OpenCloudOS-Kernel/include/linux/memcontrol.h

616 lines
16 KiB
C

/* memcontrol.h - Memory Controller
*
* Copyright IBM Corporation, 2007
* Author Balbir Singh <balbir@linux.vnet.ibm.com>
*
* Copyright 2007 OpenVZ SWsoft Inc
* Author: Pavel Emelianov <xemul@openvz.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef _LINUX_MEMCONTROL_H
#define _LINUX_MEMCONTROL_H
#include <linux/cgroup.h>
#include <linux/vm_event_item.h>
#include <linux/hardirq.h>
#include <linux/jump_label.h>
struct mem_cgroup;
struct page;
struct mm_struct;
struct kmem_cache;
/*
* The corresponding mem_cgroup_stat_names is defined in mm/memcontrol.c,
* These two lists should keep in accord with each other.
*/
enum mem_cgroup_stat_index {
/*
* For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
*/
MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
MEM_CGROUP_STAT_DIRTY, /* # of dirty pages in page cache */
MEM_CGROUP_STAT_WRITEBACK, /* # of pages under writeback */
MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
MEM_CGROUP_STAT_NSTATS,
};
struct mem_cgroup_reclaim_cookie {
struct zone *zone;
int priority;
unsigned int generation;
};
enum mem_cgroup_events_index {
MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
MEM_CGROUP_EVENTS_NSTATS,
/* default hierarchy events */
MEMCG_LOW = MEM_CGROUP_EVENTS_NSTATS,
MEMCG_HIGH,
MEMCG_MAX,
MEMCG_OOM,
MEMCG_NR_EVENTS,
};
#ifdef CONFIG_MEMCG
extern struct cgroup_subsys_state *mem_cgroup_root_css;
void mem_cgroup_events(struct mem_cgroup *memcg,
enum mem_cgroup_events_index idx,
unsigned int nr);
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg);
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
gfp_t gfp_mask, struct mem_cgroup **memcgp);
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
bool lrucare);
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg);
void mem_cgroup_uncharge(struct page *page);
void mem_cgroup_uncharge_list(struct list_head *page_list);
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
bool lrucare);
struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *);
struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *);
bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
struct mem_cgroup *root);
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg);
extern struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page);
extern struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
extern struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
extern struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css);
static inline bool mm_match_cgroup(struct mm_struct *mm,
struct mem_cgroup *memcg)
{
struct mem_cgroup *task_memcg;
bool match = false;
rcu_read_lock();
task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
if (task_memcg)
match = mem_cgroup_is_descendant(task_memcg, memcg);
rcu_read_unlock();
return match;
}
extern struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg);
extern struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
struct mem_cgroup *,
struct mem_cgroup_reclaim_cookie *);
void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
/*
* For memory reclaim.
*/
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec);
bool mem_cgroup_lruvec_online(struct lruvec *lruvec);
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list);
void mem_cgroup_update_lru_size(struct lruvec *, enum lru_list, int);
extern void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
struct task_struct *p);
static inline void mem_cgroup_oom_enable(void)
{
WARN_ON(current->memcg_oom.may_oom);
current->memcg_oom.may_oom = 1;
}
static inline void mem_cgroup_oom_disable(void)
{
WARN_ON(!current->memcg_oom.may_oom);
current->memcg_oom.may_oom = 0;
}
static inline bool task_in_memcg_oom(struct task_struct *p)
{
return p->memcg_oom.memcg;
}
bool mem_cgroup_oom_synchronize(bool wait);
#ifdef CONFIG_MEMCG_SWAP
extern int do_swap_account;
#endif
static inline bool mem_cgroup_disabled(void)
{
if (memory_cgrp_subsys.disabled)
return true;
return false;
}
struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page);
void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
enum mem_cgroup_stat_index idx, int val);
void mem_cgroup_end_page_stat(struct mem_cgroup *memcg);
static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg,
enum mem_cgroup_stat_index idx)
{
mem_cgroup_update_page_stat(memcg, idx, 1);
}
static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg,
enum mem_cgroup_stat_index idx)
{
mem_cgroup_update_page_stat(memcg, idx, -1);
}
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
gfp_t gfp_mask,
unsigned long *total_scanned);
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx);
static inline void mem_cgroup_count_vm_event(struct mm_struct *mm,
