OpenCloudOS-Kernel/drivers/gpu/drm/i915/gvt/cmd_parser.c

2936 lines
87 KiB
C

/*
* Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Ke Yu
* Kevin Tian <kevin.tian@intel.com>
* Zhiyuan Lv <zhiyuan.lv@intel.com>
*
* Contributors:
* Min He <min.he@intel.com>
* Ping Gao <ping.a.gao@intel.com>
* Tina Zhang <tina.zhang@intel.com>
* Yulei Zhang <yulei.zhang@intel.com>
* Zhi Wang <zhi.a.wang@intel.com>
*
*/
#include <linux/slab.h>
#include "i915_drv.h"
#include "gvt.h"
#include "i915_pvinfo.h"
#include "trace.h"
#define INVALID_OP (~0U)
#define OP_LEN_MI 9
#define OP_LEN_2D 10
#define OP_LEN_3D_MEDIA 16
#define OP_LEN_MFX_VC 16
#define OP_LEN_VEBOX 16
#define CMD_TYPE(cmd) (((cmd) >> 29) & 7)
struct sub_op_bits {
int hi;
int low;
};
struct decode_info {
char *name;
int op_len;
int nr_sub_op;
struct sub_op_bits *sub_op;
};
#define MAX_CMD_BUDGET 0x7fffffff
#define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15)
#define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9)
#define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1)
#define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20)
#define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10)
#define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2)
/* Render Command Map */
/* MI_* command Opcode (28:23) */
#define OP_MI_NOOP 0x0
#define OP_MI_SET_PREDICATE 0x1 /* HSW+ */
#define OP_MI_USER_INTERRUPT 0x2
#define OP_MI_WAIT_FOR_EVENT 0x3
#define OP_MI_FLUSH 0x4
#define OP_MI_ARB_CHECK 0x5
#define OP_MI_RS_CONTROL 0x6 /* HSW+ */
#define OP_MI_REPORT_HEAD 0x7
#define OP_MI_ARB_ON_OFF 0x8
#define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */
#define OP_MI_BATCH_BUFFER_END 0xA
#define OP_MI_SUSPEND_FLUSH 0xB
#define OP_MI_PREDICATE 0xC /* IVB+ */
#define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */
#define OP_MI_SET_APPID 0xE /* IVB+ */
#define OP_MI_RS_CONTEXT 0xF /* HSW+ */
#define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */
#define OP_MI_DISPLAY_FLIP 0x14
#define OP_MI_SEMAPHORE_MBOX 0x16
#define OP_MI_SET_CONTEXT 0x18
#define OP_MI_MATH 0x1A
#define OP_MI_URB_CLEAR 0x19
#define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */
#define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */
#define OP_MI_STORE_DATA_IMM 0x20
#define OP_MI_STORE_DATA_INDEX 0x21
#define OP_MI_LOAD_REGISTER_IMM 0x22
#define OP_MI_UPDATE_GTT 0x23
#define OP_MI_STORE_REGISTER_MEM 0x24
#define OP_MI_FLUSH_DW 0x26
#define OP_MI_CLFLUSH 0x27
#define OP_MI_REPORT_PERF_COUNT 0x28
#define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */
#define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */
#define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */
#define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */
#define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */
#define OP_MI_2E 0x2E /* BDW+ */
#define OP_MI_2F 0x2F /* BDW+ */
#define OP_MI_BATCH_BUFFER_START 0x31
/* Bit definition for dword 0 */
#define _CMDBIT_BB_START_IN_PPGTT (1UL << 8)
#define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36
#define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
#define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
#define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U)
#define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U)
/* 2D command: Opcode (28:22) */
#define OP_2D(x) ((2<<7) | x)
#define OP_XY_SETUP_BLT OP_2D(0x1)
#define OP_XY_SETUP_CLIP_BLT OP_2D(0x3)
#define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11)
#define OP_XY_PIXEL_BLT OP_2D(0x24)
#define OP_XY_SCANLINES_BLT OP_2D(0x25)
#define OP_XY_TEXT_BLT OP_2D(0x26)
#define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31)
#define OP_XY_COLOR_BLT OP_2D(0x50)
#define OP_XY_PAT_BLT OP_2D(0x51)
#define OP_XY_MONO_PAT_BLT OP_2D(0x52)
#define OP_XY_SRC_COPY_BLT OP_2D(0x53)
#define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54)
#define OP_XY_FULL_BLT OP_2D(0x55)
#define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56)
#define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57)
#define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58)
#define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59)
#define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71)
#define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72)
#define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73)
#define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74)
#define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75)
#define OP_XY_PAT_CHROMA_BLT OP_2D(0x76)
#define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77)
/* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
#define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
#define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03)
#define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01)
#define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02)
#define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04)
#define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B)
#define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04)
#define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0)
#define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1)
#define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2)
#define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3)
#define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4)
#define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0)
#define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2)
#define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3)
#define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5)
#define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
#define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
#define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
#define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
#define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08)
#define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09)
#define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A)
#define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B)
#define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */
#define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E)
#define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F)
#define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10)
#define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11)
#define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12)
#define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13)
#define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14)
#define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15)
#define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16)
#define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17)
#define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18)
#define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
#define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
#define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
#define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
#define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
#define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
#define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
#define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
#define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
#define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
#define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
#define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
#define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
#define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
#define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
#define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
#define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
#define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
#define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
#define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
#define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
#define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
#define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
#define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
#define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
#define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
#define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
#define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
#define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
#define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
#define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
#define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
#define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
#define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
#define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
#define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
#define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
#define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
#define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
#define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
#define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
#define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
#define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
#define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
#define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
#define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
#define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
#define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
#define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
#define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
#define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
#define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
#define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
#define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
#define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
#define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
#define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
#define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00)
#define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02)
#define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04)
#define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05)
#define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06)
#define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07)
#define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08)
#define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A)
#define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B)
#define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C)
#define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D)
#define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E)
#define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F)
#define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10)
#define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11)
#define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
#define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
#define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
#define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
#define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
#define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17)
#define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18)
#define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
#define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
#define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
#define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C)
#define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00)
#define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00)
/* VCCP Command Parser */
/*
* Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
* git://anongit.freedesktop.org/vaapi/intel-driver
* src/i965_defines.h
*
*/
#define OP_MFX(pipeline, op, sub_opa, sub_opb) \
(3 << 13 | \
(pipeline) << 11 | \
(op) << 8 | \
(sub_opa) << 5 | \
(sub_opb))
#define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */
#define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */
#define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */
#define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */
#define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */
#define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */
#define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */
#define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */
#define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */
#define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */
#define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */
#define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */
#define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */
#define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */
#define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */
#define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */
#define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */
#define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */
#define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */
#define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */
#define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */
#define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */
#define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */
#define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */
#define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */
#define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */
#define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */
#define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */
#define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */
#define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */
#define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */
#define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */
#define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */
#define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */
#define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */
#define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */
#define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */
#define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0)
#define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2)
#define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8)
#define OP_VEB(pipeline, op, sub_opa, sub_opb) \
(3 << 13 | \
(pipeline) << 11 | \
(op) << 8 | \
(sub_opa) << 5 | \
(sub_opb))
#define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0)
#define OP_VEB_STATE OP_VEB(2, 4, 0, 2)
#define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3)
struct parser_exec_state;
typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
#define GVT_CMD_HASH_BITS 7
/* which DWords need address fix */
#define ADDR_FIX_1(x1) (1 << (x1))
#define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
#define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
#define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
#define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
struct cmd_info {
char *name;
u32 opcode;
#define F_LEN_MASK (1U<<0)
#define F_LEN_CONST 1U
#define F_LEN_VAR 0U
/*
* command has its own ip advance logic
* e.g. MI_BATCH_START, MI_BATCH_END
*/
#define F_IP_ADVANCE_CUSTOM (1<<1)
#define F_POST_HANDLE (1<<2)
u32 flag;
#define R_RCS (1 << RCS)
#define R_VCS1 (1 << VCS)
#define R_VCS2 (1 << VCS2)
#define R_VCS (R_VCS1 | R_VCS2)
#define R_BCS (1 << BCS)
#define R_VECS (1 << VECS)
#define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
/* rings that support this cmd: BLT/RCS/VCS/VECS */
uint16_t rings;
/* devices that support this cmd: SNB/IVB/HSW/... */
uint16_t devices;
/* which DWords are address that need fix up.
