum;
dum = hcd_to_dummy (hcd);
device_remove_file (dummy_dev(dum), &dev_attr_urbs);
usb_gadget_unregister_driver (dum->driver);
dummy_unregister_udc (dum);
dev_info (dummy_dev(dum), "stopped\n");
}
/*-------------------------------------------------------------------------*/
static int dummy_h_get_frame (struct usb_hcd *hcd)
{
return dummy_g_get_frame (NULL);
}
static const struct hc_driver dummy_hcd = {
.description = (char *) driver_name,
.product_desc = "Dummy host controller",
.hcd_priv_size = sizeof(struct dummy),
.flags = HCD_USB2,
.start = dummy_start,
.stop = dummy_stop,
.urb_enqueue = dummy_urb_enqueue,
.urb_dequeue = dummy_urb_dequeue,
.get_frame_number = dummy_h_get_frame,
.hub_status_data = dummy_hub_status,
.hub_control = dummy_hub_control,
};
static int dummy_probe (struct device *dev)
{
struct usb_hcd *hcd;
int retval;
dev_info (dev, "%s, driver " DRIVER_VERSION "\n", driver_desc);
hcd = usb_create_hcd (&dummy_hcd, dev, dev->bus_id);
if (!hcd)
return -ENOMEM;
the_controller = hcd_to_dummy (hcd);
retval = usb_add_hcd(hcd, 0, 0);
if (retval != 0) {
usb_put_hcd (hcd);
the_controller = NULL;
}
return retval;
}
static void dummy_remove (struct device *dev)
{
struct usb_hcd *hcd;
hcd = dev_get_drvdata (dev);
usb_remove_hcd (hcd);
usb_put_hcd (hcd);
the_controller = NULL;
}
/*-------------------------------------------------------------------------*/
static int dummy_pdev_detect (void)
{
int retval;
retval = driver_register (&dummy_driver);
if (retval < 0)
return retval;
the_pdev.name = "hc";
the_pdev.dev.driver = &dummy_driver;
the_pdev.dev.release = dummy_pdev_release;
retval = platform_device_register (&the_pdev);
if (retval < 0)
driver_unregister (&dummy_driver);
return retval;
}
static void dummy_pdev_remove (void)
{
platform_device_unregister (&the_pdev);
driver_unregister (&dummy_driver);
}
/*-------------------------------------------------------------------------*/
static int __init init (void)
{
int retval;
if (usb_disabled ())
return -ENODEV;
if ((retval = dummy_pdev_detect ()) != 0)
return retval;
if ((retval = dummy_probe (&the_pdev.dev)) != 0)
dummy_pdev_remove ();
return retval;
}
module_init (init);
static void __exit cleanup (void)
{
dummy_remove (&the_pdev.dev);
dummy_pdev_remove ();
}
module_exit (cleanup);