enum vm_event_item idx)
{
if (mem_cgroup_disabled())
return;
__mem_cgroup_count_vm_event(mm, idx);
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
void mem_cgroup_split_huge_fixup(struct page *head);
#endif
#else /* CONFIG_MEMCG */
struct mem_cgroup;
#define mem_cgroup_root_css ((struct cgroup_subsys_state *)ERR_PTR(-EINVAL))
static inline void mem_cgroup_events(struct mem_cgroup *memcg,
enum mem_cgroup_events_index idx,
unsigned int nr)
{
}
static inline bool mem_cgroup_low(struct mem_cgroup *root,
struct mem_cgroup *memcg)
{
return false;
}
static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
gfp_t gfp_mask,
struct mem_cgroup **memcgp)
{
*memcgp = NULL;
return 0;
}
static inline void mem_cgroup_commit_charge(struct page *page,
struct mem_cgroup *memcg,
bool lrucare)
{
}
static inline void mem_cgroup_cancel_charge(struct page *page,
struct mem_cgroup *memcg)
{
}
static inline void mem_cgroup_uncharge(struct page *page)
{
}
static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
{
}
static inline void mem_cgroup_migrate(struct page *oldpage,
struct page *newpage,
bool lrucare)
{
}
static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
struct mem_cgroup *memcg)
{
return &zone->lruvec;
}
static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
struct zone *zone)
{
return &zone->lruvec;
}
static inline struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
{
return NULL;
}
static inline bool mm_match_cgroup(struct mm_struct *mm,
struct mem_cgroup *memcg)
{
return true;
}
static inline bool task_in_mem_cgroup(struct task_struct *task,
const struct mem_cgroup *memcg)
{
return true;
}
static inline struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup *memcg)
{
return NULL;
}
static inline struct mem_cgroup *
mem_cgroup_iter(struct mem_cgroup *root,
struct mem_cgroup *prev,
struct mem_cgroup_reclaim_cookie *reclaim)
{
return NULL;
}
static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
struct mem_cgroup *prev)
{
}
static inline bool mem_cgroup_disabled(void)
{
return true;
}
static inline int
mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
{
return 1;
}
static inline bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
{
return true;
}
static inline unsigned long
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
{
return 0;
}
static inline void
mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
int increment)
{
}
static inline void
mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
}
static inline struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
{
return NULL;
}
static inline void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
{
}
static inline void mem_cgroup_oom_enable(void)
{
}
static inline void mem_cgroup_oom_disable(void)
{
}
static inline bool task_in_memcg_oom(struct task_struct *p)
{
return false;
}
static inline bool mem_cgroup_oom_synchronize(bool wait)
{
return false;
}
static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg,
enum mem_cgroup_stat_index idx)
{
}
static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg,
enum mem_cgroup_stat_index idx)
{
}
static inline
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
gfp_t gfp_mask,
unsigned long *total_scanned)
{
return 0;
}
static inline void mem_cgroup_split_huge_fixup(struct page *head)
{
}
static inline
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
}
#endif /* CONFIG_MEMCG */
enum {
UNDER_LIMIT,
SOFT_LIMIT,
OVER_LIMIT,
};
#ifdef CONFIG_CGROUP_WRITEBACK
struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg);
#endif
struct sock;
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
void sock_update_memcg(struct sock *sk);
void sock_release_memcg(struct sock *sk);
#else
static inline void sock_update_memcg(struct sock *sk)
{
}
static inline void sock_release_memcg(struct sock *sk)
{
}
#endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */
#ifdef CONFIG_MEMCG_KMEM
extern struct static_key memcg_kmem_enabled_key;
extern int memcg_nr_cache_ids;
extern void memcg_get_cache_ids(void);
extern void memcg_put_cache_ids(void);
/*
* Helper macro to loop through all memcg-specific caches. Callers must still
* check if the cache is valid (it is either valid or NULL).
* the slab_mutex must be held when looping through those caches
*/
#define for_each_memcg_cache_index(_idx) \
for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
static inline bool memcg_kmem_enabled(void)
{
return static_key_false(&memcg_kmem_enabled_key);
}
bool memcg_kmem_is_active(struct mem_cgroup *memcg);
/*
* In general, we'll do everything in our power to not incur in any overhead
* for non-memcg users for the kmem functions. Not even a function call, if we
* can avoid it.