* bit 0 means a 32-bit non address operand in command
* bit 1 means address operand, which could be 32-bit
* or 64-bit depending on different architectures.(
* defined by "gmadr_bytes_in_cmd" in intel_gvt.
* No matter the address length, each address only takes
* one bit in the bitmap.
*/
uint16_t addr_bitmap;
/* flag == F_LEN_CONST : command length
* flag == F_LEN_VAR : length bias bits
* Note: length is in DWord
*/
uint8_t len;
parser_cmd_handler handler;
};
struct cmd_entry {
struct hlist_node hlist;
struct cmd_info *info;
};
enum {
RING_BUFFER_INSTRUCTION,
BATCH_BUFFER_INSTRUCTION,
BATCH_BUFFER_2ND_LEVEL,
};
enum {
GTT_BUFFER,
PPGTT_BUFFER
};
struct parser_exec_state {
struct intel_vgpu *vgpu;
int ring_id;
int buf_type;
/* batch buffer address type */
int buf_addr_type;
/* graphics memory address of ring buffer start */
unsigned long ring_start;
unsigned long ring_size;
unsigned long ring_head;
unsigned long ring_tail;
/* instruction graphics memory address */
unsigned long ip_gma;
/* mapped va of the instr_gma */
void *ip_va;
void *rb_va;
void *ret_bb_va;
/* next instruction when return from batch buffer to ring buffer */
unsigned long ret_ip_gma_ring;
/* next instruction when return from 2nd batch buffer to batch buffer */
unsigned long ret_ip_gma_bb;
/* batch buffer address type (GTT or PPGTT)
* used when ret from 2nd level batch buffer
*/
int saved_buf_addr_type;
bool is_ctx_wa;
struct cmd_info *info;
struct intel_vgpu_workload *workload;
};
#define gmadr_dw_number(s) \
(s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
static unsigned long bypass_scan_mask = 0;
/* ring ALL, type = 0 */
static struct sub_op_bits sub_op_mi[] = {
{31, 29},
{28, 23},
};
static struct decode_info decode_info_mi = {
"MI",
OP_LEN_MI,
ARRAY_SIZE(sub_op_mi),
sub_op_mi,
};
/* ring RCS, command type 2 */
static struct sub_op_bits sub_op_2d[] = {
{31, 29},
{28, 22},
};
static struct decode_info decode_info_2d = {
"2D",
OP_LEN_2D,
ARRAY_SIZE(sub_op_2d),
sub_op_2d,
};
/* ring RCS, command type 3 */
static struct sub_op_bits sub_op_3d_media[] = {
{31, 29},
{28, 27},
{26, 24},
{23, 16},
};
static struct decode_info decode_info_3d_media = {
"3D_Media",
OP_LEN_3D_MEDIA,
ARRAY_SIZE(sub_op_3d_media),
sub_op_3d_media,
};
/* ring VCS, command type 3 */
static struct sub_op_bits sub_op_mfx_vc[] = {
{31, 29},
{28, 27},
{26, 24},
{23, 21},
{20, 16},
};
static struct decode_info decode_info_mfx_vc = {
"MFX_VC",
OP_LEN_MFX_VC,
ARRAY_SIZE(sub_op_mfx_vc),
sub_op_mfx_vc,
};
/* ring VECS, command type 3 */
static struct sub_op_bits sub_op_vebox[] = {
{31, 29},
{28, 27},
{26, 24},
{23, 21},
{20, 16},
};
static struct decode_info decode_info_vebox = {
"VEBOX",
OP_LEN_VEBOX,
ARRAY_SIZE(sub_op_vebox),
sub_op_vebox,
};
static struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
[RCS] = {
&decode_info_mi,
NULL,
NULL,
&decode_info_3d_media,
NULL,
NULL,
NULL,
NULL,
},
[VCS] = {
&decode_info_mi,
NULL,
NULL,
&decode_info_mfx_vc,
NULL,
NULL,
NULL,
NULL,
},
[BCS] = {
&decode_info_mi,
NULL,
&decode_info_2d,
NULL,
NULL,
NULL,
NULL,
NULL,
},
[VECS] = {
&decode_info_mi,
NULL,
NULL,
&decode_info_vebox,
NULL,
NULL,
NULL,
NULL,
},
[VCS2] = {
&decode_info_mi,
NULL,
NULL,
&decode_info_mfx_vc,
NULL,
NULL,
NULL,
NULL,
},
};
static inline u32 get_opcode(u32 cmd, int ring_id)
{
struct decode_info *d_info;
d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
if (d_info == NULL)
return INVALID_OP;
return cmd >> (32 - d_info->op_len);
}
static inline struct cmd_info *find_cmd_entry(struct intel_gvt *gvt,
unsigned int opcode, int ring_id)
{
struct cmd_entry *e;
hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
if ((opcode == e->info->opcode) &&
(e->info->rings & (1 << ring_id)))
return e->info;
}
return NULL;
}
static inline struct cmd_info *get_cmd_info(struct intel_gvt *gvt,
u32 cmd, int ring_id)
{
u32 opcode;
opcode = get_opcode(cmd, ring_id);
if (opcode == INVALID_OP)
return NULL;
return find_cmd_entry(gvt, opcode, ring_id);
}
static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
{
return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
}
static inline void print_opcode(u32 cmd, int ring_id)
{
struct decode_info *d_info;
int i;
d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
if (d_info == NULL)
return;
gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
cmd >> (32 - d_info->op_len), d_info->name);
for (i = 0; i < d_info->nr_sub_op; i++)
pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
d_info->sub_op[i].low));
pr_err("\n");
}
static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
{
return s->ip_va + (index << 2);
}
static inline u32 cmd_val(struct parser_exec_state *s, int index)
{
return *cmd_ptr(s, index);
}
static void parser_exec_state_dump(struct parser_exec_state *s)
{
int cnt = 0;
int i;
gvt_dbg_cmd(" vgpu%d RING%d: ring_start(%08lx) ring_end(%08lx)"
" ring_head(%08lx) ring_tail(%08lx)\n", s->vgpu->id,
s->ring_id, s->ring_start, s->ring_start + s->ring_size,
s->ring_head, s->ring_tail);
gvt_dbg_cmd(" %s %s ip_gma(%08lx) ",
s->buf_type == RING_BUFFER_INSTRUCTION ?
"RING_BUFFER" : "BATCH_BUFFER",
s->buf_addr_type == GTT_BUFFER ?
