OpenCloudOS-Kernel/mm/compaction.c

748 lines
20 KiB
C

/*
* linux/mm/compaction.c
*
* Memory compaction for the reduction of external fragmentation. Note that
* this heavily depends upon page migration to do all the real heavy
* lifting
*
* Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
*/
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/sysctl.h>
#include <linux/sysfs.h>
#include "internal.h"
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>
/*
* compact_control is used to track pages being migrated and the free pages
* they are being migrated to during memory compaction. The free_pfn starts
* at the end of a zone and migrate_pfn begins at the start. Movable pages
* are moved to the end of a zone during a compaction run and the run
* completes when free_pfn <= migrate_pfn
*/
struct compact_control {
struct list_head freepages; /* List of free pages to migrate to */
struct list_head migratepages; /* List of pages being migrated */
unsigned long nr_freepages; /* Number of isolated free pages */
unsigned long nr_migratepages; /* Number of pages to migrate */
unsigned long free_pfn; /* isolate_freepages search base */
unsigned long migrate_pfn; /* isolate_migratepages search base */
bool sync; /* Synchronous migration */
/* Account for isolated anon and file pages */
unsigned long nr_anon;
unsigned long nr_file;
unsigned int order; /* order a direct compactor needs */
int migratetype; /* MOVABLE, RECLAIMABLE etc */
struct zone *zone;
};
static unsigned long release_freepages(struct list_head *freelist)
{
struct page *page, *next;
unsigned long count = 0;
list_for_each_entry_safe(page, next, freelist, lru) {
list_del(&page->lru);
__free_page(page);
count++;
}
return count;
}
/* Isolate free pages onto a private freelist. Must hold zone->lock */
static unsigned long isolate_freepages_block(struct zone *zone,
unsigned long blockpfn,
struct list_head *freelist)
{
unsigned long zone_end_pfn, end_pfn;
int nr_scanned = 0, total_isolated = 0;
struct page *cursor;
/* Get the last PFN we should scan for free pages at */
zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn);
/* Find the first usable PFN in the block to initialse page cursor */
for (; blockpfn < end_pfn; blockpfn++) {
if (pfn_valid_within(blockpfn))
break;
}
cursor = pfn_to_page(blockpfn);
/* Isolate free pages. This assumes the block is valid */
for (; blockpfn < end_pfn; blockpfn++, cursor++) {
int isolated, i;
struct page *page = cursor;
if (!pfn_valid_within(blockpfn))
continue;
nr_scanned++;
if (!PageBuddy(page))
continue;
/* Found a free page, break it into order-0 pages */
isolated = split_free_page(page);
total_isolated += isolated;
for (i = 0; i < isolated; i++) {
list_add(&page->lru, freelist);
page++;
}
/* If a page was split, advance to the end of it */
if (isolated) {
blockpfn += isolated - 1;
cursor += isolated - 1;
}
}
trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
return total_isolated;
}
/* Returns true if the page is within a block suitable for migration to */
static bool suitable_migration_target(struct page *page)
{
int migratetype = get_pageblock_migratetype(page);
/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
return false;
/* If the page is a large free page, then allow migration */
if (PageBuddy(page) && page_order(page) >= pageblock_order)
return true;
/* If the block is MIGRATE_MOVABLE, allow migration */
if (migratetype == MIGRATE_MOVABLE)
return true;
/* Otherwise skip the block */
return false;
}
/*
* Based on information in the current compact_control, find blocks
* suitable for isolating free pages from and then isolate them.
*/
static void isolate_freepages(struct zone *zone,
struct compact_control *cc)
{
struct page *page;
unsigned long high_pfn, low_pfn, pfn;
unsigned long flags;
int nr_freepages = cc->nr_freepages;
struct list_head *freelist = &cc->freepages;
/*
* Initialise the free scanner. The starting point is where we last
* scanned from (or the end of the zone if starting). The low point
* is the end of the pageblock the migration scanner is using.