*
* Therefore, we'll inline all those functions so that in the best case, we'll
* see that kmemcg is off for everybody and proceed quickly. If it is on,
* we'll still do most of the flag checking inline. We check a lot of
* conditions, but because they are pretty simple, they are expected to be
* fast.
*/
bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg,
int order);
void __memcg_kmem_commit_charge(struct page *page,
struct mem_cgroup *memcg, int order);
void __memcg_kmem_uncharge_pages(struct page *page, int order);
int memcg_cache_id(struct mem_cgroup *memcg);
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep);
void __memcg_kmem_put_cache(struct kmem_cache *cachep);
struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr);
int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
unsigned long nr_pages);
void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages);
/**
* memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed.
* @gfp: the gfp allocation flags.
* @memcg: a pointer to the memcg this was charged against.
* @order: allocation order.
*
* returns true if the memcg where the current task belongs can hold this
* allocation.
*
* We return true automatically if this allocation is not to be accounted to
* any memcg.
*/
static inline bool
memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
{
if (!memcg_kmem_enabled())
return true;
/*
* __GFP_NOFAIL allocations will move on even if charging is not
* possible. Therefore we don't even try, and have this allocation
* unaccounted. We could in theory charge it forcibly, but we hope
* those allocations are rare, and won't be worth the trouble.
*/
if (gfp & __GFP_NOFAIL)
return true;
if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
return true;
/* If the test is dying, just let it go. */
if (unlikely(fatal_signal_pending(current)))
return true;
return __memcg_kmem_newpage_charge(gfp, memcg, order);
}
/**
* memcg_kmem_uncharge_pages: uncharge pages from memcg
* @page: pointer to struct page being freed
* @order: allocation order.
*/
static inline void
memcg_kmem_uncharge_pages(struct page *page, int order)
{
if (memcg_kmem_enabled())
__memcg_kmem_uncharge_pages(page, order);
}
/**
* memcg_kmem_commit_charge: embeds correct memcg in a page
* @page: pointer to struct page recently allocated
* @memcg: the memcg structure we charged against
* @order: allocation order.
*
* Needs to be called after memcg_kmem_newpage_charge, regardless of success or
* failure of the allocation. if @page is NULL, this function will revert the
* charges. Otherwise, it will commit @page to @memcg.
*/
static inline void
memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
{
if (memcg_kmem_enabled() && memcg)
__memcg_kmem_commit_charge(page, memcg, order);
}
/**
* memcg_kmem_get_cache: selects the correct per-memcg cache for allocation
* @cachep: the original global kmem cache
* @gfp: allocation flags.
*
* All memory allocated from a per-memcg cache is charged to the owner memcg.
*/
static __always_inline struct kmem_cache *
memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
{
if (!memcg_kmem_enabled())
return cachep;
if (gfp & __GFP_NOFAIL)
return cachep;
if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
return cachep;
if (unlikely(fatal_signal_pending(current)))
return cachep;
return __memcg_kmem_get_cache(cachep);
}
static __always_inline void memcg_kmem_put_cache(struct kmem_cache *cachep)
{
if (memcg_kmem_enabled())
__memcg_kmem_put_cache(cachep);
}
static __always_inline struct mem_cgroup *mem_cgroup_from_kmem(void *ptr)
{
if (!memcg_kmem_enabled())
return NULL;
return __mem_cgroup_from_kmem(ptr);
}
#else
#define for_each_memcg_cache_index(_idx) \
for (; NULL; )
static inline bool memcg_kmem_enabled(void)
{
return false;
}
static inline bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
return false;
}
static inline bool
memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
{
return true;
}
static inline void memcg_kmem_uncharge_pages(struct page *page, int order)
{
}
static inline void
memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
{
}
static inline int memcg_cache_id(struct mem_cgroup *memcg)
{
return -1;
}
static inline void memcg_get_cache_ids(void)
{
}
static inline void memcg_put_cache_ids(void)
{
}
static inline struct kmem_cache *
memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
{
return cachep;
}
static inline void memcg_kmem_put_cache(struct kmem_cache *cachep)
{
}
static inline struct mem_cgroup *mem_cgroup_from_kmem(void *ptr)
{
return NULL;
}
#endif /* CONFIG_MEMCG_KMEM */
#endif /* _LINUX_MEMCONTROL_H */