"GTT" : "PPGTT", s->ip_gma);
if (s->ip_va == NULL) {
gvt_dbg_cmd(" ip_va(NULL)");
return;
}
gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n",
s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
cmd_val(s, 2), cmd_val(s, 3));
print_opcode(cmd_val(s, 0), s->ring_id);
s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
while (cnt < 1024) {
gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
for (i = 0; i < 8; i++)
gvt_dbg_cmd("%08x ", cmd_val(s, i));
gvt_dbg_cmd("\n");
s->ip_va += 8 * sizeof(u32);
cnt += 8;
}
}
static inline void update_ip_va(struct parser_exec_state *s)
{
unsigned long len = 0;
if (WARN_ON(s->ring_head == s->ring_tail))
return;
if (s->buf_type == RING_BUFFER_INSTRUCTION) {
unsigned long ring_top = s->ring_start + s->ring_size;
if (s->ring_head > s->ring_tail) {
if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
len = (s->ip_gma - s->ring_head);
else if (s->ip_gma >= s->ring_start &&
s->ip_gma <= s->ring_tail)
len = (ring_top - s->ring_head) +
(s->ip_gma - s->ring_start);
} else
len = (s->ip_gma - s->ring_head);
s->ip_va = s->rb_va + len;
} else {/* shadow batch buffer */
s->ip_va = s->ret_bb_va;
}
}
static inline int ip_gma_set(struct parser_exec_state *s,
unsigned long ip_gma)
{
WARN_ON(!IS_ALIGNED(ip_gma, 4));
s->ip_gma = ip_gma;
update_ip_va(s);
return 0;
}
static inline int ip_gma_advance(struct parser_exec_state *s,
unsigned int dw_len)
{
s->ip_gma += (dw_len << 2);
if (s->buf_type == RING_BUFFER_INSTRUCTION) {
if (s->ip_gma >= s->ring_start + s->ring_size)
s->ip_gma -= s->ring_size;
update_ip_va(s);
} else {
s->ip_va += (dw_len << 2);
}
return 0;
}
static inline int get_cmd_length(struct cmd_info *info, u32 cmd)
{
if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
return info->len;
else
return (cmd & ((1U << info->len) - 1)) + 2;
return 0;
}
static inline int cmd_length(struct parser_exec_state *s)
{
return get_cmd_length(s->info, cmd_val(s, 0));
}
/* do not remove this, some platform may need clflush here */
#define patch_value(s, addr, val) do { \
*addr = val; \
} while (0)
static bool is_shadowed_mmio(unsigned int offset)
{
bool ret = false;
if ((offset == 0x2168) || /*BB current head register UDW */
(offset == 0x2140) || /*BB current header register */
(offset == 0x211c) || /*second BB header register UDW */
(offset == 0x2114)) { /*second BB header register UDW */
ret = true;
}
return ret;
}
static inline bool is_force_nonpriv_mmio(unsigned int offset)
{
return (offset >= 0x24d0 && offset < 0x2500);
}
static int force_nonpriv_reg_handler(struct parser_exec_state *s,
unsigned int offset, unsigned int index)
{
struct intel_gvt *gvt = s->vgpu->gvt;
unsigned int data = cmd_val(s, index + 1);
if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data)) {
gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n",
offset, data);
return -EPERM;
}
return 0;
}
static inline bool is_mocs_mmio(unsigned int offset)
{
return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
((offset >= 0xb020) && (offset <= 0xb0a0));
}
static int mocs_cmd_reg_handler(struct parser_exec_state *s,
unsigned int offset, unsigned int index)
{
if (!is_mocs_mmio(offset))
return -EINVAL;
vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1);
return 0;
}
static int cmd_reg_handler(struct parser_exec_state *s,
unsigned int offset, unsigned int index, char *cmd)
{
struct intel_vgpu *vgpu = s->vgpu;
struct intel_gvt *gvt = vgpu->gvt;
if (offset + 4 > gvt->device_info.mmio_size) {
gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
cmd, offset);
return -EFAULT;
}
if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) {
gvt_vgpu_err("%s access to non-render register (%x)\n",
cmd, offset);
return 0;
}
if (is_shadowed_mmio(offset)) {
gvt_vgpu_err("found access of shadowed MMIO %x\n", offset);
return 0;
}
if (is_mocs_mmio(offset) &&
mocs_cmd_reg_handler(s, offset, index))
return -EINVAL;
if (is_force_nonpriv_mmio(offset) &&
force_nonpriv_reg_handler(s, offset, index))
return -EPERM;
if (offset == i915_mmio_reg_offset(DERRMR) ||
offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
/* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
}
/* TODO: Update the global mask if this MMIO is a masked-MMIO */
intel_gvt_mmio_set_cmd_accessed(gvt, offset);
return 0;
}
#define cmd_reg(s, i) \
(cmd_val(s, i) & GENMASK(22, 2))
#define cmd_reg_inhibit(s, i) \
(cmd_val(s, i) & GENMASK(22, 18))
#define cmd_gma(s, i) \
(cmd_val(s, i) & GENMASK(31, 2))
#define cmd_gma_hi(s, i) \
(cmd_val(s, i) & GENMASK(15, 0))
static int cmd_handler_lri(struct parser_exec_state *s)
{
int i, ret = 0;
int cmd_len = cmd_length(s);
struct intel_gvt *gvt = s->vgpu->gvt;
for (i = 1; i < cmd_len; i += 2) {
if (IS_BROADWELL(gvt->dev_priv) &&
(s->ring_id != RCS)) {
if (s->ring_id == BCS &&
cmd_reg(s, i) ==
i915_mmio_reg_offset(DERRMR))
ret |= 0;
else
ret |= (cmd_reg_inhibit(s, i)) ?
-EBADRQC : 0;
}
if (ret)
break;
ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
if (ret)
break;
}
return ret;
}
static int cmd_handler_lrr(struct parser_exec_state *s)
{
int i, ret = 0;
int cmd_len = cmd_length(s);
for (i = 1; i < cmd_len; i += 2) {
if (IS_BROADWELL(s->vgpu->gvt->dev_priv))
ret |= ((cmd_reg_inhibit(s, i) ||
(cmd_reg_inhibit(s, i + 1)))) ?