*/
pfn = cc->free_pfn;
low_pfn = cc->migrate_pfn + pageblock_nr_pages;
/*
* Take care that if the migration scanner is at the end of the zone
* that the free scanner does not accidentally move to the next zone
* in the next isolation cycle.
*/
high_pfn = min(low_pfn, pfn);
/*
* Isolate free pages until enough are available to migrate the
* pages on cc->migratepages. We stop searching if the migrate
* and free page scanners meet or enough free pages are isolated.
*/
for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
pfn -= pageblock_nr_pages) {
unsigned long isolated;
if (!pfn_valid(pfn))
continue;
/*
* Check for overlapping nodes/zones. It's possible on some
* configurations to have a setup like
* node0 node1 node0
* i.e. it's possible that all pages within a zones range of
* pages do not belong to a single zone.
*/
page = pfn_to_page(pfn);
if (page_zone(page) != zone)
continue;
/* Check the block is suitable for migration */
if (!suitable_migration_target(page))
continue;
/*
* Found a block suitable for isolating free pages from. Now
* we disabled interrupts, double check things are ok and
* isolate the pages. This is to minimise the time IRQs
* are disabled
*/
isolated = 0;
spin_lock_irqsave(&zone->lock, flags);
if (suitable_migration_target(page)) {
isolated = isolate_freepages_block(zone, pfn, freelist);
nr_freepages += isolated;
}
spin_unlock_irqrestore(&zone->lock, flags);
/*
* Record the highest PFN we isolated pages from. When next
* looking for free pages, the search will restart here as
* page migration may have returned some pages to the allocator
*/
if (isolated)
high_pfn = max(high_pfn, pfn);
}
/* split_free_page does not map the pages */
list_for_each_entry(page, freelist, lru) {
arch_alloc_page(page, 0);
kernel_map_pages(page, 1, 1);
}
cc->free_pfn = high_pfn;
cc->nr_freepages = nr_freepages;
}
/* Update the number of anon and file isolated pages in the zone */
static void acct_isolated(struct zone *zone, struct compact_control *cc)
{
struct page *page;
unsigned int count[NR_LRU_LISTS] = { 0, };
list_for_each_entry(page, &cc->migratepages, lru) {
int lru = page_lru_base_type(page);
count[lru]++;
}
cc->nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
cc->nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
__mod_zone_page_state(zone, NR_ISOLATED_ANON, cc->nr_anon);
__mod_zone_page_state(zone, NR_ISOLATED_FILE, cc->nr_file);
}
/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
unsigned long active, inactive, isolated;
inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
zone_page_state(zone, NR_INACTIVE_ANON);
active = zone_page_state(zone, NR_ACTIVE_FILE) +
zone_page_state(zone, NR_ACTIVE_ANON);
isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
zone_page_state(zone, NR_ISOLATED_ANON);
return isolated > (inactive + active) / 2;
}
/* possible outcome of isolate_migratepages */
typedef enum {
ISOLATE_ABORT, /* Abort compaction now */
ISOLATE_NONE, /* No pages isolated, continue scanning */
ISOLATE_SUCCESS, /* Pages isolated, migrate */
} isolate_migrate_t;
/*
* Isolate all pages that can be migrated from the block pointed to by
* the migrate scanner within compact_control.