-EBADRQC : 0;
if (ret)
break;
ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
if (ret)
break;
ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
if (ret)
break;
}
return ret;
}
static inline int cmd_address_audit(struct parser_exec_state *s,
unsigned long guest_gma, int op_size, bool index_mode);
static int cmd_handler_lrm(struct parser_exec_state *s)
{
struct intel_gvt *gvt = s->vgpu->gvt;
int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
unsigned long gma;
int i, ret = 0;
int cmd_len = cmd_length(s);
for (i = 1; i < cmd_len;) {
if (IS_BROADWELL(gvt->dev_priv))
ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
if (ret)
break;
ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
if (ret)
break;
if (cmd_val(s, 0) & (1 << 22)) {
gma = cmd_gma(s, i + 1);
if (gmadr_bytes == 8)
gma |= (cmd_gma_hi(s, i + 2)) << 32;
ret |= cmd_address_audit(s, gma, sizeof(u32), false);
if (ret)
break;
}
i += gmadr_dw_number(s) + 1;
}
return ret;
}
static int cmd_handler_srm(struct parser_exec_state *s)
{
int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
unsigned long gma;
int i, ret = 0;
int cmd_len = cmd_length(s);
for (i = 1; i < cmd_len;) {
ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
if (ret)
break;
if (cmd_val(s, 0) & (1 << 22)) {
gma = cmd_gma(s, i + 1);
if (gmadr_bytes == 8)
gma |= (cmd_gma_hi(s, i + 2)) << 32;
ret |= cmd_address_audit(s, gma, sizeof(u32), false);
if (ret)
break;
}
i += gmadr_dw_number(s) + 1;
}
return ret;
}
struct cmd_interrupt_event {
int pipe_control_notify;
int mi_flush_dw;
int mi_user_interrupt;
};
static struct cmd_interrupt_event cmd_interrupt_events[] = {
[RCS] = {
.pipe_control_notify = RCS_PIPE_CONTROL,
.mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
.mi_user_interrupt = RCS_MI_USER_INTERRUPT,
},
[BCS] = {
.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
.mi_flush_dw = BCS_MI_FLUSH_DW,
.mi_user_interrupt = BCS_MI_USER_INTERRUPT,
},
[VCS] = {
.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
.mi_flush_dw = VCS_MI_FLUSH_DW,
.mi_user_interrupt = VCS_MI_USER_INTERRUPT,
},
[VCS2] = {
.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
.mi_flush_dw = VCS2_MI_FLUSH_DW,
.mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
},
[VECS] = {
.pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
.mi_flush_dw = VECS_MI_FLUSH_DW,
.mi_user_interrupt = VECS_MI_USER_INTERRUPT,
},
};
static int cmd_handler_pipe_control(struct parser_exec_state *s)
{
int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
unsigned long gma;
bool index_mode = false;
unsigned int post_sync;
int ret = 0;
post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
/* LRI post sync */
if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
/* post sync */
else if (post_sync) {
if (post_sync == 2)
ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
else if (post_sync == 3)
ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
else if (post_sync == 1) {
/* check ggtt*/
if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
gma = cmd_val(s, 2) & GENMASK(31, 3);
if (gmadr_bytes == 8)
gma |= (cmd_gma_hi(s, 3)) << 32;
/* Store Data Index */
if (cmd_val(s, 1) & (1 << 21))
index_mode = true;
ret |= cmd_address_audit(s, gma, sizeof(u64),
index_mode);
}
}
}
if (ret)
return ret;
if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
set_bit(cmd_interrupt_events[s->ring_id].pipe_control_notify,
s->workload->pending_events);
return 0;
}
static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
{
set_bit(cmd_interrupt_events[s->ring_id].mi_user_interrupt,
s->workload->pending_events);
patch_value(s, cmd_ptr(s, 0), MI_NOOP);
return 0;
}
static int cmd_advance_default(struct parser_exec_state *s)
{
return ip_gma_advance(s, cmd_length(s));
}
static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
{
int ret;
if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
s->buf_type = BATCH_BUFFER_INSTRUCTION;
ret = ip_gma_set(s, s->ret_ip_gma_bb);
s->buf_addr_type = s->saved_buf_addr_type;
} else {
s->buf_type = RING_BUFFER_INSTRUCTION;
s->buf_addr_type = GTT_BUFFER;
if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
s->ret_ip_gma_ring -= s->ring_size;
ret = ip_gma_set(s, s->ret_ip_gma_ring);
}
return ret;
}
struct mi_display_flip_command_info {
int pipe;
int plane;
int event;
i915_reg_t stride_reg;
i915_reg_t ctrl_reg;
i915_reg_t surf_reg;
u64 stride_val;
u64 tile_val;
u64 surf_val;
bool async_flip;
};
struct plane_code_mapping {
int pipe;
int plane;
int event;
};
static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
struct mi_display_flip_command_info *info)
{
struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
struct plane_code_mapping gen8_plane_code[] = {
[0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
[1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
[2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
[3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
[4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
[5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
};
u32 dword0, dword1, dword2;
u32 v;
dword0 = cmd_val(s, 0);
dword1 = cmd_val(s, 1);
dword2 = cmd_val(s, 2);
v = (dword0 & GENMASK(21, 19)) >> 19;
if (WARN_ON(v >= ARRAY_SIZE(gen8_plane_code)))
return -EBADRQC;
info->pipe = gen8_plane_code[v].pipe;
info->plane = gen8_plane_code[v].plane;
info->event = gen8_plane_code[v].event;
info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
info->tile_val = (dword1 & 0x1);
info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
if (info->plane == PLANE_A) {
info->ctrl_reg = DSPCNTR(info->pipe);
info->stride_reg = DSPSTRIDE(info->pipe);
info->surf_reg = DSPSURF(info->pipe);
} else if (info->plane == PLANE_B) {
info->ctrl_reg = SPRCTL(info->pipe);
info->stride_reg = SPRSTRIDE(info->pipe);
info->surf_reg = SPRSURF(info->pipe);
} else {
WARN_ON(1);
return -EBADRQC;
}
return 0;
}
static int skl_decode_mi_display_flip(struct parser_exec_state *s,
struct mi_display_flip_command_info *info)
{
struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
struct intel_vgpu *vgpu = s->vgpu;
u32 dword0 = cmd_val(s, 0);
u32 dword1 = cmd_val(s, 1);
u32 dword2 = cmd_val(s, 2);
u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
info->plane = PRIMARY_PLANE;
switch (plane) {
case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
info->pipe = PIPE_A;
info->event = PRIMARY_A_FLIP_DONE;
break;
case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
info->pipe = PIPE_B;
info->event = PRIMARY_B_FLIP_DONE;
break;
case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
info->pipe = PIPE_C;
info->event = PRIMARY_C_FLIP_DONE;
break;
case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
info->pipe = PIPE_A;
info->event = SPRITE_A_FLIP_DONE;
info->plane = SPRITE_PLANE;
break;
case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
info->pipe = PIPE_B;
info->event = SPRITE_B_FLIP_DONE;
info->plane = SPRITE_PLANE;
break;
case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
info->pipe = PIPE_C;
info->event = SPRITE_C_FLIP_DONE;
info->plane = SPRITE_PLANE;
break;
default:
gvt_vgpu_err("unknown plane code %d\n", plane);
return -EBADRQC;
}
info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
info->tile_val = (dword1 & GENMASK(2, 0));
info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
info->ctrl_reg = DSPCNTR(info->pipe);
info->stride_reg = DSPSTRIDE(info->pipe);
info->surf_reg = DSPSURF(info->pipe);
return 0;
}
static int gen8_check_mi_display_flip(struct parser_exec_state *s,
struct mi_display_flip_command_info *info)
{
struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
u32 stride, tile;
if (!info->async_flip)
return 0;
if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
GENMASK(12, 10)) >> 10;
} else {
stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
GENMASK(15, 6)) >> 6;
tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
}
if (stride != info->stride_val)
gvt_dbg_cmd("cannot change stride during async flip\n");
if (tile != info->tile_val)
gvt_dbg_cmd("cannot change tile during async flip\n");
return 0;
}
static int gen8_update_plane_mmio_from_mi_display_flip(
struct parser_exec_state *s,
struct mi_display_flip_command_info *info)
{
struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
struct intel_vgpu *vgpu = s->vgpu;
set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
info->surf_val << 12);
if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
info->stride_val);
set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
info->tile_val << 10);
} else {
set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
info->stride_val << 6);
set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
info->tile_val << 10);
}
vgpu_vreg_t(vgpu, PIPE_FRMCOUNT_G4X(info->pipe))++;
intel_vgpu_trigger_virtual_event(vgpu, info->event);
return 0;
}
static int decode_mi_display_flip(struct parser_exec_state *s,
struct mi_display_flip_command_info *info)
{
struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
if (IS_BROADWELL(dev_priv))
return gen8_decode_mi_display_flip(s, info);
if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
return skl_decode_mi_display_flip(s, info);
return -ENODEV;
}
static int check_mi_display_flip(struct parser_exec_state *s,
struct mi_display_flip_command_info *info)
{
struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
if (IS_BROADWELL(dev_priv)
|| IS_SKYLAKE(dev_priv)
|| IS_KABYLAKE(dev_priv))
return gen8_check_mi_display_flip(s, info);
return -ENODEV;
}
static int update_plane_mmio_from_mi_display_flip(
struct parser_exec_state *s,
struct mi_display_flip_command_info *info)
{
struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
if (IS_BROADWELL(dev_priv)
|| IS_SKYLAKE(dev_priv)
|| IS_KABYLAKE(dev_priv))
return gen8_update_plane_mmio_from_mi_display_flip(s, info);
return -ENODEV;
}
static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
{
struct mi_display_flip_command_info info;
struct intel_vgpu *vgpu = s->vgpu;
int ret;
int i;
int len = cmd_length(s);
ret = decode_mi_display_flip(s, &info);
if (ret) {
gvt_vgpu_err("fail to decode MI display flip command\n");
return ret;
}
ret = check_mi_display_flip(s, &info);
if (ret) {
gvt_vgpu_err("invalid MI display flip command\n");
return ret;
}
ret = update_plane_mmio_from_mi_display_flip(s, &info);
if (ret) {
gvt_vgpu_err("fail to update plane mmio\n");
return ret;
}
for (i = 0; i < len; i++)
patch_value(s, cmd_ptr(s, i), MI_NOOP);
return 0;
}
static bool is_wait_for_flip_pending(u32 cmd)
{
return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
}
static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
{
u32 cmd = cmd_val(s, 0);
if (!is_wait_for_flip_pending(cmd))
return 0;
patch_value(s, cmd_ptr(s, 0), MI_NOOP);
return 0;
}
static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
{
unsigned long addr;
unsigned long gma_high, gma_low;
struct intel_vgpu *vgpu = s->vgpu;
int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
return INTEL_GVT_INVALID_ADDR;
}
gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
if (gmadr_bytes == 4) {
addr = gma_low;
} else {
gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
addr = (((unsigned long)gma_high) << 32) | gma_low;
}
return addr;
}
static inline int cmd_address_audit(struct parser_exec_state *s,
unsigned long guest_gma, int op_size, bool index_mode)
{
struct intel_vgpu *vgpu = s->vgpu;
u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
int i;
int ret;
if (op_size > max_surface_size) {
gvt_vgpu_err("command address audit fail name %s\n",
s->info->name);
return -EFAULT;
}
if (index_mode) {
if (guest_gma >= I915_GTT_PAGE_SIZE / sizeof(u64)) {
ret = -EFAULT;
goto err;
}
} else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
ret = -EFAULT;
goto err;
}
return 0;
err:
gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
s->info->name, guest_gma, op_size);
pr_err("cmd dump: ");
for (i = 0; i < cmd_length(s); i++) {
if (!(i % 4))
pr_err("\n%08x ", cmd_val(s, i));
else
pr_err("%08x ", cmd_val(s, i));
}
pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
vgpu->id,
vgpu_aperture_gmadr_base(vgpu),
vgpu_aperture_gmadr_end(vgpu),
vgpu_hidden_gmadr_base(vgpu),
vgpu_hidden_gmadr_end(vgpu));
return ret;
}
static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
{
int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
int op_size = (cmd_length(s) - 3) * sizeof(u32);
int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
unsigned long gma, gma_low, gma_high;
int ret = 0;
/* check ppggt */
if (!(cmd_val(s, 0) & (1 << 22)))
return 0;
gma = cmd_val(s, 2) & GENMASK(31, 2);
if (gmadr_bytes == 8) {
gma_low = cmd_val(s, 1) & GENMASK(31, 2);
gma_high = cmd_val(s, 2) & GENMASK(15, 0);
gma = (gma_high << 32) | gma_low;
core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
}
ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
return ret;
}
static inline int unexpected_cmd(struct parser_exec_state *s)
{
struct intel_vgpu *vgpu = s->vgpu;
gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
return -EBADRQC;
}
static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
{
return unexpected_cmd(s);
}
static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
{
return unexpected_cmd(s);
}
static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
{
return unexpected_cmd(s);
}
static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
{
int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
sizeof(u32);
unsigned long gma, gma_high;
int ret = 0;
if (!(cmd_val(s, 0) & (1 << 22)))
return ret;
gma = cmd_val(s, 1) & GENMASK(31, 2);
if (gmadr_bytes == 8) {
gma_high = cmd_val(s, 2) & GENMASK(15, 0);
gma = (gma_high << 32) | gma;
}
ret = cmd_address_audit(s, gma, op_size, false);
return ret;
}
static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
{
return unexpected_cmd(s);
}
static int cmd_handler_mi_clflush(struct parser_exec_state *s)
{
return unexpected_cmd(s);
}
static int cmd_handler_mi_conditional_batch_buffer_end(
struct parser_exec_state *s)
{
return unexpected_cmd(s);
}
static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
{
return unexpected_cmd(s);
}
static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
{
int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
unsigned long gma;
bool index_mode = false;
int ret = 0;
/* Check post-sync and ppgtt bit */
if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
gma = cmd_val(s, 1) & GENMASK(31, 3);
if (gmadr_bytes == 8)
gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
/* Store Data Index */
if (cmd_val(s, 0) & (1 << 21))
index_mode = true;
ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
}
/* Check notify bit */
if ((cmd_val(s, 0) & (1 << 8)))
set_bit(cmd_interrupt_events[s->ring_id].mi_flush_dw,
s->workload->pending_events);
return ret;
}
static void addr_type_update_snb(struct parser_exec_state *s)
{
if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
(BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
s->buf_addr_type = PPGTT_BUFFER;
}
}
static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
unsigned long gma, unsigned long end_gma, void *va)
{
unsigned long copy_len, offset;
unsigned long len = 0;
unsigned long gpa;
while (gma != end_gma) {
gpa = intel_vgpu_gma_to_gpa(mm, gma);
if (gpa == INTEL_GVT_INVALID_ADDR) {
gvt_vgpu_err("invalid gma address: %lx\n", gma);
return -EFAULT;
}
offset = gma & (I915_GTT_PAGE_SIZE - 1);
copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
I915_GTT_PAGE_SIZE - offset : end_gma - gma;
intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len);
len += copy_len;
gma += copy_len;
}
return len;
}
/*
* Check whether a batch buffer needs to be scanned. Currently
* the only criteria is based on privilege.
*/
static int batch_buffer_needs_scan(struct parser_exec_state *s)
{
struct intel_gvt *gvt = s->vgpu->gvt;
if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)
|| IS_KABYLAKE(gvt->dev_priv)) {
/* BDW decides privilege based on address space */
if (cmd_val(s, 0) & (1 << 8) &&
!(s->vgpu->scan_nonprivbb & (1 << s->ring_id)))
return 0;
}
return 1;
}
static int find_bb_size(struct parser_exec_state *s, unsigned long *bb_size)
{
unsigned long gma = 0;
struct cmd_info *info;
uint32_t cmd_len = 0;
bool bb_end = false;
struct intel_vgpu *vgpu = s->vgpu;
u32 cmd;
struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
*bb_size = 0;
/* get the start gm address of the batch buffer */
gma = get_gma_bb_from_cmd(s, 1);
if (gma == INTEL_GVT_INVALID_ADDR)
return -EFAULT;
cmd = cmd_val(s, 0);
info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
if (info == NULL) {
gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
cmd, get_opcode(cmd, s->ring_id),
(s->buf_addr_type == PPGTT_BUFFER) ?
"ppgtt" : "ggtt", s->ring_id, s->workload);
return -EBADRQC;
}
do {
if (copy_gma_to_hva(s->vgpu, mm,
gma, gma + 4, &cmd) < 0)
return -EFAULT;
info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
if (info == NULL) {
gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
cmd, get_opcode(cmd, s->ring_id),
(s->buf_addr_type == PPGTT_BUFFER) ?
"ppgtt" : "ggtt", s->ring_id, s->workload);
return -EBADRQC;
}
if (info->opcode == OP_MI_BATCH_BUFFER_END) {
bb_end = true;
} else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
/* chained batch buffer */
bb_end = true;
}
cmd_len = get_cmd_length(info, cmd) << 2;
*bb_size += cmd_len;
gma += cmd_len;
} while (!bb_end);
return 0;
}
static int perform_bb_shadow(struct parser_exec_state *s)
{
struct intel_vgpu *vgpu = s->vgpu;
struct intel_vgpu_shadow_bb *bb;
unsigned long gma = 0;
unsigned long bb_size;
int ret = 0;
struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
unsigned long gma_start_offset = 0;
/* get the start gm address of the batch buffer */
gma = get_gma_bb_from_cmd(s, 1);
if (gma == INTEL_GVT_INVALID_ADDR)
return -EFAULT;
ret = find_bb_size(s, &bb_size);
if (ret)
return ret;
bb = kzalloc(sizeof(*bb), GFP_KERNEL);
if (!bb)
return -ENOMEM;
bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
/* the gma_start_offset stores the batch buffer's start gma's
* offset relative to page boundary. so for non-privileged batch
* buffer, the shadowed gem object holds exactly the same page
* layout as original gem object. This is for the convience of
* replacing the whole non-privilged batch buffer page to this
* shadowed one in PPGTT at the same gma address. (this replacing
* action is not implemented yet now, but may be necessary in
* future).
* for prileged batch buffer, we just change start gma address to
* that of shadowed page.
*/
if (bb->ppgtt)
gma_start_offset = gma & ~I915_GTT_PAGE_MASK;
bb->obj = i915_gem_object_create(s->vgpu->gvt->dev_priv,
roundup(bb_size + gma_start_offset, PAGE_SIZE));
if (IS_ERR(bb->obj)) {
ret = PTR_ERR(bb->obj);
goto err_free_bb;
}
ret = i915_gem_obj_prepare_shmem_write(bb->obj, &bb->clflush);
if (ret)
goto err_free_obj;
bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
if (IS_ERR(bb->va)) {
ret = PTR_ERR(bb->va);
goto err_finish_shmem_access;
}
if (bb->clflush & CLFLUSH_BEFORE) {
drm_clflush_virt_range(bb->va, bb->obj->base.size);
bb->clflush &= ~CLFLUSH_BEFORE;
}
ret = copy_gma_to_hva(s->vgpu, mm,
gma, gma + bb_size,
bb->va + gma_start_offset);
if (ret < 0) {
gvt_vgpu_err("fail to copy guest ring buffer\n");
ret = -EFAULT;
goto err_unmap;
}
INIT_LIST_HEAD(&bb->list);
list_add(&bb->list, &s->workload->shadow_bb);
bb->accessing = true;
bb->bb_start_cmd_va = s->ip_va;
if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
bb->bb_offset = s->ip_va - s->rb_va;
else
bb->bb_offset = 0;
/*
* ip_va saves the virtual address of the shadow batch buffer, while
* ip_gma saves the graphics address of the original batch buffer.
* As the shadow batch buffer is just a copy from the originial one,
* it should be right to use shadow batch buffer'va and original batch
* buffer's gma in pair. After all, we don't want to pin the shadow
* buffer here (too early).
*/
s->ip_va = bb->va + gma_start_offset;
s->ip_gma = gma;
return 0;
err_unmap:
i915_gem_object_unpin_map(bb->obj);
err_finish_shmem_access:
i915_gem_obj_finish_shmem_access(bb->obj);
err_free_obj:
i915_gem_object_put(bb->obj);
err_free_bb:
kfree(bb);
return ret;
}
static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
{
bool second_level;
int ret = 0;
struct intel_vgpu *vgpu = s->vgpu;
if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
return -EFAULT;
}
second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
return -EFAULT;
}
s->saved_buf_addr_type = s->buf_addr_type;
addr_type_update_snb(s);
if (s->buf_type == RING_BUFFER_INSTRUCTION) {
s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
s->buf_type = BATCH_BUFFER_INSTRUCTION;
} else if (second_level) {
s->buf_type = BATCH_BUFFER_2ND_LEVEL;
s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
}
if (batch_buffer_needs_scan(s)) {
ret = perform_bb_shadow(s);
if (ret < 0)
gvt_vgpu_err("invalid shadow batch buffer\n");
} else {
/* emulate a batch buffer end to do return right */
ret = cmd_handler_mi_batch_buffer_end(s);
if (ret < 0)
return ret;
}
return ret;
}
static struct cmd_info cmd_info[] = {
{"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
{"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
0, 1, NULL},
{"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
0, 1, cmd_handler_mi_user_interrupt},
{"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
{"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
{"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
NULL},
{"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
NULL},
{"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
NULL},
{"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
NULL},
{"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
D_ALL, 0, 1, NULL},
{"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
cmd_handler_mi_batch_buffer_end},
{"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
0, 1, NULL},
{"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
NULL},
{"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
D_ALL, 0, 1, NULL},
{"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
NULL},
{"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
NULL},
{"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR | F_POST_HANDLE,
R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
{"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR, R_ALL, D_ALL,
0, 8, NULL},
{"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
{"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"ME_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, F_LEN_VAR, R_ALL,
D_BDW_PLUS, 0, 8, NULL},
{"ME_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, F_LEN_VAR, R_ALL, D_BDW_PLUS,
ADDR_FIX_1(2), 8, cmd_handler_mi_semaphore_wait},
{"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
{"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
0, 8, cmd_handler_mi_store_data_index},
{"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
D_ALL, 0, 8, cmd_handler_lri},
{"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
cmd_handler_mi_update_gtt},
{"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, F_LEN_VAR, R_ALL,
D_ALL, ADDR_FIX_1(2), 8, cmd_handler_srm},
{"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
cmd_handler_mi_flush_dw},
{"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
10, cmd_handler_mi_clflush},
{"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, F_LEN_VAR, R_ALL,
D_ALL, ADDR_FIX_1(1), 6, cmd_handler_mi_report_perf_count},
{"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, F_LEN_VAR, R_ALL,
D_ALL, ADDR_FIX_1(2), 8, cmd_handler_lrm},
{"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, F_LEN_VAR, R_ALL,
D_ALL, 0, 8, cmd_handler_lrr},
{"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, F_LEN_VAR, R_RCS,
D_ALL, 0, 8, NULL},
{"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR, R_RCS, D_ALL,
ADDR_FIX_1(2), 8, NULL},
{"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
ADDR_FIX_1(2), 8, NULL},
{"MI_OP_2E", OP_MI_2E, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_2(1, 2),
8, cmd_handler_mi_op_2e},
{"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
8, cmd_handler_mi_op_2f},
{"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
cmd_handler_mi_batch_buffer_start},
{"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
cmd_handler_mi_conditional_batch_buffer_end},
{"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
R_RCS | R_BCS, D_ALL, 0, 2, NULL},
{"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
ADDR_FIX_2(4, 7), 8, NULL},
{"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
0, 8, NULL},
{"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
{"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
{"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
0, 8, NULL},
{"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
ADDR_FIX_1(3), 8, NULL},
{"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
D_ALL, 0, 8, NULL},
{"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
ADDR_FIX_1(4), 8, NULL},
{"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
ADDR_FIX_2(4, 5), 8, NULL},
{"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
ADDR_FIX_1(4), 8, NULL},
{"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
ADDR_FIX_2(4, 7), 8, NULL},
{"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
{"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
{"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
{"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
{"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
{"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
D_ALL, ADDR_FIX_1(4), 8, NULL},
{"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