*/
static isolate_migrate_t isolate_migratepages(struct zone *zone,
struct compact_control *cc)
{
unsigned long low_pfn, end_pfn;
unsigned long last_pageblock_nr = 0, pageblock_nr;
unsigned long nr_scanned = 0, nr_isolated = 0;
struct list_head *migratelist = &cc->migratepages;
/* Do not scan outside zone boundaries */
low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
/* Only scan within a pageblock boundary */
end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
/* Do not cross the free scanner or scan within a memory hole */
if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
cc->migrate_pfn = end_pfn;
return ISOLATE_NONE;
}
/*
* Ensure that there are not too many pages isolated from the LRU
* list by either parallel reclaimers or compaction. If there are,
* delay for some time until fewer pages are isolated
*/
while (unlikely(too_many_isolated(zone))) {
/* async migration should just abort */
if (!cc->sync)
return ISOLATE_ABORT;
congestion_wait(BLK_RW_ASYNC, HZ/10);
if (fatal_signal_pending(current))
return ISOLATE_ABORT;
}
/* Time to isolate some pages for migration */
cond_resched();
spin_lock_irq(&zone->lru_lock);
for (; low_pfn < end_pfn; low_pfn++) {
struct page *page;
bool locked = true;
/* give a chance to irqs before checking need_resched() */
if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) {
spin_unlock_irq(&zone->lru_lock);
locked = false;
}
if (need_resched() || spin_is_contended(&zone->lru_lock)) {
if (locked)
spin_unlock_irq(&zone->lru_lock);
cond_resched();
spin_lock_irq(&zone->lru_lock);
if (fatal_signal_pending(current))
break;
} else if (!locked)
spin_lock_irq(&zone->lru_lock);
if (!pfn_valid_within(low_pfn))
continue;
nr_scanned++;
/* Get the page and skip if free */
page = pfn_to_page(low_pfn);
if (PageBuddy(page))
continue;
/*
* For async migration, also only scan in MOVABLE blocks. Async
* migration is optimistic to see if the minimum amount of work
* satisfies the allocation
*/
pageblock_nr = low_pfn >> pageblock_order;
if (!cc->sync && last_pageblock_nr != pageblock_nr &&
get_pageblock_migratetype(page) != MIGRATE_MOVABLE) {
low_pfn += pageblock_nr_pages;
low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
last_pageblock_nr = pageblock_nr;
continue;
}
if (!PageLRU(page))
continue;
/*
* PageLRU is set, and lru_lock excludes isolation,
* splitting and collapsing (collapsing has already
* happened if PageLRU is set).
*/
if (PageTransHuge(page)) {
low_pfn += (1 << compound_order(page)) - 1;
continue;
}
/* Try isolate the page */
if (__isolate_lru_page(page, ISOLATE_BOTH, 0) != 0)
continue;
VM_BUG_ON(PageTransCompound(page));
/* Successfully isolated */
del_page_from_lru_list(zone, page, page_lru(page));
list_add(&page->lru, migratelist);
cc->nr_migratepages++;
nr_isolated++;
/* Avoid isolating too much */
if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
break;
}
acct_isolated(zone, cc);
spin_unlock_irq(&zone->lru_lock);
cc->migrate_pfn = low_pfn;
trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
return ISOLATE_SUCCESS;
}
/*
* This is a migrate-callback that "allocates" freepages by taking pages
* from the isolated freelists in the block we are migrating to.
*/
static struct page *compaction_alloc(struct page *migratepage,
unsigned long data,
int **result)
{
struct compact_control *cc = (struct compact_control *)data;
struct page *freepage;
/* Isolate free pages if necessary */
if (list_empty(&cc->freepages)) {
isolate_freepages(cc->zone, cc);
if (list_empty(&cc->freepages))
return NULL;
}
freepage = list_entry(cc->freepages.next, struct page, lru);
list_del(&freepage->lru);
cc->nr_freepages--;
return freepage;
}
/*
* We cannot control nr_migratepages and nr_freepages fully when migration is
* running as migrate_pages() has no knowledge of compact_control. When
* migration is complete, we count the number of pages on the lists by hand.