{"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
D_ALL, ADDR_FIX_1(4), 8, NULL},
{"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
{"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
{"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
{"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
ADDR_FIX_2(4, 5), 8, NULL},
{"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
{"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_BLEND_STATE_POINTERS",
OP_3DSTATE_BLEND_STATE_POINTERS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_BINDING_TABLE_POINTERS_VS",
OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_BINDING_TABLE_POINTERS_HS",
OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_BINDING_TABLE_POINTERS_DS",
OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_BINDING_TABLE_POINTERS_GS",
OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_BINDING_TABLE_POINTERS_PS",
OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_SAMPLER_STATE_POINTERS_VS",
OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_SAMPLER_STATE_POINTERS_HS",
OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_SAMPLER_STATE_POINTERS_DS",
OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_SAMPLER_STATE_POINTERS_GS",
OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_SAMPLER_STATE_POINTERS_PS",
OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
0, 8, NULL},
{"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
0, 8, NULL},
{"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
0, 8, NULL},
{"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
0, 8, NULL},
{"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
{"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
{"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
{"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
{"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
{"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
{"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
{"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
D_BDW_PLUS, 0, 8, NULL},
{"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
NULL},
{"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
D_BDW_PLUS, 0, 8, NULL},
{"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
D_BDW_PLUS, 0, 8, NULL},
{"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
8, NULL},
{"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
R_RCS, D_BDW_PLUS, 0, 8, NULL},
{"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
8, NULL},
{"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
NULL},
{"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
NULL},
{"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
NULL},
{"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
D_BDW_PLUS, 0, 8, NULL},
{"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
{"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
R_RCS, D_ALL, 0, 1, NULL},
{"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
D_BDW_PLUS, 0, 8, NULL},
{"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
D_BDW_PLUS, 0, 8, NULL},
{"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
D_ALL, 0, 8, NULL},
{"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
D_BDW_PLUS, 0, 8, NULL},
{"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
D_BDW_PLUS, 0, 8, NULL},
{"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
D_ALL, 0, 8, NULL},
{"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
0, 8, NULL},
{"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
D_ALL, ADDR_FIX_1(2), 8, NULL},
{"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
D_ALL, 0, 8, NULL},
{"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
D_ALL, 0, 8, NULL},
{"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
D_ALL, 0, 8, NULL},
{"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
D_BDW_PLUS, 0, 8, NULL},
{"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
D_ALL, ADDR_FIX_1(2), 8, NULL},
{"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
{"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
D_ALL, 0, 9, NULL},
{"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
ADDR_FIX_2(2, 4), 8, NULL},
{"3DSTATE_BINDING_TABLE_POOL_ALLOC",
OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
{"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
{"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
{"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
D_BDW_PLUS, 0, 8, NULL},
{"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
{"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
1, NULL},
{"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
ADDR_FIX_1(1), 8, NULL},
{"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
{"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
ADDR_FIX_1(1), 8, NULL},
{"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
{"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
0, 8, NULL},
{"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
D_SKL_PLUS, 0, 8, NULL},
{"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
{"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
0, 16, NULL},
{"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
0, 16, NULL},
{"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
{"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
0, 16, NULL},
{"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
0, 16, NULL},
{"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
0, 16, NULL},
{"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
0, 8, NULL},
{"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
NULL},
{"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
{"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
R_VCS, D_BDW_PLUS, 0, 12, NULL},
{"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
{"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
{"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
{"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
R_VCS, D_ALL, 0, 6, NULL},
{"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
{"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
0, 16, NULL},
{"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
{"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
{"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
R_VCS, D_ALL, 0, 12, NULL},
{"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
{"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
0, 12, NULL},
{"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
0, 20, NULL},
};
static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
{
hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
}
/* call the cmd handler, and advance ip */
static int cmd_parser_exec(struct parser_exec_state *s)
{
struct intel_vgpu *vgpu = s->vgpu;
struct cmd_info *info;
u32 cmd;
int ret = 0;
cmd = cmd_val(s, 0);
info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
if (info == NULL) {
gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
cmd, get_opcode(cmd, s->ring_id),
(s->buf_addr_type == PPGTT_BUFFER) ?
"ppgtt" : "ggtt", s->ring_id, s->workload);
return -EBADRQC;
}
s->info = info;
trace_gvt_command(vgpu->id, s->ring_id, s->ip_gma, s->ip_va,
cmd_length(s), s->buf_type, s->buf_addr_type,
s->workload, info->name);
if (info->handler) {
ret = info->handler(s);
if (ret < 0) {
gvt_vgpu_err("%s handler error\n", info->name);
return ret;
}
}
if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
ret = cmd_advance_default(s);
if (ret) {
gvt_vgpu_err("%s IP advance error\n", info->name);
return ret;
}
}
return 0;
}
static inline bool gma_out_of_range(unsigned long gma,
unsigned long gma_head, unsigned int gma_tail)
{
if (gma_tail >= gma_head)
return (gma < gma_head) || (gma > gma_tail);
else
return (gma > gma_tail) && (gma < gma_head);
}
/* Keep the consistent return type, e.g EBADRQC for unknown
* cmd, EFAULT for invalid address, EPERM for nonpriv. later
* works as the input of VM healthy status.
*/
static int command_scan(struct parser_exec_state *s,
unsigned long rb_head, unsigned long rb_tail,
unsigned long rb_start, unsigned long rb_len)
{
unsigned long gma_head, gma_tail, gma_bottom;
int ret = 0;
struct intel_vgpu *vgpu = s->vgpu;
gma_head = rb_start + rb_head;
gma_tail = rb_start + rb_tail;
gma_bottom = rb_start + rb_len;
while (s->ip_gma != gma_tail) {
if (s->buf_type == RING_BUFFER_INSTRUCTION) {
if (!(s->ip_gma >= rb_start) ||
!(s->ip_gma < gma_bottom)) {
gvt_vgpu_err("ip_gma %lx out of ring scope."
"(base:0x%lx, bottom: 0x%lx)\n",
s->ip_gma, rb_start,
gma_bottom);
parser_exec_state_dump(s);
return -EFAULT;
}
if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
gvt_vgpu_err("ip_gma %lx out of range."
"base 0x%lx head 0x%lx tail 0x%lx\n",
s->ip_gma, rb_start,
rb_head, rb_tail);
parser_exec_state_dump(s);
break;
}
}
ret = cmd_parser_exec(s);
if (ret) {
gvt_vgpu_err("cmd parser error\n");
parser_exec_state_dump(s);
break;
}
}
return ret;
}
static int scan_workload(struct intel_vgpu_workload *workload)
{
unsigned long gma_head, gma_tail, gma_bottom;
struct parser_exec_state s;
int ret = 0;
/* ring base is page aligned */
if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
return -EINVAL;
gma_head = workload->rb_start + workload->rb_head;
gma_tail = workload->rb_start + workload->rb_tail;
gma_bottom = workload->rb_start + _RING_CTL_BUF_SIZE(workload->rb_ctl);
s.buf_type = RING_BUFFER_INSTRUCTION;
s.buf_addr_type = GTT_BUFFER;
s.vgpu = workload->vgpu;
s.ring_id = workload->ring_id;
s.ring_start = workload->rb_start;
s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
s.ring_head = gma_head;
s.ring_tail = gma_tail;
s.rb_va = workload->shadow_ring_buffer_va;
s.workload = workload;
s.is_ctx_wa = false;
if ((bypass_scan_mask & (1 << workload->ring_id)) ||
gma_head == gma_tail)
return 0;
if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) {
ret = -EINVAL;
goto out;
}
ret = ip_gma_set(&s, gma_head);
if (ret)
goto out;
ret = command_scan(&s, workload->rb_head, workload->rb_tail,
workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
out:
return ret;
}
static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
{
unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
struct parser_exec_state s;
int ret = 0;
struct intel_vgpu_workload *workload = container_of(wa_ctx,
struct intel_vgpu_workload,
wa_ctx);
/* ring base is page aligned */
if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
I915_GTT_PAGE_SIZE)))
return -EINVAL;
ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(uint32_t);
ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
PAGE_SIZE);
gma_head = wa_ctx->indirect_ctx.guest_gma;
gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
s.buf_type = RING_BUFFER_INSTRUCTION;
s.buf_addr_type = GTT_BUFFER;
s.vgpu = workload->vgpu;
s.ring_id = workload->ring_id;
s.ring_start = wa_ctx->indirect_ctx.guest_gma;
s.ring_size = ring_size;
s.ring_head = gma_head;
s.ring_tail = gma_tail;
s.rb_va = wa_ctx->indirect_ctx.shadow_va;
s.workload = workload;
s.is_ctx_wa = true;
if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) {
ret = -EINVAL;
goto out;
}
ret = ip_gma_set(&s, gma_head);
if (ret)
goto out;
ret = command_scan(&s, 0, ring_tail,
wa_ctx->indirect_ctx.guest_gma, ring_size);
out:
return ret;
}
static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
{
struct intel_vgpu *vgpu = workload->vgpu;
struct intel_vgpu_submission *s = &vgpu->submission;
unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
void *shadow_ring_buffer_va;
int ring_id = workload->ring_id;
int ret;
guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
/* calculate workload ring buffer size */
workload->rb_len = (workload->rb_tail + guest_rb_size -
workload->rb_head) % guest_rb_size;
gma_head = workload->rb_start + workload->rb_head;
gma_tail = workload->rb_start + workload->rb_tail;
gma_top = workload->rb_start + guest_rb_size;
if (workload->rb_len > s->ring_scan_buffer_size[ring_id]) {
void *p;
/* realloc the new ring buffer if needed */
p = krealloc(s->ring_scan_buffer[ring_id], workload->rb_len,
GFP_KERNEL);
if (!p) {
gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
return -ENOMEM;
}
s->ring_scan_buffer[ring_id] = p;
s->ring_scan_buffer_size[ring_id] = workload->rb_len;
}
shadow_ring_buffer_va = s->ring_scan_buffer[ring_id];
/* get shadow ring buffer va */
workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
/* head > tail --> copy head <-> top */
if (gma_head > gma_tail) {
ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
gma_head, gma_top, shadow_ring_buffer_va);
if (ret < 0) {
gvt_vgpu_err("fail to copy guest ring buffer\n");
return ret;
}
shadow_ring_buffer_va += ret;
gma_head = workload->rb_start;
}
/* copy head or start <-> tail */
ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
shadow_ring_buffer_va);
if (ret < 0) {
gvt_vgpu_err("fail to copy guest ring buffer\n");
return ret;
}
return 0;
}
int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
{
int ret;
struct intel_vgpu *vgpu = workload->vgpu;
ret = shadow_workload_ring_buffer(workload);
if (ret) {
gvt_vgpu_err("fail to shadow workload ring_buffer\n");
return ret;
}
ret = scan_workload(workload);
if (ret) {
gvt_vgpu_err("scan workload error\n");
return ret;
}
return 0;
}
static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
{
int ctx_size = wa_ctx->indirect_ctx.size;
unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
struct intel_vgpu_workload *workload = container_of(wa_ctx,
struct intel_vgpu_workload,
wa_ctx);
struct intel_vgpu *vgpu = workload->vgpu;
struct drm_i915_gem_object *obj;
int ret = 0;
void *map;
obj = i915_gem_object_create(workload->vgpu->gvt->dev_priv,
roundup(ctx_size + CACHELINE_BYTES,
PAGE_SIZE));
if (IS_ERR(obj))
return PTR_ERR(obj);
/* get the va of the shadow batch buffer */
map = i915_gem_object_pin_map(obj, I915_MAP_WB);
if (IS_ERR(map)) {
gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
ret = PTR_ERR(map);
goto put_obj;
}
ret = i915_gem_object_set_to_cpu_domain(obj, false);
if (ret) {
gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
goto unmap_src;
}
ret = copy_gma_to_hva(workload->vgpu,
workload->vgpu->gtt.ggtt_mm,
guest_gma, guest_gma + ctx_size,
map);
if (ret < 0) {
gvt_vgpu_err("fail to copy guest indirect ctx\n");
goto unmap_src;
}
wa_ctx->indirect_ctx.obj = obj;
wa_ctx->indirect_ctx.shadow_va = map;
return 0;
unmap_src:
i915_gem_object_unpin_map(obj);
put_obj:
i915_gem_object_put(obj);
return ret;
}
static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
{
uint32_t per_ctx_start[CACHELINE_DWORDS] = {0};
unsigned char *bb_start_sva;
if (!wa_ctx->per_ctx.valid)
return 0;
per_ctx_start[0] = 0x18800001;
per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
wa_ctx->indirect_ctx.size;
memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
return 0;
}
int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
{
int ret;
struct intel_vgpu_workload *workload = container_of(wa_ctx,
struct intel_vgpu_workload,
wa_ctx);
struct intel_vgpu *vgpu = workload->vgpu;
if (wa_ctx->indirect_ctx.size == 0)
return 0;
ret = shadow_indirect_ctx(wa_ctx);
if (ret) {
gvt_vgpu_err("fail to shadow indirect ctx\n");
return ret;
}
combine_wa_ctx(wa_ctx);
ret = scan_wa_ctx(wa_ctx);
if (ret) {
gvt_vgpu_err("scan wa ctx error\n");
return ret;
}
return 0;
}
static struct cmd_info *find_cmd_entry_any_ring(struct intel_gvt *gvt,
unsigned int opcode, unsigned long rings)
{
struct cmd_info *info = NULL;
unsigned int ring;
for_each_set_bit(ring, &rings, I915_NUM_ENGINES) {
info = find_cmd_entry(gvt, opcode, ring);
if (info)
break;
}
return info;
}
static int init_cmd_table(struct intel_gvt *gvt)
{
int i;
struct cmd_entry *e;
struct cmd_info *info;
unsigned int gen_type;
gen_type = intel_gvt_get_device_type(gvt);
for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
if (!(cmd_info[i].devices & gen_type))
continue;
e = kzalloc(sizeof(*e), GFP_KERNEL);
if (!e)
return -ENOMEM;
e->info = &cmd_info[i];
info = find_cmd_entry_any_ring(gvt,
e->info->opcode, e->info->rings);
if (info) {
gvt_err("%s %s duplicated\n", e->info->name,
info->name);
return -EEXIST;
}
INIT_HLIST_NODE(&e->hlist);
add_cmd_entry(gvt, e);
gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
e->info->name, e->info->opcode, e->info->flag,
e->info->devices, e->info->rings);
}
return 0;
}
static void clean_cmd_table(struct intel_gvt *gvt)
{
struct hlist_node *tmp;
struct cmd_entry *e;
int i;
hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
kfree(e);
hash_init(gvt->cmd_table);
}
void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
{
clean_cmd_table(gvt);
}
int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
{
int ret;
ret = init_cmd_table(gvt);
if (ret) {
intel_gvt_clean_cmd_parser(gvt);
return ret;
}
return 0;
}