*/
static void update_nr_listpages(struct compact_control *cc)
{
int nr_migratepages = 0;
int nr_freepages = 0;
struct page *page;
list_for_each_entry(page, &cc->migratepages, lru)
nr_migratepages++;
list_for_each_entry(page, &cc->freepages, lru)
nr_freepages++;
cc->nr_migratepages = nr_migratepages;
cc->nr_freepages = nr_freepages;
}
static int compact_finished(struct zone *zone,
struct compact_control *cc)
{
unsigned int order;
unsigned long watermark;
if (fatal_signal_pending(current))
return COMPACT_PARTIAL;
/* Compaction run completes if the migrate and free scanner meet */
if (cc->free_pfn <= cc->migrate_pfn)
return COMPACT_COMPLETE;
/*
* order == -1 is expected when compacting via
* /proc/sys/vm/compact_memory
*/
if (cc->order == -1)
return COMPACT_CONTINUE;
/* Compaction run is not finished if the watermark is not met */
watermark = low_wmark_pages(zone);
watermark += (1 << cc->order);
if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
return COMPACT_CONTINUE;
/* Direct compactor: Is a suitable page free? */
for (order = cc->order; order < MAX_ORDER; order++) {
/* Job done if page is free of the right migratetype */
if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
return COMPACT_PARTIAL;
/* Job done if allocation would set block type */
if (order >= pageblock_order && zone->free_area[order].nr_free)
return COMPACT_PARTIAL;
}
return COMPACT_CONTINUE;
}
/*
* compaction_suitable: Is this suitable to run compaction on this zone now?
* Returns
* COMPACT_SKIPPED - If there are too few free pages for compaction
* COMPACT_PARTIAL - If the allocation would succeed without compaction
* COMPACT_CONTINUE - If compaction should run now
*/
unsigned long compaction_suitable(struct zone *zone, int order)
{
int fragindex;
unsigned long watermark;
/*
* order == -1 is expected when compacting via
* /proc/sys/vm/compact_memory
*/
if (order == -1)
return COMPACT_CONTINUE;
/*
* Watermarks for order-0 must be met for compaction. Note the 2UL.
* This is because during migration, copies of pages need to be
* allocated and for a short time, the footprint is higher
*/
watermark = low_wmark_pages(zone) + (2UL << order);
if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
return COMPACT_SKIPPED;
/*
* fragmentation index determines if allocation failures are due to
* low memory or external fragmentation
*
* index of -1000 implies allocations might succeed depending on
* watermarks
* index towards 0 implies failure is due to lack of memory
* index towards 1000 implies failure is due to fragmentation
*
* Only compact if a failure would be due to fragmentation.
*/
fragindex = fragmentation_index(zone, order);
if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
return COMPACT_SKIPPED;
if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
0, 0))
return COMPACT_PARTIAL;
return COMPACT_CONTINUE;
}
static int compact_zone(struct zone *zone, struct compact_control *cc)
{
int ret;
ret = compaction_suitable(zone, cc->order);
switch (ret) {
case COMPACT_PARTIAL:
case COMPACT_SKIPPED:
/* Compaction is likely to fail */
return ret;
case COMPACT_CONTINUE:
/* Fall through to compaction */
;
}
/* Setup to move all movable pages to the end of the zone */
cc->migrate_pfn = zone->zone_start_pfn;
cc->free_pfn = cc->migrate_pfn + zone->spanned_pages;
cc->free_pfn &= ~(pageblock_nr_pages-1);
migrate_prep_local();
while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
unsigned long nr_migrate, nr_remaining;
int err;
switch (isolate_migratepages(zone, cc)) {
case ISOLATE_ABORT:
ret = COMPACT_PARTIAL;
goto out;
case ISOLATE_NONE:
continue;
case ISOLATE_SUCCESS:
;
}
nr_migrate = cc->nr_migratepages;
err = migrate_pages(&cc->migratepages, compaction_alloc,
(unsigned long)cc, false,
cc->sync);
update_nr_listpages(cc);
nr_remaining = cc->nr_migratepages;
count_vm_event(COMPACTBLOCKS);
count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
if (nr_remaining)
count_vm_events(COMPACTPAGEFAILED, nr_remaining);
trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
nr_remaining);
/* Release LRU pages not migrated */
if (err) {
putback_lru_pages(&cc->migratepages);
cc->nr_migratepages = 0;
}
}
out:
/* Release free pages and check accounting */
cc->nr_freepages -= release_freepages(&cc->freepages);
VM_BUG_ON(cc->nr_freepages != 0);
return ret;
}
unsigned long compact_zone_order(struct zone *zone,
int order, gfp_t gfp_mask,
bool sync)
{
struct compact_control cc = {
.nr_freepages = 0,
.nr_migratepages = 0,
.order = order,
.migratetype = allocflags_to_migratetype(gfp_mask),
.zone = zone,
.sync = sync,
};
INIT_LIST_HEAD(&cc.freepages);
INIT_LIST_HEAD(&cc.migratepages);
return compact_zone(zone, &cc);
}
int sysctl_extfrag_threshold = 500;
/**
* try_to_compact_pages - Direct compact to satisfy a high-order allocation
* @zonelist: The zonelist used for the current allocation
* @order: The order of the current allocation
* @gfp_mask: The GFP mask of the current allocation
* @nodemask: The allowed nodes to allocate from
* @sync: Whether migration is synchronous or not
*
* This is the main entry point for direct page compaction.
*/
unsigned long try_to_compact_pages(struct zonelist *zonelist,
int order, gfp_t gfp_mask, nodemask_t *nodemask,
bool sync)
{
enum zone_type high_zoneidx = gfp_zone(gfp_mask);
int may_enter_fs = gfp_mask & __GFP_FS;
int may_perform_io = gfp_mask & __GFP_IO;
struct zoneref *z;
struct zone *zone;
int rc = COMPACT_SKIPPED;
/*
* Check whether it is worth even starting compaction. The order check is
* made because an assumption is made that the page allocator can satisfy
* the "cheaper" orders without taking special steps
*/
if (!order || !may_enter_fs || !may_perform_io)
return rc;
count_vm_event(COMPACTSTALL);
/* Compact each zone in the list */
for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
nodemask) {
int status;
status = compact_zone_order(zone, order, gfp_mask, sync);
rc = max(status, rc);
/* If a normal allocation would succeed, stop compacting */
if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
break;
}
return rc;
}
/* Compact all zones within a node */
static int compact_node(int nid)
{
int zoneid;
pg_data_t *pgdat;
struct zone *zone;
if (nid < 0 || nid >= nr_node_ids || !node_online(nid))
return -EINVAL;
pgdat = NODE_DATA(nid);
/* Flush pending updates to the LRU lists */
lru_add_drain_all();
for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
struct compact_control cc = {
.nr_freepages = 0,
.nr_migratepages = 0,
.order = -1,
};
zone = &pgdat->node_zones[zoneid];
if (!populated_zone(zone))
continue;
cc.zone = zone;
INIT_LIST_HEAD(&cc.freepages);
INIT_LIST_HEAD(&cc.migratepages);
compact_zone(zone, &cc);
VM_BUG_ON(!list_empty(&cc.freepages));
VM_BUG_ON(!list_empty(&cc.migratepages));
}
return 0;
}
/* Compact all nodes in the system */
static int compact_nodes(void)
{
int nid;
for_each_online_node(nid)
compact_node(nid);
return COMPACT_COMPLETE;
}
/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;
/* This is the entry point for compacting all nodes via /proc/sys/vm */
int sysctl_compaction_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *length, loff_t *ppos)
{
if (write)
return compact_nodes();
return 0;
}
int sysctl_extfrag_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *length, loff_t *ppos)
{
proc_dointvec_minmax(table, write, buffer, length, ppos);
return 0;
}
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
ssize_t sysfs_compact_node(struct sys_device *dev,
struct sysdev_attribute *attr,
const char *buf, size_t count)
{
compact_node(dev->id);
return count;
}
static SYSDEV_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
int compaction_register_node(struct node *node)
{
return sysdev_create_file(&node->sysdev, &attr_compact);
}
void compaction_unregister_node(struct node *node)
{
return sysdev_remove_file(&node->sysdev, &attr_compact);
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */